Calculating bounce actions with Neural
Networks and extensions to the code EVADE

Fabio Campello

29.02.2024

Content

False Vacuum Decay

Efficient Vacuum Decay Evaluation (EVADE) + CosmoTransitions

Neural network approach

Results

False Vacuum Decay

« System in a metastable state
+ Quantum tunneling to a deeper minimum, I' < e~ B
o Dominant contribution from bounce action B

+ Bounce solution ¢g(p) solves d ¢ + 23? VV(¢)=0

with ¢g(00) = drase and &7 L

« Bounce action is obtained from the bounce solution

0.4
0.0 0.2 420
0.0

EVADE

» Any quartic potential of n fields

» Find all extrema using PHC, up to 3"

- Straight path approximation, V() = Ap* — Ap3 + m??
+ Use semianalytic result, B = B(\, A, m)

« Compare to the age of the universe

Adding path deformation to EVADE

input.csv

Mathematica

A\ 2

output.csv

Adding path deformation to EVADE

input.csv

Mathematica

Q‘J‘d\“d

model.cpp

CosmoTransitions H—)@

o Minimal additional setup

» Combines efficiency of EVADE with increased accuracy of
using path deformation

EVADE path deformation results

Ain GeV

EVADE EVADE + Cosmo
stability stability
6000 - mm stable 6000 - mm stable
B long-lived B long-lived
uncertain uncertain
3000 | mm inone 3000 + mm tamyoric
>
R
0 = 04
<
-3000 A -3000 A
-6000 A -6000 -
T T T T T T T T T T
-5000 -2500 0 2500 5000 -5000 -2500 0 2500 5000
uin GeV M in GeV

Path deformation can shift the border of short-lived regions
Additional parameter space excluded

Computing path deformation for this plot (2300 MSSM
points) took around 90s using 12 CPU cores

Neural network approach - Definitions

o Treat neural network as a function

» Neural networks can approximate any function

The neural net will model the tunneling path ¢(p)
Choose a pmax and discretize the path into n, steps
Define the loss: £ = Leq + n,Lp

. 2
Lo =3 (4522 + 25282 - Y V(elo)
Ly = (%ZO)) + (¢(pmax) - (bl“alse)2

Neural network prefers values between 0 and 1

= ¢(P) = (z)true + NN(ﬁ)(‘bfalse - ¢true)

Neural network approach - Training process

2

cbz(d‘i’(m)) + (9 (Pmax) — Brase)’

« Equation has a trivial solution ¢(p) = ¢false

o Random initialization — Network finds trivial solution

» Solution: Two step training process

Randomly initialize the network, then train a few epochs on

Linit = Z(NN(PI) o2

pmax

Continue training with the correct Loss function

Neural network approach - Training process

« No inference — No overfitting
 Single batch training — almost no randomness
« Danger of getting stuck in local minima

» Danger of falling back into trivial solution

= Choosing learning rate correctly is crucial

Neural network approach - Implementation overview

« Option 1: Use only existing tensorflow operations via python
« Option 2: Write custom tensorflow operation in C++
Python option:
« Easier to implement, no additional code to compile
» Use tensorflows automatic differentiation
+ C++ model files can not be used
» Graph creation for complicated models is very slow
C++ option:
o CH4+ for Loss and its gradient, separate for CPU and GPU
» Need to use finite differences
o Use already available C++ model files

» Overall better performance

Neural network approach - Implementation overview

model.m

Mathematica

pybind
model.py ’ CosmoTransitions ‘

Tensorflow

XLA

GPU [CPU

cc

LossTemplate

’ LossGrad Template /
nvc

’ XLACustomCallTemplate loss.cu.o

Neural network approach - Measure for method comparison

Given deosmo(p) and énn(p), which is more accurate?
Bl =2 [| (42)" 4 Vio(o) | = Lol + o

« One can show that Ik [¢g] = =21y [¢5]
- = Blgg] = —Iv [¢8] = 31k [¢5]

For a solution all three methods of calculating the Bounce action
must give the same result.

Neural network approach - Hyperparameter

Discretization
* pPmax Set to equal CosmoTransitions
« n,: 1000
NN parameters
« Hidden layers: 5
» Neurons in each layer: 10
« Activation: tanh
Training parameters
« Optimizer: Adam
« Initialization epochs: 1000
« Initialization learning rate: 1072
« Training epochs: 20000

« Training learning rate: 1073

Neural network approach - Results

V(x,y) = (x> +5y?) (5(x = 1)> + (y — 1)?) + 80(y* — y?)

field values along path

1.0 —— nn_x
—— nnly
—— €osmo_x

0.8 —— cosmo_y

0.6

phi_i

0.4

0.2

0.0

0.0 0.5 1.0 15 2.0 2.5
rho

Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s

Neural network approach - Results

V(x,y) = (x> +5y?) (5(x — 1)> + (y — 1)?) + 80(y* — ?)

0.0 0.2 04 06 o
fieldo :

Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s

Neural network approach - Results

NMSSM potential, 3 fields non-zero
Learning rate was set to 102 and epochs to 30000

potential along path field values along path
p —— nn_vhuro
00001 AN —— nn_vhdro
_ 2.0 —m
—— cosmo_vhur
0.0000- | —— cosmo_vhdr
// | —— cosmo_vhsr0
ya straight_vhur0
~0.0001- / 15 —— straight_vhdro
I straight_vhsr0
$-0.0002 | -
$ I 2
] £
5 /1 S10
-0.0003- |
/ -
~0.0004 ‘ h
‘ 05
~0.0005- -m S~—
) —— true vacuu m
—— false vacuum E—
0.0006 T cosmo —_—
‘ —— straight 0o
[25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
tho tho

Cosmo: [351.57, 351.95, 352.32], NN: [403.80, 366.06, 268.33]
Straight: 2910
Runtime: Cosmo single thread: 0.8s, NN on RTX 3060 Ti: 29s

Neural network approach - Results - Toy Model

N
« Toy model: V =5)\,-xfL - A,-x,-3 + m,-x,-2
i=0
« \j, Ai, mj > 0 randomly generated
» Look at tunneling from highest to lowest minimum

For N = 10 (hard limit) CosmoTransitions ran into various
problems.

The network was still able to consistently provide solutions at
N = 20.

Neural network approach - Results - Toy Model N = 2

field values along path

— nn_fieldo
—— nn_fieldl

o

s /
1/

|
9

00 02 04 06 08 10
rho

Straight: 64.68, NN: [94.92, 94.79, 94.67]
Runtime: NN on RTX 3060 Ti: 13s

potential along path

— true vacuum
—— false vacuum

Neural network approach - Results - Toy Model N = 10

potential along path

-500

-1000

—-1500

W(Tev?)

2000

-2500

-3000

0.0 0.2 0.4 0.6 0.8 1.0
rho

Cosmo: [283.28, 286.36, 285.44], NN: [324.01, 323.67, 323.32]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 13s

Summary

« Added path deformation to EVADE via CosmoTransitions

» Enables large scale parameter scans with improved accuracy

o Added neural network based bounce action solver to EVADE

« Promising results, especially for cases with many scalar fields

Remaining Tasks
« Investigate effects of the various hyperparameters

« Evaluate the performance in more physics based scenarios

