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False Vacuum Decay
• System in a metastable state
• Quantum tunneling to a deeper minimum, Γ ∝ e−B

• Dominant contribution from bounce action B
• Bounce solution ϕB(ρ) solves
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• Bounce action is obtained from the bounce solution



EVADE

• Any quartic potential of n fields

• Find all extrema using PHC, up to 3n

• Straight path approximation, V (φ) = λφ4 − Aφ3 +m2φ2

• Use semianalytic result, B = B(λ,A,m)

• Compare to the age of the universe



Adding path deformation to EVADE
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Adding path deformation to EVADE
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• Minimal additional setup

• Combines efficiency of EVADE with increased accuracy of
using path deformation



EVADE path deformation results

EVADE EVADE + Cosmo

• Path deformation can shift the border of short-lived regions

• Additional parameter space excluded

• Computing path deformation for this plot (2300 MSSM
points) took around 90s using 12 CPU cores



Neural network approach - Definitions

• Treat neural network as a function

• Neural networks can approximate any function

The neural net will model the tunneling path ϕ(ρ)
Choose a ρmax and discretize the path into nρ steps
Define the loss: L = Leq + nρLb
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Neural network prefers values between 0 and 1
⇒ ϕ(ρ) = ϕtrue +NN(ρ)(ϕfalse − ϕtrue)



Neural network approach - Training process

Leq =
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• Equation has a trivial solution ϕ(ρ) = ϕfalse

• Random initialization → Network finds trivial solution

• Solution: Two step training process

Randomly initialize the network, then train a few epochs on
Linit =

∑
i
(NN(ρi )− ρi

ρmax
)2

Continue training with the correct Loss function



Neural network approach - Training process

• No inference → No overfitting

• Single batch training → almost no randomness

• Danger of getting stuck in local minima

• Danger of falling back into trivial solution

⇒ Choosing learning rate correctly is crucial



Neural network approach - Implementation overview

• Option 1: Use only existing tensorflow operations via python

• Option 2: Write custom tensorflow operation in C++

Python option:

• Easier to implement, no additional code to compile

• Use tensorflows automatic differentiation

• C++ model files can not be used

• Graph creation for complicated models is very slow

C++ option:

• C++ for Loss and its gradient, separate for CPU and GPU

• Need to use finite differences

• Use already available C++ model files

• Overall better performance



Neural network approach - Implementation overview

model.m

model.cpp model.py CosmoTransitions

LossTemplate

LossGradTemplate

XLACustomCallTemplate

loss.cpp

loss.cu

loss.cu.o

loss.so

Tensorflow

GPU CPU

Mathematica

pybind

nvcc

cc

XLA



Neural network approach - Measure for method comparison

Given ϕcosmo(ρ) and ϕNN(ρ), which is more accurate?

• B [ϕ] = 2π2
∞∫
0

dρρ3
[
1
2

(
dϕ(ρ)
dρ

)2
+ V (ϕ(ρ))

]
= IK [ϕ] + IV [ϕ]

• One can show that IK [ϕB ] = −2IV [ϕB ]

• ⇒ B [ϕB ] = −IV [ϕB ] =
1
2 IK [ϕB ]

For a solution all three methods of calculating the Bounce action
must give the same result.



Neural network approach - Hyperparameter

Discretization

• ρmax set to equal CosmoTransitions

• nρ: 1000

NN parameters

• Hidden layers: 5

• Neurons in each layer: 10

• Activation: tanh

Training parameters

• Optimizer: Adam

• Initialization epochs: 1000

• Initialization learning rate: 10−2

• Training epochs: 20000

• Training learning rate: 10−3



Neural network approach - Results

V (x , y) = (x2 + 5y2)
(
5(x − 1)2 + (y − 1)2

)
+ 80(y4 − y3)

Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s
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Neural network approach - Results

NMSSM potential, 3 fields non-zero
Learning rate was set to 10−2 and epochs to 30000

Cosmo: [351.57, 351.95, 352.32], NN: [403.80, 366.06, 268.33]
Straight: 2910
Runtime: Cosmo single thread: 0.8s, NN on RTX 3060 Ti: 29s



Neural network approach - Results - Toy Model

• Toy model: V =
N∑
i=0

λix
4
i − Aix

3
i +mix

2
i

• λi ,Ai ,mi > 0 randomly generated

• Look at tunneling from highest to lowest minimum

For N = 10 (hard limit) CosmoTransitions ran into various
problems.

The network was still able to consistently provide solutions at
N = 20.



Neural network approach - Results - Toy Model N = 2

Straight: 64.68, NN: [94.92, 94.79, 94.67]
Runtime: NN on RTX 3060 Ti: 13s



Neural network approach - Results - Toy Model N = 10

Cosmo: [283.28, 286.36, 285.44], NN: [324.01, 323.67, 323.32]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 13s



Summary

• Added path deformation to EVADE via CosmoTransitions

• Enables large scale parameter scans with improved accuracy

• Added neural network based bounce action solver to EVADE

• Promising results, especially for cases with many scalar fields

Remaining Tasks

• Investigate effects of the various hyperparameters

• Evaluate the performance in more physics based scenarios


