
Calculating bounce actions with Neural
Networks and extensions to the code EVADE

Fabio Campello

29.02.2024



Content

False Vacuum Decay

Efficient Vacuum Decay Evaluation (EVADE) + CosmoTransitions

Neural network approach

Results



False Vacuum Decay
• System in a metastable state
• Quantum tunneling to a deeper minimum, Γ ∝ e−B

• Dominant contribution from bounce action B
• Bounce solution ϕB(ρ) solves

d2ϕ
dρ2

+ 3
ϕ
dϕ
dρ −∇V (ϕ) = 0

with ϕB(∞) = ϕfalse and dϕ
dρ

∣∣∣
ρ=0

= 0

• Bounce action is obtained from the bounce solution



EVADE

• Any quartic potential of n fields

• Find all extrema using PHC, up to 3n

• Straight path approximation, V (φ) = λφ4 − Aφ3 +m2φ2

• Use semianalytic result, B = B(λ,A,m)

• Compare to the age of the universe



Adding path deformation to EVADE

model.m model.cpp EVADE

output.csv

input.csv

Mathematica



Adding path deformation to EVADE

model.m model.cpp EVADE

output.csvmodel.py CosmoTransitions

input.csv

Mathematica

pybi
nd

• Minimal additional setup

• Combines efficiency of EVADE with increased accuracy of
using path deformation



EVADE path deformation results

EVADE EVADE + Cosmo

• Path deformation can shift the border of short-lived regions

• Additional parameter space excluded

• Computing path deformation for this plot (2300 MSSM
points) took around 90s using 12 CPU cores



Neural network approach - Definitions

• Treat neural network as a function

• Neural networks can approximate any function

The neural net will model the tunneling path ϕ(ρ)
Choose a ρmax and discretize the path into nρ steps
Define the loss: L = Leq + nρLb

Leq =
∑
i

(
d2ϕ(ρi )
dρ2

+ 3
ϕ(ρi )

dϕ(ρi )
dρ −∇V (ϕ(ρi ))

)2

Lb =
(
dϕ(ρ0)
dρ

)2
+ (ϕ(ρmax)− ϕfalse)

2

Neural network prefers values between 0 and 1
⇒ ϕ(ρ) = ϕtrue +NN(ρ)(ϕfalse − ϕtrue)



Neural network approach - Training process

Leq =
∑
i

(
d2ϕ(ρi )
dρ2

+ 3
ϕ(ρi )

dϕ(ρi )
dρ −∇V (ϕ(ρi ))

)2

Lb =
(
dϕ(ρ0)
dρ

)2
+ (ϕ(ρmax)− ϕfalse)

2

• Equation has a trivial solution ϕ(ρ) = ϕfalse

• Random initialization → Network finds trivial solution

• Solution: Two step training process

Randomly initialize the network, then train a few epochs on
Linit =

∑
i
(NN(ρi )− ρi

ρmax
)2

Continue training with the correct Loss function



Neural network approach - Training process

• No inference → No overfitting

• Single batch training → almost no randomness

• Danger of getting stuck in local minima

• Danger of falling back into trivial solution

⇒ Choosing learning rate correctly is crucial



Neural network approach - Implementation overview

• Option 1: Use only existing tensorflow operations via python

• Option 2: Write custom tensorflow operation in C++

Python option:

• Easier to implement, no additional code to compile

• Use tensorflows automatic differentiation

• C++ model files can not be used

• Graph creation for complicated models is very slow

C++ option:

• C++ for Loss and its gradient, separate for CPU and GPU

• Need to use finite differences

• Use already available C++ model files

• Overall better performance



Neural network approach - Implementation overview

model.m

model.cpp model.py CosmoTransitions

LossTemplate

LossGradTemplate

XLACustomCallTemplate

loss.cpp

loss.cu

loss.cu.o

loss.so

Tensorflow

GPU CPU

Mathematica

pybind

nvcc

cc

XLA



Neural network approach - Measure for method comparison

Given ϕcosmo(ρ) and ϕNN(ρ), which is more accurate?

• B [ϕ] = 2π2
∞∫
0

dρρ3
[
1
2

(
dϕ(ρ)
dρ

)2
+ V (ϕ(ρ))

]
= IK [ϕ] + IV [ϕ]

• One can show that IK [ϕB ] = −2IV [ϕB ]

• ⇒ B [ϕB ] = −IV [ϕB ] =
1
2 IK [ϕB ]

For a solution all three methods of calculating the Bounce action
must give the same result.



Neural network approach - Hyperparameter

Discretization

• ρmax set to equal CosmoTransitions

• nρ: 1000

NN parameters

• Hidden layers: 5

• Neurons in each layer: 10

• Activation: tanh

Training parameters

• Optimizer: Adam

• Initialization epochs: 1000

• Initialization learning rate: 10−2

• Training epochs: 20000

• Training learning rate: 10−3



Neural network approach - Results

V (x , y) = (x2 + 5y2)
(
5(x − 1)2 + (y − 1)2

)
+ 80(y4 − y3)

Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s



Neural network approach - Results

V (x , y) = (x2 + 5y2)
(
5(x − 1)2 + (y − 1)2

)
+ 80(y4 − y3)

Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s



Neural network approach - Results

NMSSM potential, 3 fields non-zero
Learning rate was set to 10−2 and epochs to 30000

Cosmo: [351.57, 351.95, 352.32], NN: [403.80, 366.06, 268.33]
Straight: 2910
Runtime: Cosmo single thread: 0.8s, NN on RTX 3060 Ti: 29s



Neural network approach - Results - Toy Model

• Toy model: V =
N∑
i=0

λix
4
i − Aix

3
i +mix

2
i

• λi ,Ai ,mi > 0 randomly generated

• Look at tunneling from highest to lowest minimum

For N = 10 (hard limit) CosmoTransitions ran into various
problems.

The network was still able to consistently provide solutions at
N = 20.



Neural network approach - Results - Toy Model N = 2

Straight: 64.68, NN: [94.92, 94.79, 94.67]
Runtime: NN on RTX 3060 Ti: 13s



Neural network approach - Results - Toy Model N = 10

Cosmo: [283.28, 286.36, 285.44], NN: [324.01, 323.67, 323.32]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 13s



Summary

• Added path deformation to EVADE via CosmoTransitions

• Enables large scale parameter scans with improved accuracy

• Added neural network based bounce action solver to EVADE

• Promising results, especially for cases with many scalar fields

Remaining Tasks

• Investigate effects of the various hyperparameters

• Evaluate the performance in more physics based scenarios


