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False Vacuum Decay

« System in a metastable state
+ Quantum tunneling to a deeper minimum, I' < e~ B
o Dominant contribution from bounce action B

+ Bounce solution ¢g(p) solves d ¢ + 23? VV(¢)=0

with ¢g(00) = drase and &7 L

« Bounce action is obtained from the bounce solution
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EVADE

» Any quartic potential of n fields

» Find all extrema using PHC, up to 3"

- Straight path approximation, V() = Ap* — Ap3 + m??
+ Use semianalytic result, B = B(\, A, m)

« Compare to the age of the universe



Adding path deformation to EVADE
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Adding path deformation to EVADE
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o Minimal additional setup

» Combines efficiency of EVADE with increased accuracy of
using path deformation



EVADE path deformation results
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Path deformation can shift the border of short-lived regions
Additional parameter space excluded

Computing path deformation for this plot (2300 MSSM
points) took around 90s using 12 CPU cores



Neural network approach - Definitions

o Treat neural network as a function

» Neural networks can approximate any function

The neural net will model the tunneling path ¢(p)
Choose a pmax and discretize the path into n, steps
Define the loss: £ = Leq + n,Lp

. 2
Lo =3 (4522 + 25282 - Y V(elo)
Ly = (%ZO)) + (¢(pmax) - (bl“alse)2

Neural network prefers values between 0 and 1

= ¢(P) = (z)true + NN(ﬁ)(‘bfalse - ¢true)



Neural network approach - Training process

2

cbz(d‘i’(m)) + (9 (Pmax) — Brase)’

« Equation has a trivial solution ¢(p) = ¢false

o Random initialization — Network finds trivial solution

» Solution: Two step training process

Randomly initialize the network, then train a few epochs on

Linit = Z(NN(PI) o2

pmax

Continue training with the correct Loss function



Neural network approach - Training process

« No inference — No overfitting
 Single batch training — almost no randomness
« Danger of getting stuck in local minima

» Danger of falling back into trivial solution

= Choosing learning rate correctly is crucial



Neural network approach - Implementation overview

« Option 1: Use only existing tensorflow operations via python
« Option 2: Write custom tensorflow operation in C++
Python option:
« Easier to implement, no additional code to compile
» Use tensorflows automatic differentiation
+ C++ model files can not be used
» Graph creation for complicated models is very slow
C++ option:
o CH4+ for Loss and its gradient, separate for CPU and GPU
» Need to use finite differences
o Use already available C++ model files

» Overall better performance



Neural network approach - Implementation overview
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Neural network approach - Measure for method comparison

Given deosmo(p) and énn(p), which is more accurate?
Bl =2 [ | (42)" 4 Vio(o) | = Lol + o

« One can show that Ik [¢g] = =21y [¢5]
- = Blgg] = —Iv [¢8] = 31k [¢5]

For a solution all three methods of calculating the Bounce action
must give the same result.



Neural network approach - Hyperparameter

Discretization
* pPmax Set to equal CosmoTransitions
« n,: 1000
NN parameters
« Hidden layers: 5
» Neurons in each layer: 10
« Activation: tanh
Training parameters
« Optimizer: Adam
« Initialization epochs: 1000
« Initialization learning rate: 1072
« Training epochs: 20000

« Training learning rate: 1073



Neural network approach - Results

V(x,y) = (x> +5y?) (5(x = 1)> + (y — 1)?) + 80(y* — y?)
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Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s



Neural network approach - Results

V(x,y) = (x> +5y?) (5(x — 1)> + (y — 1)?) + 80(y* — ?)
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Cosmo: [13.329, 13.278, 13.228], NN: [13.168, 13.167, 13.165]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 12s



Neural network approach - Results

NMSSM potential, 3 fields non-zero
Learning rate was set to 102 and epochs to 30000
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Cosmo: [351.57, 351.95, 352.32], NN: [403.80, 366.06, 268.33]
Straight: 2910
Runtime: Cosmo single thread: 0.8s, NN on RTX 3060 Ti: 29s



Neural network approach - Results - Toy Model

N
« Toy model: V =5 )\,-xfL - A,-x,-3 + m,-x,-2
i=0
« \j, Ai, mj > 0 randomly generated
» Look at tunneling from highest to lowest minimum

For N = 10 (hard limit) CosmoTransitions ran into various
problems.

The network was still able to consistently provide solutions at
N = 20.



Neural network approach - Results - Toy Model N = 2
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Straight: 64.68, NN: [94.92, 94.79, 94.67]
Runtime: NN on RTX 3060 Ti: 13s
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Neural network approach - Results - Toy Model N = 10

potential along path
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Cosmo: [283.28, 286.36, 285.44], NN: [324.01, 323.67, 323.32]
Runtime: Cosmo single thread: 0.6s, NN on RTX 3060 Ti: 13s



Summary

« Added path deformation to EVADE via CosmoTransitions

» Enables large scale parameter scans with improved accuracy

o Added neural network based bounce action solver to EVADE

« Promising results, especially for cases with many scalar fields

Remaining Tasks
« Investigate effects of the various hyperparameters

« Evaluate the performance in more physics based scenarios



