

Searches for dark matter produced via scalar resonances in $bbZ + \vec{p}_T^{\rm miss}$ final states for different decay topologies

Danyer Perez Adan, Henning Bahl, Alexander Grohsjean, Victor Martin Lozano, Christian Schwanenberger, Georg Weiglein

Quantum Universe Day 5 November 22, 2022 Campus Bahrenfeld

Collider Dark Matter Searches:

- I guided in the past predominantly by simplified models
- $\circledast\,$ recent turn to more complete scenarios, i.e. 2HDMa
 - many currently being optimized under this benchmark
 - o specific topology might be overly restrictive

Figure: ATLAS-CONF-2021-036

\cdots In this study \cdots

- ▷ assessment of sensitivity of current approaches in the context of a wider class of topologies for DM production
 - demonstrate the possibility of re-interpretation of specific searches in a larger variety of BSM models
- \triangleright exploration of untested production channel: $bbZ + \vec{p}_T^{\text{miss}}$
 - no dedicated experimental search at the LHC up to now
 - efforts on this channel recently started in CMS (see presentation bbZ+DM@CMS)

• • •

- SM extended by one heavy scalar (Φ), one mediator (M), and one invisible particle (I)
- *M* and *I* are *neutral* and can be in three different representations: *scalar*, *fermion*, or *vector*
 - here taken both as scalars for simplicity
- all possible interactions among BSM particles and between SM and BSM particles included
 - e.g. topology 2-vs-1 unbalanced would reproduce the equivalent one in 2HDMa

- $\circ\,$ focus on bottom-associated production of the neutral scalar: $pp \to bb\Phi$
 - decay to a ${\cal Z}$ boson and different number of invisible particles
 - four topologies illustrated are considered

Figure: Four explored decay topologies; see arXiv:2112.12656 for more details

Analysis Framework

- $\star\,$ implemented using combination of MADANALYSIS5 and ROOT
- $\star\,$ statistical inference performed within ROOTSTATS framework

Signal Parameter Scan

Topology	Mass fixed	Masses varied	Kin. constraints	No. points
1-vs-1 unbalanced	m_M	(m_{Φ}, m_I)	$m_{\Phi} \ge m_I + m_Z$	300
2-vs-1 balanced	m_{Φ}	(m_M,m_I)	$m_{\Phi} \ge m_I + m_M$ $m_M \ge m_I + m_Z$	80
2-vs-1 unbalanced	m_I	(m_{Φ},m_M)	$m_{\Phi} \ge m_Z + m_M$ $m_M \ge 2m_I$	300
2-vs-2 balanced	m_{Φ}	(m_M,m_I)	$m_{\Phi} \ge 2m_M$ $m_M \ge m_I + m_Z$ $m_M \ge 2m_I$	28

Targets a substantially boosted Z boson accompanied by a pair of relatively forward b-jets

Quantity	Standard-SR ForwardJets-SR		
N_l (opposite-charge, same-flavour)	= 2 (with additional lepton veto)		
$p_T(l)$	$50/20 { m ~GeV}$ leading/trailing		
$m(l^+l^-)$	$86{ m GeV} < m(l^+l^-) < 106{ m GeV}$		
$p_T(l^+l^-)$	$> 50 { m ~GeV}$		
$\Delta R(l^+, l^-)$	< 3		
$\Delta \phi(\vec{p}_T^{\text{miss}}, l^+ l^-)$	> 0.5		
$m_T(\vec{p}_T^{\mathrm{miss}}, l^+l^-)$	$> 140 { m ~GeV}$		
$N_{ m b-tag}$	$\geq 1 = 0$		
$ \eta(j_1) - \eta(j_2) _{\max}$	- > 2.5		

- two signal regions constructed:
 - Standard-SR: at least one central b-tagged jet
 - ForwardJets-SR: no b-tagged jets and at least two jets with large $|\eta(j_1) \eta(j_2)|$

Signal Efficiency Maps

Analysis

- efficiency in Standard-SR reaches up to 17%
- semi-boosted regime favored
- collimation of leptons makes efficiency drop for very boosted Z bosons
- efficiency in ForwardJets-SR is overall smaller than in Standard-SR and it tends to increase as m_Φ increases (see Backup)
- same kind of topologies (balanced or unbalanced) seem rather indistinguishable!

 \odot fit performed using a shape scanning over the binned \vec{p}_T^{miss} distribution

- keeps the analysis as inclusive as possible for the varied kinematics probed
- possibility to exploit the *shape* discrimination when efficiency becomes lower
- o more realistic scenario in current experimental context compared to cut-and-count

• sensitivity of both signal regions defined is comparable!

- for some phase-space points ForwardJets-SR even surpasses the Standard-SR
- $\circ\,$ in Forward Jets-SR the efficiency is lower but also (substantially) the background contribution

Limits in 2D plane

Results

- best upper limits obtained for \vec{f} 1-vs-1 unbalanced and 2-vs-1 unbalanced: $\approx 3.5 \times 10^{-4}$ pb
- close to 5.5×10^{-4} pb and 4.5×10^{-3} pb for the 2-vs-1 balanced and 2-vs-2 balanced topologies
- small shift of the region with the most stringent limits w.r.t. the one with largest efficiency
- clear distinction between unbalanced vs balanced scenarios
- 1-vs-1 and 2-vs-1 (unbalanced) remain indistinguishable, whereas 2-vs-1 and 2-vs-2 (balanced) present a mild (almost unnoticeable) difference

- \odot region of tan $\beta \lesssim 3$ inaccessible even with much more integrated luminosity
- $\odot\,$ interval 500 $\lesssim m_H \lesssim 1600~{\rm GeV}$ can be easily probed for large $\tan\beta$
- \odot ATLAS mono-Z seems to have better sensitivity in 2HDMa compared to this search
 - $\circ~$ not fully optimized for unbalanced topology only
 - \circ soft p_T spectrum of b-quarks and not fully efficient b-tagging
 - absence of sophisticated analysis techniques in this simple study

- \circledast capability of potential new search investigated
 - o explored significantly large class of theoretical scenarios
 - $\circ~$ use of forward jets seems to add substantial sensitivity to this type of search
- standard analysis approach is sensitive to all topologies
 - $\circ~$ further optimization for balanced scenarios should bring additional improvements
 - $\circ~$ unbalanced (2HDMa-like) cases might require sophisticated analysis techniques to become competitive

 \circledast unbalanced vs balanced topologies present noticeable differences in kinematics

- $\circ~$ analyses might benefit from being optimized for each class separately
- same class of topologies resemble quite each other (individual optimization unnecessary)

- \circledast capability of potential new search investigated
 - o explored significantly large class of theoretical scenarios
 - $\circ~$ use of forward jets seems to add substantial sensitivity to this type of search
- standard analysis approach is sensitive to all topologies
 - $\circ~$ further optimization for balanced scenarios should bring additional improvements
 - $\circ~$ unbalanced (2HDMa-like) cases might require sophisticated analysis techniques to become competitive

 \circledast unbalanced vs balanced topologies present noticeable differences in kinematics

- analyses might benefit from being optimized for each class separately
- same class of topologies resemble quite each other (individual optimization unnecessary)

Thanks for your attention!

Backup

Backup

Backup

