Phenomenology in the µNMSSM

Motivations

- Embedding inflation-models in collider phenomenology
- Distinction of inflation-inspired SUSY models from SUSY models without inflation

NMSSM and Inflation

 Higgs inflation triggered by non-minimal coupling to Einstein gravity

$$X = \chi \, \hat{H}_u \cdot \hat{H}_d$$

Superpotential of Higgs sector

$$\mathcal{W}_{\text{Higgs}} \to \mathcal{W}_{\text{Higgs}} + \frac{3}{2} m_{3/2} \chi \hat{H}_u \cdot \hat{H}_d$$

$$\mathcal{W}_{\mu\text{NMSSM}} = (\lambda \hat{S} + \frac{3}{2}m_{3/2}\chi)\hat{H}_u \cdot \hat{H}_d + \frac{\kappa}{3}\hat{S}^3 + \mathbf{Y}_u\hat{Q} \cdot \hat{H}_u\hat{U}_R^c + \mathbf{Y}_d\hat{H}_d \cdot \hat{Q}\hat{D}_R^c + \mathbf{Y}_e\hat{H}_d \cdot \hat{\ell}\hat{E}_R^c$$

02/27/20

NMSSM and Inflation

• Expansion around the vevs:

$$H_u \equiv \begin{pmatrix} h_u^+ \\ h_u \end{pmatrix} = \begin{pmatrix} \eta_u^+ \\ v_u + \frac{1}{\sqrt{2}} (\sigma_u + i \phi_u) \end{pmatrix} \quad H_d \equiv \begin{pmatrix} h_d \\ h_d^- \end{pmatrix} = \begin{pmatrix} v_d + \frac{1}{\sqrt{2}} (\sigma_d + i \phi_d) \\ \eta_d^- \end{pmatrix}$$
$$S \equiv v_s + \frac{1}{\sqrt{2}} (\sigma_s + i \phi_s)$$

• Additional µ-term: Effective µ-term:

$$\mu_{\rm inf} = \frac{3}{2} m_{3/2} \chi \qquad \qquad \mu_{\rm eff} = \lambda v_s$$

02/27/20

Higgs-sector

Higgs mass matrices

$$\begin{split} M_{S,11}^2 &= m_Z^2 \cos^2 \beta + \mu_{\text{eff}} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_\lambda\right) \tan \beta \\ M_{S,22}^2 &= m_Z^2 \sin^2 \beta + \mu_{\text{eff}} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_\lambda\right) / \tan \beta \\ M_{S,22}^2 &= m_Z^2 \sin^2 \beta + \mu_{\text{eff}} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_\lambda\right) / \tan \beta \\ M_{S,33}^2 &= \frac{\lambda^2 v^2}{\mu_{\text{eff}}} (\cos \beta \sin \beta A_\lambda - \mu_{\text{inf}}) + \frac{\kappa}{\lambda} \mu_{\text{eff}} \left(A_\kappa + 4\frac{\kappa}{\lambda} \mu_{\text{eff}}\right) \\ M_{S,12}^2 &= M_{S,21}^2 = (2v^2\lambda^2 - m_Z^2) \cos \beta \sin \beta - \mu_{\text{eff}} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_\lambda\right) \\ M_{S,13}^2 &= M_{S,21}^2 = (2v^2\lambda^2 - m_Z^2) \cos \beta \sin \beta - \mu_{\text{eff}} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_\lambda\right) \\ M_{S,13}^2 &= M_{S,31}^2 = \lambda v \left(2(\mu_{\text{eff}} + \mu_{\text{inf}}) \cos \beta - \left(A_\lambda + 2\frac{\kappa}{\lambda} \mu_{\text{eff}}\right) \sin \beta\right) \\ M_{S,23}^2 &= M_{S,32}^2 = \lambda v \left(2(\mu_{\text{eff}} + \mu_{\text{inf}}) \sin \beta - \left(A_\lambda + 2\frac{\kappa}{\lambda} \mu_{\text{eff}}\right) \cos \beta\right) \\ M_{P,23}^2 &= M_{S,32}^2 = -v\lambda \left(2\frac{\kappa}{\lambda} \mu_{\text{eff}} - A_\lambda\right) \cos \beta \\ \end{pmatrix}$$

02/27/20

Neutralino and Chargino-sector

Electroweakino mass matrices

$$M_{\chi^0} = \begin{pmatrix} M_1 & 0 & -m_Z \sin \theta_{\rm w} \cos \beta & m_Z \sin \theta_{\rm w} \sin \beta & 0 \\ \cdot & M_2 & m_Z \cos \theta_{\rm w} \cos \beta & -m_Z \cos \theta_{\rm w} \sin \beta & 0 \\ \cdot & \cdot & 0 & -(\mu_{\rm inf} + \mu_{\rm eff}) & -\lambda \upsilon \sin \beta \\ \cdot & \cdot & \cdot & 0 & -\lambda \upsilon \cos \beta \\ \cdot & \cdot & \cdot & \cdot & 2\frac{\kappa}{\lambda}\mu_{\rm eff} \end{pmatrix}$$

$$M_{\chi^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}m_W \sin\beta \\ \sqrt{2}m_W \cos\beta & \mu_{\inf} + \mu_{eff} \end{pmatrix}$$

$$(\psi^0)^T = (\tilde{B}^0, \tilde{W_3}^0, \tilde{h_d}^0, \tilde{h_u}^0, \tilde{s}^0)$$

02/27/20

NMSSM benchmark points

Input parameters of benchmark point

$$\begin{split} M_1 &= 239 \text{ GeV} \quad M_2 = 500 \text{ GeV} \quad M_3 = 2500 \text{ GeV} \quad A_{f_3} = 1200 \text{ GeV} \quad m_{\tilde{f}_L, \tilde{f}_R} = 2000 \text{ GeV} \quad m_{H^{\pm}} = 800 \text{ GeV} \\ &\tan \beta = 12 \qquad \kappa = 0.01846 \qquad \lambda = 0.04215 \qquad \mu_{\text{eff}} = -212.3 \text{ GeV} \quad A_{\kappa} = 268.6 \text{ GeV} \end{split}$$

• Benchmark mass spectrum:

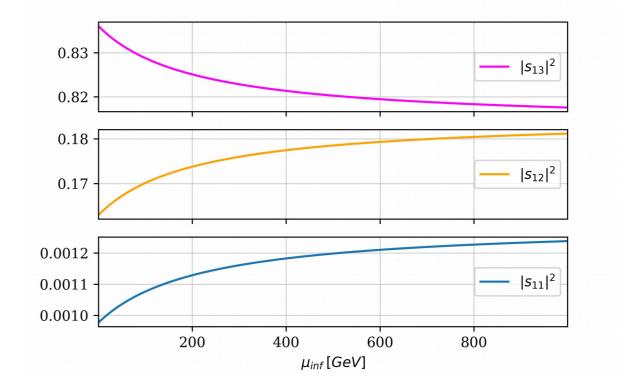
$m_{h_1}=91.6~{\rm GeV}$	$m_{h_2} = 123.7 \text{ GeV}$	$m_{H_3}=809.1~{\rm GeV}$
$m_a = 273.7 \text{ GeV}$	$m_A = 809 { m ~GeV}$	$M_{H^{\pm}} = 812.6 \text{ GeV}$
$m_{\chi_1} = 190 \text{ GeV}$	$m_{\chi_2} = 193.9~{\rm GeV}$	$m_{\chi_3} = 225.7 \text{ GeV}$
$m_{\chi_4} = 254.9 \text{ GeV}$	$m_{\chi_5} = 537.3~{\rm GeV}$	
$m_{\chi_1^\pm}=214.2~{\rm GeV}$	$m_{\chi_2^\pm}=537.3~{\rm GeV}$	

02/27/20

µNMSSM Scan

• Fixing combinations:

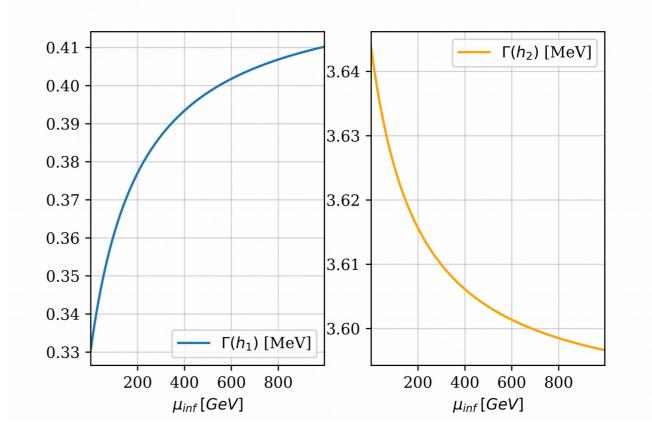
$$a = \mu_{\inf} + \mu_{eff}, \qquad b = \frac{\kappa}{\lambda} \mu_{eff}, \qquad c = \mu_{eff} \left(\frac{\kappa}{\lambda} \mu_{eff} + A_{\lambda}\right)$$
$$M_{S,13}^2 = M_{S,31}^2 = v\lambda \left(2a\cos\beta - \left(\frac{c}{a-\mu_{\inf}} + b\right)\sin\beta\right)$$
$$M_{S,23}^2 = M_{S,32}^2 = v\lambda \left(2a\sin\beta - \left(\frac{c}{a-\mu_{\inf}} + b\right)\cos\beta\right)$$
$$M_{S,33}^2 = \lambda^2 v^2 \left(\frac{\cos\beta\sin\beta}{a-\mu_{\inf}}\left(\frac{c}{a-\mu_{\inf}} - b\right) - \frac{\mu_{\inf}}{a-\mu_{\inf}}\right) + b(A_{\kappa} + 4b)$$
$$M_{P,13}^2 = M_{P,31}^2 = -v\lambda \left(3b - \frac{c}{a-\mu_{\inf}}\right)\sin\beta$$
$$M_{P,23}^2 = M_{P,32}^2 = -v\lambda \left(3b - \frac{c}{a-\mu_{\inf}}\right)\cos\beta$$
$$M_{P,33}^2 = \lambda^2 v^2 \left(\frac{\cos\beta\sin\beta}{a-\mu_{\inf}}\left(3b + \frac{c}{a-\mu_{\inf}}\right) - \frac{\mu_{\inf}}{a-\mu_{\inf}}\right)$$


02/27/20

μ_{inf} effects: Mixing

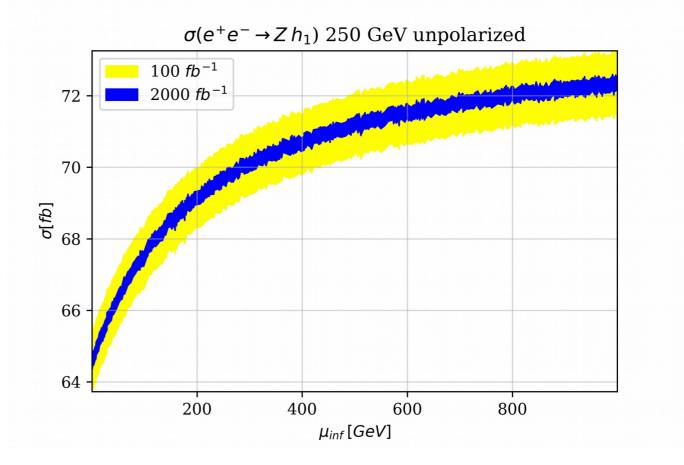
|S₁₁|², |S₁₂|² determine the coupling of h₁ to b quark and gauge bosons

 $\frac{g_{h_i Z Z}}{g_{H_{\rm SM} Z Z}} = \frac{g_{h_i W^+ W^-}}{g_{H_{\rm SM} W^+ W^-}} = \cos\beta S_{i1} + \sin\beta S_{i2}$


Mixings are changed less than 10%

02/27/20

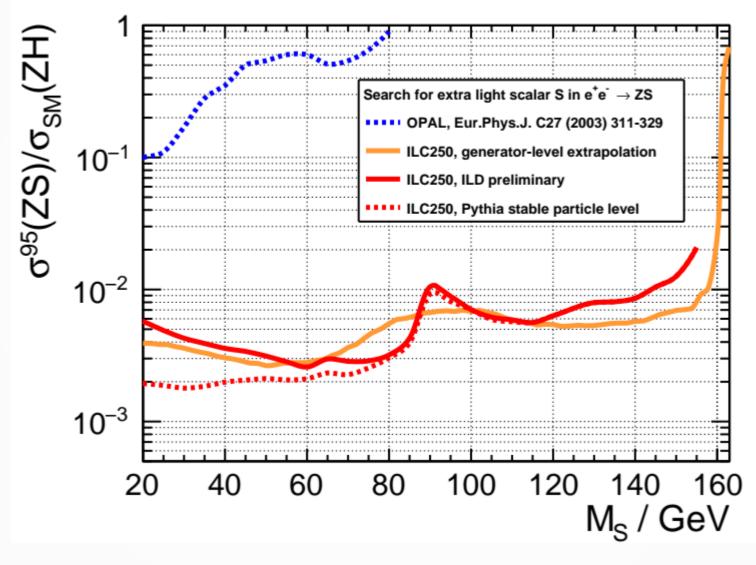
μ_{inf} effects: Total Width


- $\Gamma(h_1)$ is too small to measure
- There would be more than 10% difference between the NMSSM case and the μ_{inf} >100 GeV cases

02/27/20

μ_{inf} effects: Cross-sections

- For 100 fb⁻¹ luminosity, the μ_{inf} >50 GeV cases can be distinguished from NMSSM case
- For higher luminosity, the distinguishable $\mu_{\rm inf}$ values would be smaller



02/27/20

Conclusions

- We discussed that how do the observables depend on pure $\mu_{\rm inf}$ effect
- We found that µNMSSM can be experimentally distinguished from NMSSM with sufficient integral luminosity

Backup

02/27/20

Backup

Other NMSSM points

 $(\tan\beta=12, m_{H\pm}=800)$

к=0.0298	λ=0.0726	μ_{eff} = -126.32	A _к =15.06	M ₁ =341.998	M ₂ =253.065	A _{f3} =2000
M _{h1} =95.7	M _{h2} =124.6	M _a =48.87	M _{x1+} =121.9	M ₁₀ =105.6	M _{x20} =112.0	M _{x30} =143.3

к=0.0045	λ=0.0148	μ_{eff} = 247.51	A _к =-130.65	M ₁ =286.04	M ₂ =193.51	A _{f3} =2500
M _{h1} =112.0	M _{h2} =125.3	M _a =172.3	M _{X1+} =170.68	M _{x10} =154.5	M _{x20} =166.8	M _{x30} =260.1

02/27/20