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Introduction/Motivation



  

Why investigate λ
hhh

? 1/2

● Probing the shape of the Higgs potential: since the 
Higgs discovery, the existence of the Higgs potential 
is confirmed, but at the moment we only know:

→ the location of the EW minimum: v = 246 GeV

→ the curvature of the potential around the EW 
minimum: mh = 125 GeV

However we still don’t know the shape of the Higgs 
potential, which depends on λhhh

● λhhh determines the nature of the EWPT!

 ⇒ O(20 − 30%) deviation of λhhh from its SM prediction 
needed to have a strongly first-order EWPT → 
necessary for EWBG [Grojean, Servant, Wells ’04], 
[Kanemura, Okada, Senaha ’04]



  

Why investigate λ
hhh

? 2/2
● Distinguish alignment with or without decoupling:
➔  Aligned scenarios already seem to be favoured → Higgs couplings are SM-like at tree-level
➔  Non-aligned scenarios (e.g. in 2HDMs) could be almost entirely excluded in the close future using 
synergy of HL-LHC and ILC!
→ Alignment through decoupling? or alignment without decoupling?

➔  If alignment without decoupling, Higgs couplings like λhhh can still exhibit large deviations from SM 
predictions because of BSM loop effects

➔  Current best limit (at 95% CL): −3.7 < λhhh /(λhhh)SM < 11.5 [ATLAS-CONF-2019-049]
➔  Improvement at future colliders: 
➔    HL-LHC: λhhh /(λhhh)SM within  50 − 100%∼ ; 
➔    At lepton colliders (ILC, CLIC) within some tens of %; 
➔    At 100-TeV hadron collider, down to 5 − 7%

see e.g. [de Blas et al., 1905.03764], [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 
1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], [Chang et al. 
1804.07130,1908.00753], etc.



  

Classical scale invariance (CSI)
● Forbid mass-dimensionful parameters at classical (= tree) level → 

tree-level potential:

● Explicitly broken by radiative corrections

● EW symmetry breaking: (c.f. [Coleman, Weinberg ‘73], [Gildener, Weinberg ‘76])

– Must occur along a flat direction of V(0) (= Higgs/scalon direction)

– EW sym. broken à la Coleman-Weinberg along flat direction

– EW scale generated by dimensional transmutation



  

Classically scale invariant models
● If CSI assumed at Planck scale → possible solution to hierarchy problem 

(see e.g. [Bardeen ‘95])

● Here: CSI assumed around EW scale, for phenomenology

– Higgs (scalon) automatically aligned at tree level

– BSM states can’t be decoupled (no BSM mass term!)

➔ CSI scenarios: alignment with decoupling

● CSI can (arguably) help lessen the hierarchy problem, even for scenarios 
that don’t extend up to Planck scale because of Landau poles



  

Calculational setup



  

An effective Higgs trilinear coupling
● In principle: consider 3-pt. function Γhhh but this is 

momentum dependent → very difficult beyond 
one loop

● Instead, consider an effective trilinear coupling

p1

p2

p3

≡ Γhhh(p
2
1, p

2
2, p

2
3)

● Momentum effects are neglected, but are expected to be sub-leading anyway

– At one loop [Kanemura, Okada, Senaha, Yuan ‘04]: effects of a few % (away from 
thresholds)

– At two loops, no study for 3-pt. functions but experience from Higgs mass calculations 



  

One-loop effective potential
● Only source of mass: coupling to Higgs and its VEV

● Greatly simplifies the one-loop potential along Higgs (scalon) 
direction:

with 



  

One-loop λ
hhh

● Taking derivatives of the potential:
– 1st  derivative: tadpole equation → eliminate A

– 2nd derivative: Higgs (curvature) mass → fix B

– 3rd derivative: λhhh → no further free parameter

● Universal result for CSI models (w/o mixing)!



  

Two-loop effective potential
● Once one includes two-loop corrections, the form of the 

effective potential is changed

● New form:
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Two-loop λ
hhh

 in CSI models
● Follow same procedure as at one loop:

➔ Eliminate A with tadpole eq., B with Higgs mass

➔ Still, C remains! 

● One finds:

➔  Deviation in λhhh depends on log^2 term in Veff

➔  Universality found at one loop is lost at two loops! 

[JB, Kanemura, Shimoda ‘20]



  

Computing λ
hhh 

in non-CSI models 
● Massive models → Veff has a more complicated form

● Define a differential operator D3 to compute eff. Higgs trilinear 
coupling, including tadpole eq. and Higgs mass

● Same overall procedure for scheme conversion (c.f. next slide) in 
CSI/non-CSI models



  

MS to OS scheme conversion
● Veff: we use expressions in MS scheme hence results for λhhh 

also in MS scheme

● We include finite counterterms to express the Higgs trilinear 
coupling in terms of physical quantities

 

 

● Also we include finite WFR effects → OS scheme 



  

Numerical analysis

Our questions:
- how large can two-loop effects be?

- can they allow distinguishing CSI vs non-CSI?



  

CSI-2HDM

● Similar conventions to usual 2HDM, but no mass terms m11, m22, m12

● CP-conserving case, Z2 symmetry imposed to avoid tree-level FCNCs

● At tree-level, 4 free parameters: 3 scalar masses + tanβ

● Dominant corrections to V(2): 
– diagrams involving BSM scalars (H,A,H+) and top quark
– neglect corrections to CP-even mixing angle α (=β-π/2 at tree level) as sub-leading 

effect on λhhh + exp. results indicate near alignment

(See e.g. [Lee, Pilaftsis ‘12])



  

Steps of calculation in the CSI-2HDM
● Compute Veff (MS scheme)

● Derive C and then λhhh → MS scheme result

● Convert BSM scalar (H,A,H+) and top quark masses + include finite WFR → 
OS scheme result

.
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Theoretical and experimental constraints
➔ Perturbative unitarity: we constrain parameters entering only at two loops 

→ tree-level perturbative unitarity suffices [Kanemura, Kubota, Takasugi ‘93]

➔ EW vacuum must be true minimum of Veff, i.e. check that

➔ Mh, generated at loop level, must be 125 GeV 

→ imposes a relation between SM parameters, MH, MA, MH
+, tanβ, e.g. we can extract: 

➔ Limits from collider searches with HiggsBounds



  

Numerical results
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CSI vs non-CSI 2HDMs
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● Solid:                
CSI-2HDM        
[JB, Kanemura, 
Shimoda ‘20]

● Dashed:         
normal 2HDM, in 
maximal non-
decoupling limit 
M=0    
[JB, Kanemura ‘19]



  

Unitarity and constraint from M
h
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Once all constraints are included
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Summary
● First two-loop calculation of Higgs trilinear coupling in theories with CSI

– Matches level of accuracy for non-CSI, non-SUSY, extensions of SM in [JB, 
Kanemura ‘19]

– Two-loop corrections allow distinguishing different scenarios with CSI

– Separate models w. or w/o. CSI difficult with only λhhh, but possible with synergy 
of λhhh and either collider or GW signals (see e.g. [Hashino, Kakizaki, Kanemura, Matsui ‘16])

● Appendix includes results for generic CSI theories (adapted from Steve 
Martin’s expressions for Veff in [hep-ph/0111209])



  

Thank you very much for your attention!
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