Effective field theories and thermal effects for dark matter evolution in the Early Universe

Andrii Dashko

with: Nora Brambilla, Antonio Vairo, Gramos Qerimi, Simone Biondini

2HDM working group, 4 May 2023

Technische Universität München

Introduction and motivation

- Explain the existence of the dark matter in the Universe: $\Omega_{DM} = 0.12 \pm 0.0012$
- Precise determination of the parameter space of the dark matter: (α, m)
- Develop a simple and systematic framework for the dark matter pair's cold dark matter):

$$(\partial_t + 3H)n = -\langle \sigma_{\rm ann} v_{\rm rel} \rangle (n^2 - n_{\rm eq}^2)$$

description during freeze-out times (when particles are non-relativistic, i.e.

For instance, the accounting for the ladder resummation of soft gauge bosons lowers the relic DM density by 50% (Sommerfeld effect)

Introduction and motivation

(wimponium), $U(1): S(\chi\bar{\chi}) \rightleftharpoons B(\chi\bar{\chi})$ $SU(3): S(\chi\bar{\chi})_8 \rightleftharpoons B(\chi\bar{\chi})_1$

when thermal effects are non-negligible

Applications:

- Early universe evolution with primordial plasma (nucleosynthesis, relic abundances of DM)
- Heavy quarkonium production during heavy ion collision in QGP (properties of QGP, quarkonium suppression)

Determine the impact of the presence of bound states within the dark sector

Model of the dark sector

- Heavy dark matter fermion
- Dark photons
- Light d.o.f, fermions enable scale m_D to appear

* Debye mass:
$$m_D^2 = n_f \frac{g^2 T^2}{3}$$

Pair description in EFT: NRQED

$$\mathcal{L}_{DM} = \bar{X}(i\not\!\!D - m)X - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \sum_{i=1}^{n_f} \bar{f}_i(i\not\!\!D - n)X - \frac{1}{4}F^{\mu\nu}F_{\mu\nu$$

Integrating out the hard scale $m \gg mv \sim$

$$\begin{aligned} \mathcal{L}_{NRQED_{DM}} = \psi^{\dagger} \left(iD_{0} + \frac{\vec{D}^{2}}{2m} + c_{F}\frac{\vec{\sigma}g\vec{B}}{2m} + c_{D}\frac{\vec{\nabla}g\vec{E}}{8m^{2}} + ic_{S}\frac{\vec{D} \times g\vec{E} - g\vec{E} \times \vec{D}}{8m^{2}} \right)\psi \\ + \chi^{\dagger} \left(iD_{0} - \frac{\vec{D}^{2}}{2m} - c_{F}\frac{\vec{\sigma}g\vec{B}}{2m} + c_{D}\frac{\vec{\nabla}g\vec{E}}{8m^{2}} + ic_{S}\frac{\vec{D} \times g\vec{E} - g\vec{E} \times \vec{D}}{8m^{2}} \right)\chi \\ - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{d_{s}}{m^{2}}F^{\mu\nu}\vec{D}^{2}F_{\mu\nu} + \frac{d_{s}}{m^{2}}\psi^{\dagger}\chi\chi^{\dagger}\psi + \frac{d_{v}}{m^{2}}\psi^{\dagger}\vec{\sigma}\chi\chi^{\dagger}\vec{\sigma}\psi \\ + \sum_{i=1}^{n_{f}}\bar{f}_{i}(i\not{D} - m_{f})f_{i} + \mathcal{O}(1/m^{3}), \end{aligned}$$

 $(m_f)f_i,$

$$p \sim \frac{1}{a_B}$$

Pair description in EFT: pNRQED

Integrating out the soft scale $mv \gg mv^2 \sim E$

$$\mathcal{L}_{pNRQED_{DM}} = \int d^3 r \phi^{\dagger}(t, \vec{r}, \vec{R}) \left(i\partial_0 - H(\vec{r}, \vec{p}, \vec{P}, \vec{P}, -\frac{1}{4}F^{\mu\nu}(\vec{R}, t)F_{\mu\nu}(\vec{R}, t) + \mathcal{L}_{lightfermion}\right)$$

 $(\vec{s_{1}}, \vec{s_{2}}) + g\vec{r}\vec{E}(\vec{R}, t) \phi(t, \vec{r}, \vec{R}) -$

ns,

 $(ec{P},ec{s_1},ec{s_2});$

Bound state formation/dissociation from TFT

theorem):

$$\sigma_{BSF} v_{rel} = \langle p, l | \frac{\Sigma_S^{>}}{i} | p, l \rangle = -2 \langle p, l | \Im[\Sigma_S] | p, l \rangle$$
NRQED at lowest order operator expansion: Pair's self-energy

Self-energy in p

$$\begin{split} \Sigma_{S/B} &= -ig^2 \int_0^\infty dt e^{it(p_0 - h^{(0)})} r^i r^j \left\langle E^i(t, 0) E^j(0, 0) \right\rangle = \\ &= -ig^2 \frac{\mu^{4-d}}{d-1} r_i^2 \int \frac{d^d q}{(2\pi)^d} \frac{i}{p_0 - q_0 - h^{(0)} + i\epsilon} \left\langle \vec{E}(q) \vec{E}(0) \right\rangle \\ &= -ig_d^2 \frac{\mu^{4-d}}{d-1} r_i^2 \int \frac{d^d q}{(2\pi)} \frac{i}{p_0 - q_0 - h^{(0)} + i\epsilon} [q_0^2 D_{ii}(q) + q_0] \end{split}$$

• The bound-state formation cross section, could be inferred as (i.e. optical

 $\bar{q}^2 D_{00}(q)$]

BSF at fixed order* *in EE propagator

• LO (see 2304.00113) $\sim \sim \sim$

• NLO (see 2002.07145)

9

Higher order corrections

Presence of the scale m_D requires HTL resummation

 $\hat{D}_{\mu\nu} = \hat{D}^{0}_{\mu\nu} + \hat{D}^{0}_{\mu\lambda} (i\hat{\Pi}^{\lambda\rho}) \hat{D}^{0}_{\rho\nu} + \dots$

$$D_{R/A}^{00} = rac{i}{ec{q}^2 + \Pi_{R/A}^{00}};$$

 $D_{R/A}^{ij} = \left(\delta_{ij} - rac{q_i q_j}{ec{q}^2}
ight) \Delta_{R/A} = rac{i\left(\delta_{ij} - rac{q_i q_j}{ec{q}^2}
ight)}{(q_0 \pm i\epsilon)^2 - ec{q}^2 + \Pi_{R/A}^T}$

Exploiting the large scale separation $m \gg mv \gg T \gg m_D, E$

$$\mathscr{L}_{pNREFT} = \mathscr{L}_{light} + \int d^3 r \phi^+ [i\partial_0 - \hat{h}^{(0)}]\phi + \phi$$

Integrate out scale T

The photon sector is modified to HTL one.

Integrate out scales m_D, E

• After integrating out scale M and Mv, we start with $pNRQED_{DM}$ at T=0

Bound-state formation: Results

Higher n states are affected "longer" by effects of resummation

Regions of validity

Dark Matter Density Evolution

Dark Matter Density Evolution
Boltzmann equations - as the classic simplification of OQF

$$\frac{dn_f}{dt} + 3Hn_f = -\left\langle \sigma_{ann}v_{rel} \right\rangle (n_f^2 - n_{f,eq}^2) - \sum_B \left(\left\langle \sigma_{BSF}^B v_{rel} \right\rangle n_f^2 - \Gamma_B^{ion} n_B \right)$$

$$\frac{dn_B}{dt} + 3Hn_B = \left\langle \sigma_{BSF}^B v_{rel} \right\rangle n_f^2 - \Gamma^{ion} n_B - \Gamma_B^{dec} (n_B - n_{B,eq}) - \sum_{B \neq B'} (\Gamma_{B \to B}^{exc} n_B - \Gamma_{B' \to B}^{exc} n_B')$$

Dark Matter Density Evolution
Boltzmann equations - as the classic simplification of OQF

$$\frac{dn_f}{dt} + 3Hn_f = -\langle \sigma_{ann}v_{rel} \rangle (n_f^2 - n_{f,eq}^2) - \sum_B \left(\langle \sigma_{BSF}^B v_{rel} \rangle n_f^2 - \Gamma_B^{ion} n_B \right)$$

$$\frac{dn_B}{dt} + 3Hn_B = \langle \sigma_{BSF}^B v_{rel} \rangle n_f^2 - \Gamma^{ion} n_B - \Gamma_B^{dec} (n_B - n_{B,eq}) - \sum_{B \neq B'} (\Gamma_{B \to B'}^{exc} n_B - \Gamma_{B' \to B}^{exc} n_B')$$

Assumptions (1503.07142): $\Gamma_{dec} \gg H$ (Bound states - close to equilibrium) + detailed balance equation + neglecting (de)excitations

$$\frac{dn_{f}}{dt} + 3Hn_{f} = -\left(\left\langle\sigma_{ann}v_{rel}\right\rangle + \sum_{B}\left\langle\sigma_{BSF}^{B}v_{rel}\right\rangle\frac{\Gamma_{B}^{dec}}{\Gamma_{B}^{dec} + \Gamma_{B}^{ion}}\right)(n_{f}^{2} - n_{f,eq}^{2})$$
(Effective cross-section)

Dark Matter Density Evolution Effective annihilation cross-section: asymptotic regimes

$$\left\langle \sigma_{eff} v_{rel} \right\rangle = \left\langle \sigma_{ann} v_{rel} \right\rangle + \sum_{B} \left\langle \sigma_{BSF}^{B} v_{rel} \right\rangle \frac{\Gamma_{B}^{dec}}{\Gamma_{B}^{dec} + \Gamma_{B}^{ion}}$$

- Ionisation equilibrium: $T \gg E$, Γ_{ion} $\left\langle \sigma_{eff} v_{rel} \right\rangle \approx \left\langle \sigma_{ar} \right\rangle$
- "No back-reaction": T < E, $\Gamma_{dec} >$ $\langle \sigma_{eff} v_{rel} \rangle \approx \langle \sigma_a$

$$_n \gg \Gamma_{dec}$$

$$\langle n_n v_{rel} \rangle + \sum_B \Gamma_B^{dec} \frac{n_B^{eq}}{(n_f^{eq})^2}$$

$$\gg \Gamma_{ion}$$

$$ann^{v}v_{rel} \rangle + \sum_{B} \langle \sigma^{B}_{BSF} v_{rel} \rangle$$

Decay and Annihilation <u>Decay and Annihilation</u>: Directly from $pNRQED_{DM}$ Lagrangian (imaginary part) $\delta(\vec{r})\left(2\Im[d_s] - \vec{S}^2(\Im[d_s] - \Im[d_v])\right)\phi,$ $= /LO \text{ in } \alpha / = \frac{\alpha^2 \pi (1 + n_f)}{m^2} \frac{2\pi \alpha / v_{rel}}{1 - c^2 \pi \alpha / v_{rel}}$

$$\delta \mathcal{L}_{pNRQED_{DM}}^{annih} = \frac{i}{m^2} \int d^3 r \phi^{\dagger} \delta$$
2 spin states:
para-, orthodarkonium
$$\left\langle \sigma_{ann} v_{rel} \right\rangle = \frac{Im(d_s) + 3Im(d_v)}{m^2} S(\alpha/v_{rel})$$

$$\Gamma_{1S,pd}^{dec} = \frac{4\Im[d_s]}{m^2} |\psi_{100}(0)|^2 = \frac{m\alpha^5}{2} + \mathcal{O}(\alpha^6)$$

$$\Gamma_{1S,od}^{dec} = \frac{4\Im[d_v]}{m^2} |\psi_{100}(0)|^2 = \frac{n_f m\alpha^5}{3 2} + \mathcal{O}(\alpha^6)$$

Sommerfeld enhancement factor

Transitions between bound states De-, Excitations

n

Dark Matter Density Evolution Effective cross-section

 $\left\langle \sigma_{eff} v_{rel} \right\rangle = \left\langle \sigma_{ann} v_{rel} \right\rangle + \sum_{R} \left\langle \sigma_{BSF}^{B} v_{rel} \right\rangle \frac{\Gamma_{B}^{dec}}{\Gamma_{R}^{dec} + \Gamma_{R}^{ion}}$

Results: yield

α =0.1, n_f =1, m = 10TeV

α =0.1, n_f =1, m = 10TeV

21

Results: parameters space(s)

Conclusions and Future Work

- corrections to the relevant observables
- the Early Universe.

- Study Open Quantum System formalism.

Thank you for your attention

EFT framework allows for a rigorous derivation and a systematic inclusion of

The presence of Debye mass scale affects the evolutions of the dark matter in

The effects are of the same order as the NLO (electric correlator) corrections.

• Explore $T \approx m_D$ (exactly where we expect the effect to be the strongest).