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The Cosmological History

Adapted from 1307.3887
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The Electroweak phase transition

The Electroweak symmetry was
(probably) exact at T & 1 TeV

A phase transition at Tc ∼ 100 GeV.

What if the transition was first-order?
Electroweak Baryogenesis
→ Can explain the Baryon asymmetry
Gravitational waves
→ Window into the early Universe
→ Access to the Higgs potential
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Parameters for the transition

Equilibrium
Effective potential—V (φ ,T )

Critical temperature—Tc

Transition strength—α ∼ d
dT V (φ ,T )

Non-equilibrium
Nucleation rate—Γ∼ e−S3/T

Nucleation temperature—TN ,Tp

Inverse duration—β ∝
d

d logT S3/T

Wall speed—v ∝ φ̇
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Theoretical uncertainties are huge
How bad is it?

Tc ,TN can change by factor of 2
β can change by an order of
magnitude
α can change by an order of
magnitude
v ∈ Random[0,1]

The predicted amplitude can change
by 10 orders of magnitude

See also 1911.10206, 210.16305,
2210.07075 for recent studies
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State-of-the art: Where are we at?

Ongoing flurry of work targeted at smashing uncertainties
∆ΩGW/Ω down from 10 orders to 2-4 2104.04399, 2009.10080,
β known within a factor of 2 2205.07238, 2205.05145
TN ,Tc known within 1−10% 2005.11332, 2104.04399
α known within 1−10% 2005.11332, 2104.04399
c2

s known to 1% 2206.01130
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Full quantum theory
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How do these classical equations of motion typically look like?

Scalars

φ̈ −~∇2φ +V ′
3d(φ)+ηφ̇ = ξ (x), 〈ξ (x)〉= 0 & 〈ξ (x)ξ (y)〉= 2T ηδ 4(x −y)

Gauge bosons

σ~̇A =~v ×~B+g2
w φ2~A+~ζ (x),

〈
~ζ (x)

〉
= 0 &

〈
ζ i(x)ζ j(y)

〉
= 2T σδ ijδ 4(x −y)

Roughly η ∼ φ2(T logg−1
s )−1 and σ ∼ T (logg−1

w )−1 9905239, 9506475, 9503296
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Effective field theories at high temperatures

Phase transitions in a nutshell

Effective mass:
m2

eff = (m2 + aT 2︸︷︷︸
Thermal Mass

)� m2

RG =⇒ µ
d

d logµ
m2

eff ≈ m2
eff

Fine-tuning =⇒ bT 2︸︷︷︸
2-loop Mass

≈ m2
eff

Logarithms =⇒ logT 2/m2
eff � 1

Extreme uncertainties for ΩGW =⇒ Can we trust theoretical calculations?

Solution: Integrate out E ∼ T modes (9508379,2104.04399)
No more large logs: logT 2/m2

eff → logT 2/µ
2︸ ︷︷ ︸

Match at µ∼T

+ logµ
2/m2

eff︸ ︷︷ ︸
RG-evolution in the EFT

Two-loop thermal masses → From matching
Thermally resummed couplings → From matching
Simpler calculations V1-Loop →−m3

eff, V2-Loop → m2
eff logµ2/m2

eff
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Integrating out heavy "particles"

In equilibrium we can view temperature effects through Matsubara modes:

∂µφ(x)∂ µ
φ(x)→ ~∇φ(~x) ·~∇φ(~x)+

∞

∑
n=−∞

(2πnT )2
φ(~x)2

In essence an infinite tower of heavy particles∼ T � m

What do we do with heavy particles? → Integrate them out

In practice: Write down the most general 3d-spatial Lagrangian
→ match the coefficients

1
2m2φ2 + 1

4λφ4 → 1
2m2

3dφ2 + 1
4λ3dφ4
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Example for a quartic coupling measured at µ0 ∼ mZ : λ4d(µ0)

λ3d(µ) = T
[
λ4d(µ)+λ 2

4d(µ)
(
a log µ

T +b
)]

T−1 d
d logµ

λ3d(µ)= βλ +aλ
2
4d︸ ︷︷ ︸

=0

+O(λ 4
4d) = O(λ 4

4d)

How it works in practice
Evolve λ4d from µ = µ0 to µ = T
Plug the result into λ3d with µ = T (makes the logarithm small)
Calculate the effective potential
Change T until the two minima coincide at Tc

Calculate observables at Tc
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Lattice versus perturbation theory: Radiative barriers at three
loops

yc is a dimensionless version of Tc , and x = λ

g2 , x ∼ 0.1 → mH ≈ 72 GeV
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Backup slides
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Why classical?

High-temperature limit: n = (eE/T −1)−1 ∼ T
E � 1

Many particles in each state → Decoherence

Fields commute:
〈φ(p)φ(q)〉 ∼ n(E) & 〈φ(q)φ(p)〉 ∼ 1+n(E)

→ [φ(p),φ(q)]≈ 0

Equipartition of energy: 〈E〉/N = T
→ Rayleigh-Jeans divergence for blackbody radiation
→ Kinetic theory
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