Di-Higgs production at e^+e^- colliders with quantum corrections

Author: Andrea Parra Arnay

Director: Sven Heinemeyer

Tutor: Alain Verduras Schaeidt

Introduction

Standard Model of Elementary Particles

Standard Model (SM)

• Problem: SM doesn't explain the matter-antimatter asymmetry in the early Universe (BAU)

BAU could be explained with Electroweak Baryogenesis — we should include it in new models BSM (Beyond Standard Model) with enlarged Higgs sectors..

What BSM we should choose?

How to introduce Electroweak Baryogenesis?

 Our model needs to meet the three Sakharov conditions — processes out of thermal equilibrium

How to introduce processes out of thermal equilibirum?

• With a FOEWPT (*First Order Electroweak Phase Transition*).

Chosen model that lets FOEWPT: RxSM (*Real Singlet Extension*)

Objectives

 e^{-} (1) Z^{*} D^{*} h e^{+} h h

• Analyze the form of $V(\phi)$ in RxSM:

1) Measure **THC's** (*Triple Higgs Couplings*): λ_{hhH} and λ_{hhh} .

2) Analyze the process $e^+e^- \rightarrow h h Z$.

3) Analyze the differences between a tree level analysis and including **one loop corrections** \longrightarrow more realistic.

ILC: International Linear Collider

 $\sqrt{s} = 250-1000 \text{ GeV}$

New Model: RxSM (Real Singlet Extension) I

• Higgs fields: doublet + singlet

$$\phi = \begin{pmatrix} 0\\ \frac{\bar{h}+v}{\sqrt{2}} \end{pmatrix}, \qquad S = h' + x.$$

• Higgs potential: no Z₂ imposition

$$V(\phi,S) = -\mu^2(\phi^{\dagger}\phi) + \lambda(\phi^{\dagger}\phi)^2 + \frac{a_1}{2}(\phi^{\dagger}\phi)S + \frac{a_2}{2}(\phi^{\dagger}\phi)S^2 + \frac{b_2}{2}S^2 + \frac{b_3}{2}S^3 + \frac{b_4}{2}S^4.$$

• Mass matrix:

$$\begin{pmatrix} m_{\tilde{h}}^2 & m_{\tilde{h}h'}^2 \\ m_{h'\bar{h}}^2 & m_{h'}^2 \end{pmatrix} = \begin{pmatrix} 2\lambda v^2 & \frac{v}{2}(a_1 + 2a_2s) \\ \frac{v}{2}(a_1 + 2a_2s) & b_3s + 2b_4s^2 - \frac{a_1v^2}{4s} \end{pmatrix} \longrightarrow \begin{array}{c} h' \text{ and } h \text{ aren't} \\ \text{mass eigenstates.} \end{pmatrix}$$

-

- -

RxSM II

$$m_{H,h}^2 = \frac{1}{2} \left(m_{\bar{h}}^2 + m_{h'}^2 \pm \left| m_{\bar{h}}^2 - m_{h'}^2 \right| \sqrt{1 + \frac{2m_{\bar{h},h'}^2}{m_{\bar{h}}^2 - m_{h'}^2}} \right)$$

Mass terms:

• Mixing angle:

$$\sin 2\alpha = \frac{2m_{\bar{h},h'}^2}{m_H^2 - m_h^2}$$

7

RxSM III

 $\lambda_{hhH} = \frac{1}{4v} [(a_1 + 2a_2x)\cos^2\alpha + 4v(a_2 - 3\lambda)\cos^2\alpha\sin\alpha - 2(a_1 + 2a_2x - 2b_3 - 6b_4x)\cos\alpha\sin^2\alpha - 2a_2v\sin^3\alpha]$

$$\lambda_{hhh} = \frac{1}{v} \left[\left(\frac{a_1}{4} + \frac{a_2 x}{2}\right) \cos^2 \alpha \sin \alpha + a_2 v \cos \alpha \sin^2 \alpha + \left(\frac{b_3}{3} + b_4 x\right) \sin^3 \alpha + \lambda v \cos^3 \alpha \right]$$

• Higgs-SM couplings:
$$g_{Hi}^{RxSM} = g_{\bar{h}i}^{SM} \sin \alpha, \quad g_{hi}^{RxSM} = g_{\bar{h}i}^{SM} \cos \alpha.$$

• Higgs-SM disintegration width:
$$\Gamma_{H \to ii}^{RxSM} = \Gamma_{\bar{h} \to ii}^{SM} \sin^2 \alpha, \quad \Gamma_{h \to ii}^{RxSM} = \Gamma_{\bar{h} \to ii}^{SM} \cos^2 \alpha.$$

• Total disintegration width of *H* :

$$\Gamma_{H,total} \sum_{i} \Gamma_{H \to ii} \sin \alpha^2 + \Gamma_{H \to hh} \quad \longrightarrow \quad \Gamma_{H \to hh} = \lambda_{hhH}^2 \frac{\sqrt{1 - \frac{4m_h^2}{m_H^2}}}{8\pi m_H}$$

 Z^*

 Z^*

Feynman diagrams: Tree level

Feynman diagrams: Corrections I

Feynman diagrams: Corrections

- Simplifications:
- -One loop.
- -Applied only to THC's.

Provided by Alain Verduras

Work space I

د

Punto	$m_H [{ m GeV}]$	x[GeV]	b_4	b_3	a_1	a_2	α
P 1	461.9	46.3	0.89	-622.6	-691.10	4.50	0.180
$\mathbf{P2}$	470.8	46.3	0.45	-442.70	-691.10	4.45	0.177
P3	469.4	47.4	0.00	0.00	-675.10	4.11	0.174
P4	530.9	41.9	0.00	0.00	-763.7	5.23	0.153
$\mathbf{P5}$	575.10	37.5	0.78	-582.90	-853.30	6.65	0.140
P6	529.60	40.8	0.45	-442.70	-784.30	5.63	0.153
$\mathbf{P7}$	642.50	34.2	0.11	-218.90	-935.70	7.85	0.125
P8	656.10	33.1	0.78	-582.90	-966.80	8.44	0.122
F 43 F F 7							

$$a_1x = -32000,$$

 $b_3 = 660\sqrt{b_4},$
 $\lambda = 0,18.$
Two free parameters:
 x and b_4

FOEWPT assured in the plane: $x \in [33, 48]$ GeV and $b_4 \in [0.1, 1]$

[4] y [5]

Work space II

Punto	$\lambda_{hhH}^{\acute{a}rbol}$	$\kappa_\lambda^{\acute{a}rbol}$	$\Gamma_{H}^{\acute{a}rbol}[{\rm GeV}]$	λ_{hhH}^{loop}	κ^{loop}_λ	$\Gamma_{H}^{loop}[{\rm GeV}]$	$\coslpha\lambda_{hhh}^{\acute{a}rbol}$	$\sin lpha \lambda_{hhH}^{\acute{a}rbol}$	$\cos \alpha \lambda_{hhh}^{loop}$	$\sin\alpha\lambda_{hhH}^{loop}$
P1	0.36	1.47	3.81	0.26	1.26	3.14	0.187	0.064	0.150	0.047
$\mathbf{P2}$	0.35	1.46	3.73	0.26	1.41	3.18	0.185	0.061	0.168	0.046
P3	0.33	1.43	3.48	0.28	1.40	3.25	0.182	0.057	0.167	0.048
P4	0.38	1.43	4.15	0.31	1.43	3.48	0.182	0.058	0.171	0.047
$\mathbf{P5}$	0.45	1.46	5.05	0.28	1.48	3.48	0.186	0.063	0.178	0.039
$\mathbf{P6}$	0.40	1.45	4.49	0.29	1.44	3.32	0.185	0.069	0.173	0.044
$\mathbf{P7}$	0.49	1.44	5.50	0.31	1.54	3.47	0.184	0.061	0.185	0.039
P8	0.52	1.44	5.84	0.27	1.46	3.16	0.184	0.063	0.176	0.033

Heavy Higgs mass (m_H) and points in the plane

κ_{λ} analysis

 $\kappa_{\lambda} = \lambda_{hhh}^{loop,RxSM}$ $\lambda_{hhh}^{tree,SM}$

λ_{hhH} analysis

17

Γ_H analysis

18

Cross section in the $x - b_4$ plane $(\sqrt{s} = 500 \text{ GeV})$

Cross section in the $\kappa_{\lambda} - \lambda_{hhH}$ plane $(\sqrt{s} = 500 \text{ GeV})$

Cross section in the $x - b_4$ plane $(\sqrt{s} = 1000 \ GeV)$

21

Cross section in the $\kappa_{\lambda} - \lambda_{hhH}$ plane $(\sqrt{s} = 1000 \text{ GeV})$

m_{hh} distributions $(\sqrt{s} = 500 \text{ GeV}, P1)$

m_{hh} distributions $(\sqrt{s} = 500 \text{ GeV}, P8)$

m_{hh} distributions $(\sqrt{s} = 1000 \text{ GeV}, P1)$

Nivel Arbol $\sigma(e^-e^+ \rightarrow hhZ)$, $\sqrt{s} = 1000 \text{ GeV}$

Un loop $\sigma(e^-e^+ \rightarrow hhZ)$, $\sqrt{s} = 1000 \text{ GeV}$

m_{hh} distributions $(\sqrt{s} = 1000 \text{ GeV}, P8)$

Nivel Arbol $\sigma(e^-e^+ \rightarrow hhZ), \sqrt{s} = 1000 \text{ GeV}$

Un loop $\sigma(e^-e^+ \rightarrow hhZ)$, $\sqrt{s} = 1000 \text{ GeV}$

Peak-dip effect

$$\sigma_{interf} \propto \frac{Q^2 - m_H^2}{(Q^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}.$$

Conclusions

 We can study the FOEWPT with RxSM — Electroweak Baryogenesis **matter-antimatter asymmetry** in the early Universe and the $V(\phi)$ form.

- Quantum one loop corrections in THC's are important for $\lambda_{hhH} \longrightarrow \lambda_{hhH}^{loop} < \lambda_{hhH}^{tree}$.
- In the process $e^+e^- \rightarrow h h Z$ -RxSM produces an increase ~ 30 % \longrightarrow in the total cross section.
- Outlook: more quantitative analysis of λ_{hhH} sensitivity.

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

Thanks for your attention ©

Bibliography

[1] Wikipedia. El modelo estándar de la física de partículas. https://commons.wikimedia.org/w/index.php?curid=4286964.

[2] Valery A. Rubakov and Dmitry S. Gorbunov. Introduction to the Theory of the Early Universe: Hot big bang theory. World Scientific, Singapore, 2017.

[3] Hitoshi Yamamoto. The international linear collider project—its physics and status. Symmetry, 13(4), 2021.

[4] Alain V. Schaeidt and Sven Heinemeyer. Fenomenología de la Extensión del Singlete Real de Higgs del Modelo Estándar. Jun 2022.

[5] Hao-Lin Li, Michael J. Ramsey-Musolf, and Stephane Willocq. Probing a scalar singlet- catalyzed electroweak phase transition with resonant di-higgs boson production in the 4b channel. Physical Review D, 100(7), oct 2019.

[6] Kateryna R. Serdula and Sven Heinemeyer. Triple Higgs Couplings in the 2HDM at the LHC. 2022.