Dark Matter Phenomenology in THDM-CS

Juhi Dutta, Merle Schreiber and Gudrid Moortgat-Pick

THDM Working group report (ongoing)

January 14, 2021

Motivation and aim

- Extensions of the THDM with a complex scalar singlet are motivated from baryogenesis, gravitational waves, dark matter and inflationary point of view.
- Our study aims to study the prospects for dark matter in the context of THDM-CS model.

The Model

- We consider a softly broken Z₂ symmetric THDM and conserved Z'₂ symmetric singlet potential.
- The quantum numbers of the fields are

Scalar Fields	Z_2	Z'_2
Φ_1	+1	+1
Φ2	-1	+1
S	+1	-1

Table: The quantum numbers of the Higgs doublets Φ_1, Φ_2 and complex singlet *S* under $Z_2 \times Z'_2$.

The Scalar Potential

 $\mathcal{V}_{THDMCS} = \mathcal{V}_{2HDM} + \mathcal{V}_{S} + \mathcal{V}_{HS}$

$$\begin{aligned} \mathcal{V}_{2HDM} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 \\ &+ \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.) \end{aligned}$$

$$\begin{aligned} \mathcal{V}_{S} &= m_{S}^{2}S^{\dagger}S + (\frac{m_{S}^{\prime 2}}{2}S^{2} + h.c) + (\frac{\lambda_{1}^{\prime \prime}}{24}S^{4} + h.c) + \frac{\lambda_{1}^{\prime \prime}}{6}(S^{2}(S^{\dagger}S) \\ &+ h.c) + \frac{\lambda_{3}^{\prime \prime}}{4}(S^{\dagger}S)^{2} \end{aligned}$$

 $V_{HS} = [S^{\dagger}S(\lambda_{1}'\Phi_{1}^{\dagger}\Phi_{1} + \lambda_{2}'\Phi_{2}^{\dagger}\Phi_{2})] + [S^{2}(\lambda_{4}'\Phi_{1}^{\dagger}\Phi_{1} + \lambda_{5}'\Phi_{2}^{\dagger}\Phi_{2}) + h.c]$ (Baum,Shah, JHEP 12 (2018) 044)

Mass spectrum

- The Higgs sector same as in the THDM, i.e., h, H, A, H[±] since the singlet S has v_s = 0.
- The mass of the dark matter S at tree-level is

$$m_{\chi}^{2} = 2m_{S}^{2} + 2m_{S}^{2\prime} + (\lambda_{1}^{\prime} + 2\lambda_{4}^{\prime})\frac{v_{1}^{2}}{2} + (\lambda_{2}^{\prime} + 2\lambda_{5}^{\prime})\frac{v_{2}^{2}}{2}.$$

where $\tan \beta = \frac{v_1}{v_2}$.

16 free parameters of the model

 $\lambda_1,\lambda_2,\lambda_3,\lambda_4,\lambda_5,m_{12}^2,\lambda_1',\lambda_2',\lambda_4',\lambda_5',\lambda_1'',\lambda_3'',m_5^2,m_5'^2,\alpha,\tan\beta$

Benchmark scenario

Parameters	BP1			
m_{12}^2	-1.014×10^{5}			
$\lambda_1^{}$	0.233			
λ_2	0.249			
λ_3	0.389			
λ_4	-0.167			
λ_5	0.001			
$\lambda_1^{\prime\prime}$	0.1			
$\lambda_3^{\prime\prime}$	0.1			
λ_1^{\prime}	0.042			
$\lambda_2^{\overline{I}}$	0.042			
$\lambda_{4}^{\overline{\prime}}$	0.1			
λ'_5	0.1			
m _h	125.07			
m _H	724.4			
m_A	724.4			
$m_{H^{\pm}}$	728.3			
$\tan eta$	5			
m_{DM}	338.9			
Ωh^2	0.059			
$\sigma_{DD}^{n} imes 10^{11}~(t pb)$	7.55			

Relevant parameters of the benchmark used for the study. All mass parameters have units GeV except for m_{12}^2 in GeV²

The Plan

- Start from Benchmark point BP1
- Vary potential parameters one at a time
- See their influence on DM relic density and Direct Detection
- Look for interesting regions

• Interesting DM observables

- Relic density
- Direct detection cross section
- singlet DM mass
- Varied Parameters:

•
$$tan(\beta)$$

• $\lambda'_1, \lambda'_2, \lambda'_4, \lambda'_5$
• m_S^2

•
$$\lambda_1^{\prime\prime}$$
, $\lambda_3^{\prime\prime}$

The light singlet case

Figure: Relic density (left) and mass spectrum (right) in dependence of λ_1'

The light singlet case

Figure: Relic density (left) and mass spectrum (right) in dependence of λ_2'

The light singlet case

Figure: Relic density (left) and mass spectrum (right) in dependence of $\tan(\beta)$

Figure: Relic density (left) and mass spectrum (right) in dependence of m_S^2

Figure: Relic density in dependence of the Singlet mass controlled by m_S^2

- Interesting changes for low m_S^2
- For Singlet mass around $\frac{m_h}{2}$ pair annihilation channel via SM Higgs opens up

Figure: Direct detection cross section in comparison to upper bounds of XENON. Cross section in dependence of m_S^2 . Data from: [XENON Collaboration 2018. arXiv-1805.12562, Phys. Rev. Lett. 121, 111302]

For low m_S^2 (also low singlet mass) the nuclear cross section in Direct Detection exceeds the upper bounds by Xenon measurements

How to find a fitting parameter point?

- Want to keep Light Singlet
- Focus on direct detection limits
- See which parameters influences Direct Detection most
- See if very low λ_1'' and λ_3'' change the picture
- See how $\lambda_i',\ i=1,2,4,5$ dependencies change for extreme $\tan(\beta)$

Figure: Direct detection cross section in dependence of λ'_2

 λ'_2 has strongest impact on direct detection. Independent of tan(β)

(a) λ'_1 dependence

(b) λ'_4 dependence

(c) λ'_5 dependence

Figure: λ'_2 dependence of direct detection cross section for tan(β) = 20

Agreement with upper bounds gets better for high $\tan(\beta)$ \rightarrow choose low $\lambda'_2 = 0.001$ and see which $\tan(\beta)$ fulfils the direct detection bounds and fits the measured relic density best

Figure: Direct Detection cross section for $\lambda_2' = 0.001$ depending on the singlet mass controlled by $tan(\beta)$

Direct detection limit is fulfilled for all $tan(\beta)$

Figure: Relic density in dependence of $tan(\beta)$ for $\lambda'_2 = 0.001$

 \rightarrow Choose tan(β) = 12

Finally there is a parameter point with a light singlet which fulfils the upper bound on Direct Detection and that features a relic density slightly below the value measured by Planck. The parameters λ_i i = 1, 2, 3, 4 stay the same as for the starting point

Table: Parameter point light singlet

tan(eta)	m_S^2	$m_{S}^{\prime 2}$	λ'_1	λ'_2	λ_3''	λ'_4	λ'_5	λ_1''
12.0	$4.1 imes10^3$	$1.13 imes10^5$	0.042	0.001	0.1	0.1	0.1	0.1

With a Singlet mass of 77GeV

Ongoing work

- Checking the collider constraints on the light singlet DM
- Comparison of real and complex scalar DM

Thank you for your attention!

Backup

Figure: Direct detection cross section in dependence of λ_1' (left) and λ_2' right

Figure: Direct detection cross section in dependence of $tan(\beta)$ (left) and m_S^2 (right)

Figure: Direct detection cross section in dependence of the singlet mass controlled by m_S^2 in th light singlet case

Figure: Direct detection cross section in dependence of λ_2' in the light singlet case