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Vacuum Stability in multi-Higgs models

Higgs mechanism in SM relies on stable vacuum, guaranteed at
tree-level.

Higher order corrections can spoil the stability, top quark mass plays a
crucial role.

With extended scalar sectors, the vacuum stability, unlike SM is
challenged at tree-level.

In case of non-supersymmetric extensions of the SM scalar sector,
there can be potential charge and CP-breaking minima as well as a
second wrong EW vacuum(panic vacuum).
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If there is no stationary point deeper than the EW vacuum, then EW
vacuum is absolutely stable.

If there are deeper minima, but the transition time into those is larger
than age of universe, EW vacuum is metastable, else unstable.

Vacuum structure of 2HDM and its real scalar singlet extension,
namely N2HDM, has been studied. Phys.Lett.B 603 (2004) 219-229, JHEP 09 (2019) 006

In 2HDM, any stationary point that is charge or CP breaking is
necessarily a saddle point that lies above the normal EW minimum.

N2HDM, due to addition of an extra scalar degree of freedom, shows
quite different vacuum phenomena.

3



Going beyond N2HDM with 2HDM+complex
singlet(2HDMS)

The objective is to study the vacuum instabilities in 2HDMS.

A detailed comparison with N2HDM. Is there any diffrence?

1 Intrinsic diffrence between the vacuum structure of the two models
2 How much of that difference stands the test?
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The models

The part of the scalar potential involving the singlet S in N2HDM
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and in 2HDMS with complex singlet S + iP
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In both cases an extra Z2 symmetry is imposed on additional singlet

4



Free parameters in both models

General basis Mass-basis
N2HDM λ1,..8, vs ,m2

12,tanβ, v mh1,..3
,mA,mH± , α1,..3, vs , m2

12, tanβ, v

2HDMS λ1,..12, vs , vp ,m2
12,tanβ, v mh1,..4

,mA,mH± , α1,..6, vs , vp , m2
12, tanβ, v
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Possible Vacuua: N2HDM
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Similarly CP and CPs can also exist in N2HDM.
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Possible Vacuua: 2HDMS
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Similarly, in the CP-breaking sector there can be CP, CPs , CPp and
CPsp type of potentially dangerous vacuua.

In total there are four extra charge and CP-breaking vacuua in
2HDMS.

Therefore, the stability of the parameter points should deteriorate in
2HDMS compared to N2HDM.

There are also “wrong” neutral vacuua present in both N2HDM and
2HDMS. Here too, naturally the number of potentially dangerous
vacuua is lot more in 2HDMS.
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Comparison in terms of extra model parameters : Nsp in
2HDM vs Ns in N2HDM

Two stable BP’s of N2HDM:

mh1
mh2

mh3
mA = m±H m2

12 tanβ vs {α1, α2, α3}
BP1 95 125 601 621 9529.17 1.37 468.1 {-0.49,0.31,-0.09}
BP2 125 604.5 604.7 624.8 22654 0.91 423.8 {-2.34,-0.001,-1.55}

In the general basis:

λ1 λ2 λ3 λ4 = λ5 λ6 λ7 λ8 m2
12 tanβ vs

BP1 1.43 0.24 12.02 -6.05 2.97 2.11 -0.41 9529.17 1.37 468.1
BP2 5.33 12.41 12.27 -5.7 2.05 3.21 -0.08 22654 0.91 423.8

BP1 accommodates 95 GeV excess with its observed µCMS
γγ . 125 GeV SM

Higgs signal strengths are also obeyed by both BP1 and BP2.
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Fate in 2HDMS with additional free parameters

Figure: top : BP1, bottom : BP2

Bounded-from-below condition applied beforehand.
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Two metastable BP’s of N2HDM:

mh1
mh2

mh3
mA = m±H m2

12 tanβ vs {α1, α2, α3}
BP3 95 125 607.8 628.0 -13222.9 1.48 286.1 {-0.45,0.86,-0.09}
BP4 125 615.78 615.94 635.76 38878.2 1.30 903.86 {0.89,0.026-1.50}

In the general basis:

λ1 λ2 λ3 λ4 = λ5 λ6 λ7 λ8 m2
12 tanβ vs

BP3 12.44 0.58 12.84 -6.99 3.99 6.35 -0.30 -13222.9 1.48 286.1
BP4 8.27 9.18 12.30 -5.35 0.39 1.85 -0.08 38878.2 1.30 903.86
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In 2HDMS

Figure: top : BP3, bottom : BP4
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An unstable BP of N2HDM:

mh1
mh2

mh3
mA = m±H m2

12 tanβ vs {α1, α2, α3}
BP5 95 125 614.3 634.3 17856.8 1.82 441.42 {-0.50,0.37,0.05}

In the general basis:

λ1 λ2 λ3 λ4 = λ5 λ6 λ7 λ8 m2
12 tanβ vs

BP5 1.93 0.11 12.72 -5.95 3.36 3.38 0.23 17856.8 1.82 441.42

Figure: BP5
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Ns vacuum Nsp vacuum
N2HDM stable meta/unstable stable meta/unstable

↓ ↓ ↓ ↓
2HDMS stable/meta/unstable meta/unstable stable/meta/unstable stable(fine-tuned)/meta/unstable

Table: The stable and meta/unstable vacuum in N2HDM can can lead to stable
or meta/unstable vacuum in 2HDMS depending on the type of vacuum Ns or Nsp.

Stable→ unstable : larger number of dangerous vacuua in 2HDMS.

Unstable→ Stable : not possible in Ns case and extremely finetuned
in Nsp, also requires large negative values of λ10, λ11 and λ12,
disfavored by BFB.
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CAUTION!! The extra parameters of 2HDMS are not really ‘free’.

Imposing the observed scalar masses and signal strengths already
constrains the free parameters of 2HDMS, thereby alleviating the
difference between the two models.
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Comparison between N2HDM and 2HDMS with couplings
in similar range

We want to check, whether all the differences in the vacuum
structure in N2HDM and 2HDMS remain same after all the physical
observables are kept at similar values in both cases.

Since all the couplings of physical scalars to fermions and gauge
bosons are functions of mixing matrix elements, we demand all the
elements of the 3×3 subspace of the 4×4 mixing matrix elemements
of 2HDMS are within <∼ 15% of the matrix elements of the 3×3
mixing matrix of N2HDM.

R =

 cα1cα2 sα1cα2 sα2

−sα1cα3 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

sα1sα3 − cα1sα2cα3 −cα1sα3 − sα1sα2cα3 cα2cα3

 ,
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This is a conservative approach and we are confined with small values
of extra mixing angles of 2HDMS.

This ‘difference’ between the two models would definitely enhance
with extra heavier scalar mass and larger mixing angles.

However, we checked that, even with moderately large scalar masses,
we can see a ‘difference’ between N2HDM and 2HDMS in terms of
vacuum stability of points giving rise to same physical
observables( <∼ 15% deviation being allowed).
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Figure: BP1 in 2HDMS : ∆C/C <∼ 15% → α4 ≈ α5 ≈ α6 <∼ 0.2.

Figure: BP1(Stable in N2HDM) in 2HDMS : ∆C/C <∼ 0.5%
→ α4 ≈ α5 ≈ α6 <∼ 0.05.
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Figure: BP2(Stable in N2HDM) in 2HDMS : ∆C/C <∼ 15%
→ α4 ≈ α5 ≈ α6 <∼ 0.07.

In this case, even with extremely small mixing angles, I could not get rid of
instability. The allowed range of m2

12 itself leads to unstable regions.
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Figure: BP5(Untable in N2HDM) in 2HDMS : ∆C/C <∼ 15%
→ α4 ≈ α5 ≈ α6 <∼ 0.13.

In all the figures:

The upper limit on m2
12 from BFB.

The lower limit on m2
12 from perturbativity.
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Impact of tri-linear couplings

We calculate all the tri-linear couplings (aijk) at tree-level in both
models.

Demanding they should be in close proximity of each other, in
addition puts constraint on the still allowed parameter space of
2HDMS.

In particular m2
12, tanβ and correspondingly all the λ’s become further

constrained.
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Figure: (left) BP1 in 2HDMS : ∆a/a <∼ 40%(20%) for α4 ≈ α5 ≈ α6 ≈ 0.05 and
(right) BP2 in 2HDMS : ∆a/a <∼ 20%(10%) for α4 ≈ α5 ≈ α6 ≈ 0.07

Now we become confined within a stable region even in 2DHMS, just like
in N2HDM.
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Comparison between Ns vacuum of N2HDM and 2HDMS

This phase of 2HDMS is the DM phase, unlike N2HDM.

Here no mixing between the additional scalar sector of 2HDMS with
the scalar sector of N2DHM.

All the couplings (including tri-linear couplings) are same in both
models at tree-level.

Benchmark of N2HDM will map onto 2HDMS.

Dark sector couplings are completely decoupled from the visible sector
phenomenology, can be varied freely.

This scenario changes at loop level.
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Impact of dark sector parameters on vacuum stability of
2HDMS

Figure

25



Summary and outlook

There are additional charge and CP-breaking as well as “panic”
neutral minima in 2HDMS compared to N2HDM.

The stability criterion depends strongly on the extra free parameters
of 2HDMS.

The physical observables put strong contraints on 2HDMS parameter
space.

There can still be some difference in the vacuum stability of N2HDM
and 2HDMS parameter points even if they lead to the similar masses
and fermion and gauge boson couplings of scalars.
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Tri-linear coupling measurement can constrain important parameter
m2

12 and thereby determine vacuum stability uniquely, alleviating the
purported difference.

Loop effects can change the outcomes of our analysis completely.

In case of Ns -type vacuum of 2HDMS, dark sector phenomenology is
closely related to vacuum stability and corresponding difference
between N2HDM and 2HDMS.
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Back-up

In both N2HDM and 2HDMS
Where
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For Nsp-type vacuum of 2HDMS the stability criteria are in addition,
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VCBp − VNsp = (
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