Impact of the different discrete symmetries in the 2HDM and N2HDM on domain wall formation and its phenomenological implications

Mastercolloqium

Max Luis Hellmich Hamburg, 13.01.2022

Outline

1

Cosmic Domain walls

- Domain wall problem
- Solution and constraints
- Circumventing the DW problem for multiple discrete symmetries

2 Two Higgs doublet models

- 2HDM
- N2HDM
- Discrete symmetries

3 Solving the Domain wall EoMs

- Different DW configurations for different symmetries
- 4 Phenomenological impact of the different discrete symmetries

Domain wall problem

Domain walls are thought to be created when a discrete symmetry is spontaneously broken

 \Rightarrow After spontaneous symmetry breaking (SSB) there are regions of space, which live in different vacua \rightarrow domains

 \Rightarrow Transition between these regions, where fields are trapped in false vacuum

 $\rightarrow \underline{\text{Domain Wall}}(\text{DW})$

Problem: Stable DWs are cosmologically unfavourable

- Dynamics driven by tension force $p_T \sim \sigma \rightarrow \text{Enter}$, scaling" regime $\rho_{DW} \sim \frac{\sigma}{t}$ σ : Surface energy density $\Rightarrow \rho_{DW} \sim t^{-1}$ while $\rho_m, \rho_r \sim t^{-2}$ If existing, DWs would dominate the energy density of the universe (unless σ is very small)
- DWs imprint large scale density fluctuations which are constrained by CMB

 \Rightarrow Zel'dovich-Kobzarev-Okun (ZKO)-bound: $\sigma \lesssim \mathcal{O}(MeV^3)$

Solutions to the Domain wall problem

General idea to overcome the DW problem is to destabilize DWs Two approaches:

a) Lift the energy degeneracy of the vacua \rightarrow approximate discrete symmetry

b) Change initial probability to populate vacua

Focus on option a):

• Energy difference induces a vacuum pressure $p_V \sim V_{Bias}$, regions of true vacuum grow. \rightarrow DWs become unstable if $p_V \sim p_T$

Demanding DWs collapse before domination gives: $V_{bias} \gtrsim \frac{\sigma^2}{M_{pl}^2}$

• Relative population of the two vacua given by Boltzmann-equation: $\frac{p_-}{p_+} = e^{-\frac{\Delta F}{T}}$ Kibble mechanism: After SSB thermal fluctuations between the vacua still possible, below the Ginzburg-temperature $T_G \approx V_0 \times V_{\xi}$ domains freeze out; Free energy $\Delta F = V_{Bias} \times V_{\xi}$ Percolation theory gives a critical probability $p_c = 0.311$ up to which DW networks form:

$$\frac{V_{Bias}}{V_0} < \ln\left(\frac{1-p_c}{p_c}\right) = 0.795$$

 V_0 : Potential barrier

vacua

 V_{bias} : Energydiff. between

 V_{ξ} : Correlation volume

*p*_: prob. of false vacuum

 p_+ : prob. of true vacuum

Circumventing the Domain wall problem for multiple discrete symmetries

2HDM and N2HDM scalar potential can exhibit several discrete symmetries

 \Rightarrow Can one overcome the DW problem without imposing an extra bias on the initial conditions ?

Consider a model with an approximate \mathbb{Z}_2 and an exact \mathbb{Z}_2 symmetry:

- If $\frac{V_{Bias}}{V_0} < 0.795$ is <u>not</u> fulfilled for the approximate symmetry \rightarrow DW networks form between degenerate vacua corresponding to exact symmetry! \rightarrow Stable DWs
- 3 potential barriers $V_{0,i}$ separating vacua

 \Rightarrow 3 different Ginzburg temperatures $T_{G,i} \approx V_{0,i} \times V_{\xi}$ until which thermal fluctuations between vacua can occur

 \Rightarrow suppression of stable DWs only possible if $T_{G,approx}$ (or $V_{0,approx}$) is the lowest :

$$\frac{T_{G,approx}}{T_{G,exact}} \leq 1$$

• Estimate relative probability of two DW states:

$$\frac{p_{exact}}{p_{approx}} = e^{-\frac{\Delta F}{T}} = e^{-\frac{\Delta \sigma \times A_{\xi}}{T_G}} \text{ with } \Delta \sigma = \sigma_{exact} - \sigma_{approx}$$

Page 5

2HDM

- Impose softly broken discrete Z₂ symmetry to avoid tree-level FCNCs:
 - $\Phi_1 \to \Phi_1, \quad \Phi_2 \to -\Phi_2,$
 - $\rightarrow m_{12}^2$ soft breaking parameter \rightarrow <u>natural bias term!</u>
- CP-conserving, all parameters and VEVs are real
- Mixing angles α (CP-even) and β (CP-odd, charged)

$$[M_{ij}^2]^a = \frac{\partial^2 V}{\partial \phi_i^a \partial \phi_j^a} \quad with \quad a = 0, +; \quad and \quad i, j = 1, 2 \qquad \qquad R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$V = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.)$$

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{v_1 + \phi_1 + i\eta_1}{\sqrt{2}} \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{v_2 + \phi_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$$

$$tan(\beta) = \frac{v_2}{v_1}$$
 $v_{SM} = \sqrt{v_1^2 + v_2^2} = 246 \, GeV.$

2HDM

- Use minimization conditions $\frac{\partial v}{\partial \phi_i}|_{\phi_i = v_i} = 0$ to eliminate m_{11}^2 and m_{22}^2
- Express all quartic parameters λ_i in mass basis

$$V = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.)$$

$$\begin{split} \lambda_{1} &= \frac{-m_{12}^{2}tan\beta + M_{h}^{2}c_{\alpha}^{2} + M_{H}^{2}s_{\alpha}^{2}}{c_{\beta}^{2}v_{SM}^{2}} \\ \lambda_{2} &= \frac{-m_{12}^{2}cot\beta + M_{h}^{2}s_{\alpha}^{2} + M_{H}^{2}c_{\alpha}^{2}}{s_{\beta}^{2}v_{SM}^{2}} \\ \lambda_{3} &= \frac{-m_{12}^{2} + 2M_{H^{\pm}}^{2}c_{\beta}s_{\beta} + (M_{h}^{2} - M_{H}^{2})c_{\alpha}s_{\alpha}}{c_{\beta}s_{\beta}v_{SM}^{2}} \\ \lambda_{4} &= \frac{m_{12}^{2} + (M_{A}^{2} - 2M_{H^{\pm}}^{2})c_{\beta}s_{\beta}}{c_{\beta}s_{\beta}v_{SM}^{2}} \\ \lambda_{5} &= \frac{m_{12}^{2} - M_{A}^{2}c_{\beta}s_{\beta}}{c_{\beta}s_{\beta}v_{SM}^{2}} \end{split}$$

 \rightarrow 8 free real parameters:

$$M_h$$
, M_H , M_A , $M_{H^{\pm}}$, $tan(\beta)$, α , v_{SM} and m_{12}^2

N2HDM

- 2HDM + real scalar singlet Φ_S
- Mixing with CP-even doublet states
 ⇒ 3 CP-even scalars H₁, H₂, H₃
 - \Rightarrow 3 mixing angles $\alpha_1, \alpha_2, \alpha_3$

$$\begin{split} V &= m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.) \\ &+ \frac{m_S^2}{2} \Phi_S^2 + \frac{\lambda_6}{8} \Phi_S^4 + \frac{\lambda_7}{2} (\Phi_1^{\dagger} \Phi_1) \Phi_S^2 + \frac{\lambda_8}{2} (\Phi_2^{\dagger} \Phi_2) \Phi_S^2, \end{split}$$

$$\Phi_{S} = \frac{v_{S} + \phi_{S}}{\sqrt{2}} \qquad \qquad R = \begin{pmatrix} c_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{2}} \\ c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}c_{\alpha_{3}} & c_{\alpha_{1}}c_{\alpha_{3}} - s_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} \\ c_{\alpha_{1}}s_{\alpha_{2}}c_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{3}} & -(c_{\alpha_{1}}s_{\alpha_{3}} - s_{\alpha_{1}}s_{\alpha_{2}}c_{\alpha_{3}}) & c_{\alpha_{2}}c_{\alpha_{3}} \end{pmatrix}$$

1

N2HDM

- Eliminating m_{11}^2 , m_{22}^2 and m_S^2 via min. conditions
- Express all quartic parameters λ_i in mass basis

$$\begin{split} V &= m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.) \\ &+ \frac{m_S^2}{2} \Phi_S^2 + \frac{\lambda_6}{8} \Phi_S^4 + \frac{\lambda_7}{2} (\Phi_1^{\dagger} \Phi_1) \Phi_S^2 + \frac{\lambda_8}{2} (\Phi_2^{\dagger} \Phi_2) \Phi_S^2, \end{split}$$

$$\begin{split} \lambda_{1} &= \frac{1}{v^{2}c_{\beta}^{2}} \left(-\tilde{\mu}^{2}s_{\beta}^{2} + \sum_{i=1}^{3} m_{H_{i}}^{2}R_{i1}^{2} \right), \qquad \lambda_{5} = \frac{1}{v^{2}} (\tilde{\mu}^{2} - m_{A}^{2}), \\ \lambda_{2} &= \frac{1}{v^{2}s_{\beta}^{2}} \left(-\tilde{\mu}^{2}c_{\beta}^{2} + \sum_{i=1}^{3} m_{H_{i}}^{2}R_{i2}^{2} \right), \qquad \lambda_{6} = \frac{1}{v_{S}^{2}} \sum_{i=1}^{3} m_{H_{i}}^{2}R_{i3}^{2}, \qquad \tilde{\mu}^{2} := \frac{m_{12}^{2}}{s_{\beta}c_{\beta}}, \\ \lambda_{3} &= \frac{1}{v^{2}} \left(-\tilde{\mu}^{2} + \frac{1}{s_{\beta}c_{\beta}} \sum_{i=1}^{3} m_{H_{i}}^{2}R_{i1}R_{i2} + 2m_{H^{\pm}}^{2} \right), \qquad \lambda_{7} = \frac{1}{vv_{S}c_{\beta}} \sum_{i=1}^{3} m_{H_{i}}^{2}R_{i1}R_{i3}, \\ \lambda_{4} &= \frac{1}{v^{2}} (\tilde{\mu}^{2} + m_{A}^{2} - 2m_{H^{\pm}}^{2}), \qquad \lambda_{8} = \frac{1}{vv_{S}s_{\beta}} \sum_{i=1}^{3} m_{H_{i}}^{2}R_{i2}R_{i3}, \end{split}$$

 $\rightarrow 12$ free real parameters: $m_{H_{1,2,3}}$, m_A , $m_{H^{\pm}}$, $\alpha_{1,2,3}$, $tan(\beta)$, v_{SM} , v_S and m_{12}^2

Discrete symmetries

• Softly broken \mathbb{Z}_2 symmetry imposed to avoid FCNCs at tree-level

 $\Phi_1 \to \Phi_1, \quad \Phi_2 \to -\Phi_2,$

Yukawa structure the same in 2HDM and N2HDM as singlet does not couple to fermions

• Exact $\widetilde{\mathbb{Z}}_2$ symmetry: $\Phi_1 \to -\Phi_1$, $\Phi_2 \to -\Phi_2$. Yukawa Lagrangian invariant only for Type I 2HDM and N2HDM

For \mathbb{Z}_2 and $\widetilde{\mathbb{Z}}_2$: $\Phi_S \to \Phi_S$

• Exact \mathbb{Z}'_2 symmetry: $\Phi_1 \to \Phi_1$, $\Phi_2 \to \Phi_2$, $\Phi_S \to -\Phi_S$

Present in N2HDM of all Yukawa types

Note: In Dark matter models, where Φ_S acquires a vanishing VEV this symmetry is unbroken \Rightarrow <u>No</u> DW formation

Type	d_r	L	l_r	d-type	leptons
Ι	_	+	_	Φ_2	Φ_2
II	+	+	+	Φ_1	Φ_1
lepton-specific	-	+	+	Φ_2	Φ_1
flipped	+	+	_	Φ_{1}	Φ_2

Discrete symmetries

Example: 2HDM, scalar potential for rising values of m_{12}^2

Solving the DW EoMs

2HDM, Type I

Assume planar DWs perpendicular to z-axis in Minkowskispace \rightarrow EoM:

$$\frac{d^2\phi_i}{dz^2} = \frac{dV}{d\phi_i}$$

With boundary values

$$\phi_i \to v_i \quad for \quad z \to \infty,$$

 $\phi_i \to \chi_i(v_i) \quad for \quad z \to -\infty.$

$$\Phi_1 \to -\Phi_1, \quad \Phi_2 \to \Phi_2, \qquad \Phi_1 \to -\Phi_1, \quad \Phi_2 \to -\Phi_2.$$

$$\mathbb{Z}_2 \qquad \qquad \mathbb{Z}_2 \qquad \qquad \mathbb{Z}_2$$

Use Gradient flow method to solve EoMs

Solving the DW EoMs

N2HDM

In the N2HDM there are 3 discrete symmetries present: \mathbb{Z}_2 , $\widetilde{\mathbb{Z}}_2$ and $\mathbb{Z'}_2$

Boundary values are given by:

2HDM, Type I

Apply different theoretical constraints:

Grey: Bounded from below + global minimum Yellow: Perturbative unitarity Cyan: Percolation constraint

 $\frac{V_{Bias}}{V_0} < 0.795$ Blue: All constraints fulfilled

2HDM, Type I

Next step: What is the influence of suppression constraints?

Bottom plots:

Black stars:

Cyan:

Red:

Yellow:

2HDM, Type I

Comparing two cases

a) $m_H = m_{H^{\pm}}$ (green)

b) $m_A = m_{H^{\pm}}$ (blue)

- Percolation constraint restricts for case a) $m_H < 700 \text{ GeV}$, b) $m_H < 1000 \text{ GeV}$
- Suppression of $\frac{p_{\widetilde{\mathbb{Z}}_2}}{p_{\mathbb{Z}_2}} < 0.01$ only possible for

 $m_H < 400 \; GeV$

Remaining parameters behave similar for both cases

• Percolation: $\tan(\beta) < 8, m_{12}^2 < 5000 \ GeV^2, m_A < 700 \ GeV$

• Suppression of
$$\frac{p_{\widetilde{\mathbb{Z}}_2}}{p_{\mathbb{Z}_2}} < 0.01$$
:
 $\tan(\beta) \in (3,8), m_{12}^2 \lesssim 1000 \ GeV^2, m_A < 700 \ GeV$

DESY. Impact of the different discrete symmetries in the 2HDM and N2HDM on domain wall formation and its phenomenological implications | Luis Hellmich, Mastercolloqium, 13.01.22

N2HDM

Same procedure as for the 2HDM, but due to \mathbb{Z}'_2 symmetry the percolation constraint is valid for all Yukawa types!

 $10^{-3} \le m_{12}^2 \le 20000 \, GeV^2$ $m_{H_1} < m_{H_2} < m_{H_3} \le 2000 \, GeV.$ $80 \, GeV \le m_{H^{\pm}}, m_A \le 2000 \, GeV,$ $1 \le tan(\beta) \le 20$ $-\frac{\pi}{2} \le \alpha_{2,3} < \frac{\pi}{2} \qquad \Sigma_{H_1} = |R_{1,3}|^2 \le 20\%$ $cos(\beta - \alpha_1)cos(\alpha_2) = 1$

N2HDM, \mathbb{Z}'_2 suppression

- Only two parameters which can be constrained by suppression of Z'₂ DWs are v_s and tan(β)
- Good agreement between ratios

 $\frac{T_{G,\mathbb{Z}_2}}{T_{G,\mathbb{Z}_2}'} \text{ and } \frac{p_{\mathbb{Z}_2}'}{p_{\mathbb{Z}_2}}$

• $v_S \gtrsim 500 \ GeV$ to achieve $\frac{p'_{\mathbb{Z}_2}}{p_{\mathbb{Z}_2}} < 0.01$ for higher tan(β) also lower values of v_S possible

N2HDM, Type I, $\tilde{\mathbb{Z}}_2$ suppression

- Similar dependencies and tendecies as in the 2HDM
- Upper bounds on all Higgs masses
- $m_{H_2} < 500 \ GeV$ (percolation constraint) and $m_{H_2} < 200 \ GeV$ (suppression constr. <1%)
- All other masses

$$m_i < 500 \; GeV \; ext{for} \; rac{p_{\mathbb{Z}_2}'}{p_{\mathbb{Z}_2}} < 0.01$$

DESY. Impact of the different discrete symmetries in the 2HDM and N2HDM on domain wall formation and its phenomenological implications | Luis Hellmich, Mastercolloqium, 13.01.22

Conclusion and outlook

Conclusion

- 2HDM and N2HDM scalar sectors exhibit multiple discrete symmetries, which can lead to DW formation
- For multiple symmetries, the DW problem can only be circumvented if DWs form for approximate symmetry.
- We applied a new method to estimate suppression of formation of stable DWs \Rightarrow Upper bounds on all scalar masses, soft breaking parameter m_{12}^2 and tan(β)

<u>Outlook</u>

- Finite temperature effects
- Dynamical simulations needed to verify the approach and to find limits of sufficient suppression
- Apply this method to CP-symmetries \rightarrow Baryogenesis, Strong first order PT
- Include collider data into parameter scans

Thank you

Backup

Backup

Backup

Backup – Perturbative unitarity

• 2HDM:

$$\begin{aligned} |\lambda_3 - \lambda_4| < 8\pi \\ |\lambda_3 + 2\lambda_4 \pm 3\lambda_5| < 8\pi \\ \left| \frac{1}{2} \left(\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \right) \right| < 8\pi \\ \left| \frac{1}{2} \left(\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_5^2} \right) \right| < 8\pi \end{aligned}$$
(41)

[10][20].

• For the N2HDM one has additionally:

$$|\lambda_7|, |\lambda_8| < 8\pi$$

 $\frac{1}{2}|a_{1,2,3}| < 8\pi$ (42)

with $a_{1,2,3}$ being the real roots of the cubic polynomial:

$$4(-27\lambda_{1}\lambda_{2}\lambda_{6} + 12\lambda_{3}^{2}\lambda_{6} + 12\lambda_{3}\lambda_{4}\lambda_{6} + 3\lambda_{4}^{2}\lambda_{6} + 6\lambda_{2}\lambda_{7}^{2} - 8\lambda_{3}\lambda_{7}\lambda_{8} - 4\lambda_{4}\lambda_{7}\lambda_{8} + 6\lambda_{1}\lambda_{8}^{2}) + x(36\lambda_{1}\lambda_{2} - 16\lambda_{3}^{2} - 16\lambda_{3}\lambda_{4} - 4\lambda_{4}^{2} + 18\lambda_{1}\lambda_{6} + 18\lambda_{2}\lambda_{6} - 4\lambda_{7}^{2} - 4\lambda_{8}^{2}) + x^{2}(-6(\lambda_{1} + \lambda_{2}) - 3\lambda_{6}) + x^{3}.$$
(43)

Backup – Bounded from below

$$\lambda_1 > 0\,, \quad \lambda_2 > 0\,, \quad \lambda_3 > -\sqrt{\lambda_1\lambda_2}\,, \quad \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1\lambda_2}$$

 $D = min(\lambda_4 - |\lambda_5|, 0).$

Using the definition of D, one can define the two sets Ω_1 and Ω_2 :

$$\begin{split} \Omega_1 &= \left(\lambda_1, \lambda_2, \lambda_6 > 0; \ \sqrt{\lambda_1 \lambda_6} + \lambda_7 > 0; \ \sqrt{\lambda_2 \lambda_6} + \lambda_8 > 0 \\ &\sqrt{\lambda_1 \lambda_2} + \lambda_3 + D > 0; \ \lambda_7 + \sqrt{\frac{\lambda_1}{\lambda_2}} \lambda_8 > 0 \right), \\ \Omega_2 &= \left(\lambda_1, \lambda_2, \lambda_6 > 0; \ \sqrt{\lambda_2 \lambda_6} \ge \lambda_8 > -\sqrt{\lambda_2 \lambda_6}; \ \sqrt{\lambda_1 \lambda_6} > -\lambda_7 \ge \sqrt{\frac{\lambda_1}{\lambda_2}} \lambda_8; \\ &\sqrt{(\lambda_7^2 - \lambda_1 \lambda_6)(\lambda_8^2 - \lambda_2 \lambda_6)} > \lambda_7 \lambda_8 - (D + \lambda_3) \lambda_6 \right). \end{split}$$

Backup – Papers

٠

- "A review of gravitational waves from cosmic domain walls", K. Saikawa, 1703.02576v2
- Initial condition bias: "Evading the Cosmological Domain Wall Problem", Larsson et al.,
- SM DWs "Domain walls and gravitational waves in the Standard Model", Krajewski et al., 1608.05719

Solving the DW EoMs

Gradient flow method

Looking for minimum energy configurations of the fields

- Introduce an artificial time parameter $t=n\epsilon \rightarrow$ Integration time
- Gradient flow is limit of gradient descent method with step-size close to zero

$$\begin{split} \frac{\partial \phi_n}{\partial t} &= -\frac{\delta E}{\delta \phi_n} = \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{E}}{\partial \left(\partial \phi_n / \partial x \right)} \right) - \frac{\partial \mathcal{E}}{\partial \phi_n}.\\ \frac{\partial \phi_n}{\partial t} &= \frac{\partial^2 \phi_n}{\partial z^2} - \frac{dV}{d\phi_n} \qquad \qquad \lim_{t \to \infty} \frac{\partial \phi_n}{\partial t} = 0, \end{split}$$

$$\vec{x}_{n+1} = \vec{x}_n - \epsilon \nabla f(\vec{x}_n).$$

$$g(t+\epsilon) = \vec{x}_{n+1} = \vec{x}_n - \epsilon \nabla f(\vec{x}_n) = g(t) - \epsilon \nabla f(g(t))$$

$$\Rightarrow g(t) = -\nabla f(g(t)).$$

