

Sum rules for the Extended Higgs Models and their Phenomenological Applications: A comparative analysis of 2HDM, GM and the Septet model

In Collaboration with:

Saurav Bania Gudrid Moortgat Pick Sven Heinemeyer

15.05.2025

TABLE OF CONTENTS

Extended Higgs Models (BSM models):

1. Septet Model 2. Two Higgs Doublet Model 3. Georgie Mahachek Model for BSM models

Introduction and Motivation

Theoretical and Analytic Computations

Comparative Analysis

Phenomenological Applications

Summary and Future plan for thesis

INTRODUCTION AND MOTIVATION

R	ho - Pa	rameter ρ _{SM}	$=\frac{M_W^2}{M_Z^2\cos(\theta_w)}$	$\frac{1}{2} = 1$
	Model	Hypercharge (Y)	Isospin (I)	
	2HDM	Y = 1/2	I = 1/2	
	${ m GM}$	$Y_D = 1/2$ $Y_{RT} = 0$ $Y_{CT} = 1$	$I_D = 1/2$ $I_T = 1$	
	Septet	Y = 2	I = 3	

 Y_D = For Doublet, Y_{RT} = For Real triplet, Y_{CT} = For Complex Triplet,

 I_D = For Doublet, I_T = For Triplets

Imp: All models - 2HDM, GM, Septet have $\rho = 1$

Introduction and **Motivation**

Theoretical and Analytic Computations

Comparative Analysis

 M_w^2

Hypercharge (Y_i) & Isospin (I_i)

INTRODUCTION AND MOTIVATION

Sum Rules in BSM

Eg. W^+W^- High Energy Vector ^[1] **Boson Scattering** Figure: Standard Model Feynman Diagrams

INTRODUCTION AND MOTIVATION

Rho - Parameter

- ρ parameter is an important experimental parameter which preserves the custodial symmetry at tree level and for Standard Model $\rho = 1$.
- We preserve this quantity in our models through Hypercharge and Isospin combinations.

Sum Rules in BSM

 To ensure no bad high energy behaviour exists in our tree level vector boson calculations, we obtain sum rules for our BSM models.

Theoretical and Analytic Computations

Comparative Analysis

THEORETICAL AND ANALYTIC **COMPUTATIONS**

SEPTET MODEL

Phenomenological Applications for BSM models

6

1 Higgs Doublet (φ) ^[Z] & 1 Septet (X)

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

$$X = \begin{pmatrix} \chi^{+5} \\ \chi^{+4} \\ \chi^{+3} \\ \chi^{+2} \\ \chi^{+1} \\ \chi^{1} \\ \chi^{0} \\ \chi^{-1} \end{pmatrix}$$

note:
$$(\chi_1^{+1})^* \neq (\chi_2^{-1})$$

	Using obta
GAUGE	FIELDS:
Higher charged states	$\chi^{\pm 5}, \ \chi^{\pm 4}, \ \chi^{\pm 3}, \ \chi^{\pm \pm}$
Singly charged states	$\phi^{\pm}, \chi_1^{\pm}, \chi_1$
CP-even states:	$\phi^{0,r},~\chi^{0,r}$
CP-odd states:	$\phi^{0,i}, \ \chi^{0,i}$

$$\begin{split} \phi^{0} &= \frac{v_{\phi} + \phi^{0,r} + i \phi^{0,i}}{\sqrt{2}}, \\ \chi^{0} &= \frac{v_{\chi} + \chi^{0,r} + i \chi^{0,i}}{\sqrt{2}}. \end{split}$$

Hyper Charges: $Y_{\Phi} = 1/2,$ $Y_{X} = 2,$ $T^{3}(Isospin) = 3$

 $Q = T^3 + Y$

Rotation MCP-evenCP-odd 8
$$R_{\alpha} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix}$$
 $R_{7} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix}$ $c_{7} \equiv \cos \theta_{7} = \frac{v_{\phi}}{v},$

$$M_W^2 = \frac{g^2(v_\phi^2 + 16v_\chi^2)}{4}$$

Matrices, R[2]& ChargedSingly charged $\begin{pmatrix} c_7 & -s_7 \\ s_7 & c_7 \end{pmatrix}$ $R_{\gamma} = \begin{pmatrix} c_{\gamma} & -s_{\gamma} \\ s_{\gamma} & c_{\gamma} \end{pmatrix}$ $s_7 \equiv \sin \theta_7 = \frac{4v_{\chi}}{v}.$

 $=\kappa^{h^0}_{ZZ}$

 $=\kappa^{H^0}_{ZZ}$

Interaction

 $\kappa_{WZ}^{H_v^+}$

 $\kappa_{WW}^{H^{++}}$

 $\kappa_{WZ}^{H_1^+}$

 $\kappa_{WZ}^{H_2^+}$

 $\kappa^{h^0}_{WW}$

 $\kappa^{H^0}_{WW}$

$$g_{h^0VV} = g_{h_{\mathrm{SM}}VV} \cdot \kappa_{VV}^{h^0}$$

Effective Coupling

 $c_7 c_\alpha - 4s_7 s_\alpha \equiv \kappa_{VV}^{h^0}$

 $c_7 s_\alpha + 4 s_7 c_\alpha \equiv \kappa_{VV}^{H^0}$

 $-\sqrt{15s_7}$

 $\sqrt{15s_7}$

 $\sqrt{15}s_7s_\gamma$

 $\sqrt{15}s_7c_\gamma$

Table: Septet Model: Effective coupling

$$\begin{split} g_{h^0VV}^2 + g_{H^0VV}^2 &= g_{h_{\rm SM}VV}^2 \\ \Rightarrow \quad (\kappa_{VV}^{h^0})^2 + (\kappa_{VV}^{H^0})^2 &= (\kappa_{VV}^{h_{\rm SM}})^2 = 1 \end{split}$$

SEPTET CONTRIBUTIONS TO WW → WW :

Figure: Septet Model: Feynman Diagrams

Matrix Element and 1st Sum Rule:

$$\mathcal{M} \simeq -\frac{1}{v^2} \left[\left(\left(\kappa_{WW}^{h^0} \right)^2 + \left(\kappa_{WW}^{H^0} \right)^2 \right) (s+t) + \left(\kappa_{WW}^{H^{++}} \right)^2 u \right] \\ + 2 \left(\kappa_{WW}^{h^0} \right)^2 m_{h^0}^2 + 2 \left(\kappa_{WW}^{H^0} \right)^2 m_{H^0}^2 + \left(\kappa_{WW}^{H^{++}} \right)^2 m_{H^{++}}^2 \\ \left(\kappa_{WW}^{h^0} \right)^2 + \left(\kappa_{WW}^{H^0} \right)^2 + \left(\kappa_{WW}^{H^0} \right)^2 \right]$$
1st Sum Rule:

 2^{nd} Sum Rule: W[±] Z \rightarrow W[±] Z

$$(\kappa_V^h)^2 + (\kappa_V^H)^2 - (\kappa_{WZ}^{H_1^+})^2$$

Mass bound: 2nd Sum Rule

$$(\kappa_V^h)^2 + (\kappa_V^H)^2 - (\kappa_{WZ}^{H_1^+})^2 - (\kappa_{WZ}^{H_2^+})^2 = 1 \quad \longrightarrow \quad s_7^2$$

 ${}^2_7 \le \frac{1}{15} \frac{8\pi v^2 - m_h^2}{2 s_\gamma^2 m_{_{I\!I}^+}^2 + 2 c_\gamma^2 m_{_{I\!I}^+}^2 + m_h^2}$

Mass bound obtained using sum rule

Septet Model

Figure: Septet: The relation sets a bound on s7 that falls with increasing m7

THEORETICAL AND ANALYTIC COMPUTATIONS

TWO HIGGS DOUBLET MODEL (THDM)

THE TWO HIGGS DOUBLET MODEL (THDM)

Coupling $\kappa^{h^0}_{W^+W^-} \ \kappa^{H^0}_{W^+W^-} \ \kappa^{h^0}_{ZZ}$ $\kappa^{H^0}_{ZZ}$ $\kappa^{h^0}_{H^+W^-} \ \kappa^{H^0}_{H^+W^-}$ $\kappa^{h^0}_{A^0Z}$ $\kappa^{H^0}_{A^0Z}$

 $g_{h^0W^+W^-} = g_{H_{\mathrm{SM}}W^+W^-} \cdot \kappa^{h^0}_{W^+W^-}$

Table: 2HDM Model: Effective coupling

THE TWO HIGGS DOUBLET MODEL

Mass bounds from Perturbative unitarity

$$\cos^2(\beta - \alpha) \le \frac{4\pi v^2 - m}{m_{H^0}^2 - m}$$

2HDM $(\kappa_{WW}^{H^0})^2 \le \frac{4\pi v^2 - m_h^2}{m_{H^0}^2 - m_h^2} \simeq \frac{(880 \text{GeV})^2}{m_{H^0}^2}$ $\cos^2(\beta - \alpha)$ Allowed region ••••• Bound from $\kappa_{WW}^{H^0} = 1$ 750 1000 1250 1500 1750 2000 m_{H^0} (GeV)

Figure: 2HDM: The relation sets a bound on H^o coupling that falls with increasing m_{Ho}

THEORETICAL AND ANALYTIC COMPUTATIONS

GEORGIE MACHACEK (GM)

GEORGIE MACHACEK (GM)

GM Coupling:

[1]

Table: GM Model: Effective coupling

t-channel

High Energy Vector Boson Scattering

18

Figure: GM Feynman Diagrams

GEORGIE MACHACEK (GM)

$$\cdot \frac{8\pi v^2 - 2m_h^2}{4m_5^2 + 5m_h^2} \simeq \left(\frac{734 \text{ GeV}}{m_5}\right)^2$$

Figure: GM: mass bound sets upper bound on s_H that falls with increasing m_5

COMPARATIVE ANALYSIS

COMPARATIVE ANALYSIS

Feature	2HDM	GM Model	
Field content and SU(2) representation	$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \\ \phi_1^0 \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \\ \phi_2^0 \end{pmatrix}$	$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \ \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 \end{pmatrix}, \ \xi$	
Higgs couplings to Gauge Bosons	$egin{aligned} \kappa_{VV}^{h^0} &= \sin(eta - lpha) \ \kappa_{VV}^{H^0} &= \cos(eta - lpha) \end{aligned}$	$egin{aligned} \kappa_{VV}^{h^0} &= c_{ heta_H} c_lpha - \sqrt{rac{8}{3}} c_{ heta_H} s_lpha \ \kappa_{VV}^{H^0} &= c_{ heta_H} s_lpha + \sqrt{rac{8}{3}} c_{ heta_H} c_lpha \end{aligned}$	
		$\kappa_{VV}^{H_5^{++}} = \sqrt{2}s_{\theta_H}$	
VEV Structure	$v^2 = v_1^2 + v_2^2$	$v^2 = v_\phi^2 + 8 v_\chi^2$	
$ \tan(\beta, \theta_H, \theta_7) $ relation (VEV)	$\tan\beta=\frac{v_2}{v_1}$	$\tan \theta_H = \frac{2\sqrt{2}v_{\chi}}{v_{\phi}}$	
Coupling Sum Rules	$\left(\kappa_{VV}^{h^0}\right)^2 + \left(\kappa_{VV}^{H^0}\right)^2 = 1$	$ \begin{pmatrix} \kappa_{VV}^{h^0} \end{pmatrix}^2 + \left(\kappa_{VV}^{H^0}\right)^2 + \left(\kappa_{V}^{H}\right)^2 \\ \left(\kappa_{VV}^{H_5^{++}}\right)^2 = 1 $	
Mass Bounds	$\cos^2(eta - lpha) \le \left(rac{880 \text{ GeV}}{m_{H^0}} ight)^2$	$s_H^2 \le \left(\frac{734 \text{ GeV}}{m_5}\right)^2$	

Table: Comparative analysis of 2HDM, GM and Septet Models

PHENOMENOLOGICAL APPLICATIONS FOR BSM

Experimental limits: <u>A portrait of the Higgs boson by the CMS experiment</u> ten years after the discovery (arxiv:2207.00043)

Analytical limits:

Model	Coupling Function	Mixing Values [Best, Low, High]	Mass Boy [Low, Hig
GM	$\sin^2 \theta_H$	[0.02, 0.00, 0.23]	[1.53, 7474]
Septet	$\sin^2 \theta_7$	[0.0027, 0.00, 0.0262]	[1.94, 3151
2HDM	$\cos^2(eta-lpha)$	[0.00, 0.26, 0.00]	[1.70, 8630]

Table: Coupling and heavy Higgs mass estimates using experimental limits ('0.00' indicates unphysical values)

CMS Global Fit: $\kappa_V = 1.02 \pm 0.08$

_	3.	2		
	2.	.4		
_	1.	.6		
	0.	.8		
_	0.	.0		$\kappa^{H^{+}+}_{WW}$
_	_	0.	.8	
	_	1.	.6	
_	_	2.	.4	
_	_	3.	.2	

Septet Model

Figure: mass bound with mass estimates from K limit

Figure: mass bound with mass estimates from K limit

Figure: Heatmap for K^{h0}_{VV} and K^{H0}_{VV} with coupling strength limits

GM Model

Figure: mass bound with mass estimates from K limit

SUMMARY AND FUTURE PLAN FOR THESIS

SUMMARY AND FUTURE PROSPECTS

Summary: Comparative Analysis of 2HDM, GM, Septet Model

Model	Coupling Expressions	Sum Rule	Mass Bound Constraint
Septet	$\kappa_{VV}^{h^0} = \cos\theta_7 \cos\alpha - 4\sin\theta_7 \sin\alpha$ $\kappa_{VV}^{H^0} = \cos\theta_7 \sin\alpha + 4\sin\theta_7 \cos\alpha$ $\kappa_{VV}^{H^{++}} = \sqrt{15}\sin\theta_7$	$\left(\kappa_{VV}^{h^0}\right)^2 + \left(\kappa_{VV}^{H^0}\right)^2 - \left(\kappa_{VV}^{H^{++}}\right)^2 = 1$	$\sin^2\theta_7 \lesssim \tfrac{(260{\rm GeV})^2}{m_{H^{++}}^2}$
$\mathbf{G}\mathbf{M}$	$\begin{aligned} \kappa_{VV}^{h^0} &= \cos \theta_H \cos \alpha - \sqrt{\frac{8}{3}} \sin \theta_H \sin \alpha \\ \kappa_{VV}^{H^0} &= \cos \theta_H \sin \alpha + \sqrt{\frac{8}{3}} \sin \theta_H \cos \alpha \\ \kappa_{VV}^{H_5^{++}} &= \sqrt{2} \sin \theta_H \end{aligned}$	$\left(\kappa_{VV}^{h^{0}}\right)^{2} + \left(\kappa_{VV}^{H^{0}}\right)^{2} + \left(\kappa_{VV}^{H^{0}_{5}}\right)^{2} - \left(\kappa_{VV}^{H^{++}_{5}}\right) = 1$	$\sin^2 \theta_H \lesssim \frac{(734{\rm GeV})^2}{m_5^2}$
2HDM	$egin{aligned} \kappa_{VV}^{h^0} &= \sin(eta - lpha) \ \kappa_{VV}^{H^0} &= \cos(eta - lpha) \end{aligned}$	$\left(\kappa_{VV}^{h^0}\right)^2 + \left(\kappa_{VV}^{H^0}\right)^2 = 1$	$\cos^2(eta-lpha)\lesssim rac{(880{ m GeV})^2}{m_{H^0}^2}$

SUMMARY AND FUTURE PROSPECTS

Mixing angle and Mass estimates from K (Coupling Modifier) limits

Model	Mixing Values [Best, Low, High]	Mass Bound (TeV) [Low, High]
GM	[0.02, 0.00, 0.23]	[1.53, 7474.16]
Septet	[0.0027, 0.00, 0.0262]	[1.94, 3151.38]
2HDM	[0.00, 0.26, 0.00]	[1.70, 8630.42]

Future Prospects:

- <u>[6]</u> • Deriving the Cross Section(σ_{BSM}) using Higgs Tools from K experimental limits
- Differentiating the different model parameters

THANK YOU

36

APPENDIX: SEPTET MODEL

The Electroweak Lagrangian for Septet :

 $\mathcal{L} \supset (\mathcal{D}_{\mu}\Phi)^{\dagger}(\mathcal{D}^{\mu}\Phi) + (\mathcal{D}_{\mu}X)^{\dagger}(\mathcal{D}^{\mu}X),$

Replacement Rules and physical fields

$$h^{0} = \cos \alpha \, \phi^{0,r} - \sin \alpha \, \chi^{0,r},$$
$$H^{0} = \sin \alpha \, \phi^{0,r} + \cos \alpha \, \chi^{0,r}.$$

$$G^0 = \cos \theta_7 \, \phi^{0,i} + \sin \theta_7 \, \chi^{0,i},$$
$$A^0 = -\sin \theta_7 \, \phi^{0,i} + \cos \theta_7 \, \chi^{0,i},$$

$$H^{++} \equiv \chi^{+2}, \quad \chi^{+3}, \quad \chi^{+4}, \quad \chi^{+5},$$

$$\begin{aligned} & \mathcal{D}_{\mu} = \partial_{\mu} - i \frac{g}{\sqrt{2}} (W_{\mu}^{+} T^{+} + W_{\mu}^{-} T^{-}) \\ & - \frac{ie}{s_{W} c_{W}} Z_{\mu} (T^{3} - s_{W}^{2} Q) - ieA_{\mu} Q. \end{aligned}$$

$$G^{+} = \cos \theta_{7} \phi^{+} + \sin \theta_{7} \left(\sqrt{\frac{5}{8}} \chi^{+1} - \sqrt{\frac{3}{8}} (\chi^{-1})^{*} \right), \\ H_{f}^{+} = -\sin \theta_{7} \phi^{+} + \cos \theta_{7} \left(\sqrt{\frac{5}{8}} \chi^{+1} - \sqrt{\frac{3}{8}} (\chi^{-1})^{*} \right), \\ H_{V}^{+} = \sqrt{\frac{3}{8}} \chi^{+1} + \sqrt{\frac{5}{8}} (\chi^{-1})^{*}. \qquad H_{1}^{+} = \cos \gamma H_{f}^{+} - \sin \gamma H_{V}^{+}, \\ H_{2}^{+} = \sin \gamma H_{f}^{+} + \cos \gamma H_{V}^{+}; \end{aligned}$$

APPENDIX: PERTURBATIVE UNITARITY

$$\kappa_V^H)^2 - (\kappa_{WW}^{H^{++}})^2 = 1,$$

$$_{\rm x} = 1 + (\kappa_{WW}^{H^{++}})^2.$$

$$-2(\kappa_V^H)^2 m_H^2 + (\kappa_{WW}^{H^{++}})^2 m_{H^{++}}^2 \le 8\pi v^2.$$

$${}^{++}_{W})^{2} \leq \frac{8\pi v^{2} - 2m_{h}^{2}}{m_{H^{++}}^{2} + 2m_{h}^{2}}.$$

APPENDIX: 2HDM (1)

Two Complex SU(2)L Doublets : Φ_i (i = 1,2)

$$\Phi_2 = \begin{pmatrix} \omega_2 \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix},$$

$$\tan \beta = \frac{v_2}{v_1},$$

$$\tan 2\alpha = \frac{2\left(m_{12}^2 - \lambda_{345}v^2s_\beta c_\beta\right)}{m_{12}^2\left(c_\beta - s_\beta\right) - v^2\left(\lambda_1 c_\beta^2 - \lambda_2 s_\beta^2\right)},$$

 ρ_1 CP-even mixing angle η_1

The Electroweak Lagrangian for 2HDM :

$$\begin{aligned} \mathscr{L} &= \left(D_{\mu} \Phi_{1} \right)^{\dagger} \left(D_{\mu} \Phi_{1} \right) + \left(D_{\mu} \Phi_{2} \right)^{\dagger} \left(D_{\mu} \Phi_{2} \right) \cdot \\ \end{aligned}$$
Covariant Derivative $D_{\mu} = \partial_{\mu} - ig \frac{\sigma_{a}}{2} W_{\mu}^{a} - ig' \frac{Y}{2} B_{\mu} \end{aligned}$

С

$$V_{2HDM}(\Phi_{1},\Phi_{2}) = m_{11}^{2} \left(\Phi_{1}^{\dagger}\Phi_{1} \right) + m_{22}^{2} \left(\Phi_{2}^{\dagger}\Phi_{2} \right) - m_{12}^{2} \left(\Phi_{1}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{1} \right) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger}\Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger}\Phi_{1} \right) \left(\Phi_{2}^{\dagger}\Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger}\Phi_{2} \right) \left(\Phi_{2}^{\dagger}\Phi_{1} \right) + \frac{\lambda_{5}}{2} \left(\left(\Phi_{1}^{\dagger}\Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger}\Phi_{1} \right)^{2} \right) \right)$$

$$= H^{0} \cos \alpha - h^{0} \sin \alpha,$$

$$= H^{0} \sin \alpha + h^{0} \cos \alpha,$$

$$= G^{0} \cos \beta - A^{0} \sin \beta,$$

$$= G^{0} \sin \beta + A^{0} \cos \beta,$$

$$= G^{\pm} \cos \beta - H^{\pm} \sin \beta,$$

$$= G^{\pm} \sin \beta + H^{\pm} \cos \beta.$$

$$= G^{\pm} \sin \beta + H^{\pm} \cos \beta.$$

$$= C^{\pm} \cos \beta, S_{\beta} = \sin \beta.$$

$$egin{aligned} M_W^2 &= rac{1}{4}g^2 v^2, \ M_Z^2 &= rac{1}{4}(g^2 + g'^2) v^2, \ M_\gamma^2 &= 0. \end{aligned}$$

APPENDIX: 2HDM (2)

APPENDIX: 2HDM

Mass Matrices from Potential

$$rac{\partial V_{2HDM}}{\partial \Phi_1}|_{\langle \Phi_1
angle, \langle \Phi_2
angle} = 0, \quad rac{\partial V_{2HDM}}{\partial \Phi_2}|_{\langle \Phi_1
angle, \langle \Phi_2
angle} = 0,$$

$$V|_{bilinear} = \frac{1}{2} \begin{pmatrix} \rho_1 & \rho_2 \end{pmatrix} M_{\rho}^2 \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} M_{\eta}^2 \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \omega_1^+ & \omega_2^+ \end{pmatrix} M_{\omega}^2 \begin{pmatrix} \omega_1^- \\ \omega_2^- \end{pmatrix}.$$

$$\begin{array}{ll} \text{CP-even} \\ \text{mixing angle} \end{array} \quad \begin{array}{ll} R_{\alpha} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} & \begin{array}{ll} \text{CP-odd \&} \\ \text{Charged} \\ \text{mixing angle} \end{array} \quad \begin{array}{ll} R_{\beta} = \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \end{array}$$

Mass matrix (non-diagonal) for CP-Even Higgs(Scalar)²:

$$\begin{split} M_{\rho_{11}}^2 &= \frac{\lambda_1 v_1^3 + m_{12}^2 v_2}{v_1} \\ M_{\rho_{22}}^2 &= \frac{\lambda_2 v_2^3 + m_{12}^2 v_1}{v_2} &\longleftrightarrow \quad M_{\rho}^2 = \begin{pmatrix} M_{\rho_{11}}^2 & M_{\rho_{12}}^2 \\ M_{\rho_{12}}^2 & M_{\rho_{22}}^2 \end{pmatrix}, \\ M_{\rho_{12}}^2 &= (\lambda_3 + \lambda_4 + \lambda_5) v_1 v_2 - m_{12}^2 \end{split}$$

where $c_{\alpha} = \cos \alpha, s_{\alpha} = \sin \alpha, c_{\beta} = \cos \beta, s_{\beta} = \sin \beta$.

Mass matrix (non-diagonal) for CP-Odd Higgs (Pseudoscalar):

$$\begin{split} M_{\eta_{11}}^2 &= \left(-\lambda_5 v_1 v_2 + m_{12}^2\right) \frac{v_2}{v_1} \\ M_{\eta_{22}}^2 &= \left(-\lambda_5 v_1 v_2 + m_{12}^2\right) \frac{v_1}{v_2} \quad \longleftrightarrow \quad M_{\eta}^2 = \begin{pmatrix} M_{\eta_{11}}^2 & M_{\eta_{12}}^2 \\ M_{\rho_{12}}^2 & M_{\rho_{22}}^2 \end{pmatrix}, \\ M_{\eta_{12}}^2 &= \lambda_5 v_1 v_2 - m_{12}^2 \end{split}$$

$$M_{\eta_{12}}^2$$

Mass matrix (non-diagonal) for Charged Higgs:

$$\begin{split} M_{\omega_{11}}^2 &= \left(2m_{12}^2 - (\lambda_4 + \lambda_5)v_1v_2\right)\frac{v_2}{2v_1} \\ M_{\omega_{22}}^2 &= \left(2m_{12}^2 - (\lambda_4 + \lambda_5)v_1v_2\right)\frac{v_1}{2v_2} \quad \longleftrightarrow \quad M_{\omega}^2 = \begin{pmatrix} M_{\omega_{11}}^2 & M_{\omega_{12}}^2 \\ M_{\omega_{12}}^2 & M_{\omega_{22}}^2 \end{pmatrix} \\ M_{\omega_{12}}^2 &= \frac{1}{2}(\lambda_4 + \lambda_5)v_1v_2 - m_{12}^2 \end{split}$$

APPENDIX: GM(1)

REPLACEMEN	FRULES: $\sin \Theta_H = \sqrt{8} v_{\chi} / v \text{ and } \cos \Theta_H = v_{\phi} / v,$	(a) (a)
CP - even neutral states:	$h^0 = \cos \alpha \phi^r - \sin \alpha \left(\frac{1}{\sqrt{3}} \xi^r + \sqrt{\frac{2}{3}} \chi^r \right)$	$\mathscr{L} = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)^{-}$
	$H^{0} = \sin \alpha \phi^{r} + \cos \alpha \left(\frac{1}{\sqrt{3}} \xi^{r} + \sqrt{\frac{2}{3}} \chi^{r} \right)$	
	$H_5^0 = \sqrt{\frac{2}{3}} \xi^r - \frac{1}{\sqrt{3}} \chi^r.$	This custodial prevents mixing states that tra
CP -odd neutral states	$G^0 = \cos \Theta_H \phi^i - \sin \Theta_H \chi^i,$ $H^0_3 = -\sin \Theta_H \phi^i + \cos \Theta_H \chi^i.$	states that tra different represe SU(2)c.
Singly charged	$G^{+} = \cos \Theta_{H} \phi^{+} + \sin \Theta_{H} \frac{(\chi^{+} + \xi^{+})}{\sqrt{2}},$	H_3^+ does not mix
SIGIES.	$H_3^+ = -\sin\Theta_H\phi^+ + \cos\Theta_H\frac{(\chi^+ + \zeta^+)}{\sqrt{2}},$ $H_5^+ = \frac{(\chi^+ - \xi^+)}{\sqrt{2}}.$	but not vector boson bo Degenerate mass: m ₃ fe D
Doubly charged states:	V^{2} $H_{5}^{++} = \chi^{++}$	

The Electroweak Lagrangian for GM :

 $(\phi_{\mu}\phi)+(D^{\mu}\chi)^{\dagger}(D_{\mu}\chi)+rac{1}{2}(D^{\mu}\xi)^{\dagger}(D_{\mu}\xi)-V_{GM}(\Phi,\Delta),$

al symmetry
sing between
transform in
esentations of

$$\langle \Phi \rangle = \begin{pmatrix} v_{\phi}/\sqrt{2} & 0 \\ 0 & v_{\phi}/\sqrt{2} \end{pmatrix}$$

$$\xrightarrow{\text{mix with H}_5^+} \qquad \langle X \rangle = \begin{pmatrix} v_{\chi} & 0 & 0 \\ 0 & v_{\chi} & 0 \\ 0 & 0 & v_{\chi} \end{pmatrix}$$
Couples to vector
boson but not
fermions
Degenerate mass: m₅

APPENDIX: GM(2)

Matrix Element and Sum Rule:

$$\mathcal{M} = -\frac{1}{v^2} \left[\left(\left(\kappa_{WW}^{h^0} \right)^2 + \left(\kappa_{WW}^{H^0} \right)^2 + \left(\kappa_{WW}^{H^0_5} \right)^2 - \left(\kappa_{WW}^{H^{++}_5} \right)^2 \right) (s+t) + 2 \left(\kappa_{WW}^{h^0} \right)^2 m_{h^0}^2 + 2 \left(\kappa_{WW}^{H^0_5} \right)^2 m_{5}^2 + \left(\kappa_{WW}^{H^{++}_5} \right)^2 m_{5}^2 \right] - \left[\left(\kappa_{WW}^{h^0} \right)^2 + \left(\kappa_{WW}^{h^0_5} \right)^2 m_{5}^2 + \left(\kappa_{WW}^{h^0_5} \right)^2 m_{5}^2 \right] - \left[\kappa_{WW}^{h^0_5} \right]^2 + \left(\kappa_{WW}^{h^0_5} \right)^2 m_{5}^2 \right] + \left(\kappa_{WW}^{h^0_5} \right)^2 m_{5}^2 \right] + \left(\kappa_{WW}^{h^0_5} \right)^2 m_{5}^2 + \left(\kappa_{WW}^{h^0_5} \right)^2 m_{5$$

 $c_{H}^{2} + \frac{8}{3}s_{H}^{2} + \frac{1}{3}s_{H}^{2} - 2s_{H}^{2} = c_{H}^{2} + s_{H}^{2} = 1,$ Theoretical Check: SUCCESS!! SM: $h_{SM} = 125 \text{ Gev}$

APPENDIX: Mass estimates using Experimental limits

Mass Bound Calculations

Septet Model

From the sum rule:

$$\left(\kappa_{VV}^{h^{0}}\right)^{2} + \left(\kappa_{VV}^{H^{0}}\right)^{2} + \left(\kappa_{WW}^{H^{++}}\right)^{2} = 1 \Rightarrow \left(\kappa_{W}^{H^{++}}\right)^{2}$$

Using: $\kappa_{\text{best}} = 1.02$

$$\left(\kappa_{WW}^{H^{++}}\right)^2 = 0.0404 \Rightarrow \sin^2\theta_7 = \frac{0.0404}{15}$$

Perturbative bound:

$$\sin^2 \theta_7 \le \frac{8\pi v^2 - 2m_h^2}{15(m_7^2 + 2m_h^2)} \Rightarrow m_7 \le \sqrt{\frac{8\pi v^2 - 2m_h^2}{15(m_7^2 + 2m_h^2)}}$$

Evaluating:

 $m_7 \approx 6088 \text{ GeV}$

$$\binom{+}{V}^{+}_{V}^{2} = \kappa^{2} - 1$$

≈ 0.0027

 $\frac{n_h^2 - 30m_h^2\sin^2\theta_7}{5\sin^2\theta_7}$

APPENDIX: Mass estimates using Experimental limits

GM Model

From the sum rule:

$$\left(\kappa_{VV}^{h^{0}}\right)^{2} + \left(\kappa_{VV}^{H^{0}}\right)^{2} + \left(\kappa_{WW}^{H^{++}}\right)^{2} = 1 \Rightarrow \left(\kappa_{WW}^{H^{++}}\right)^{2} = \frac{6}{5}(\kappa^{2} - 1)$$

Using: $\kappa_{\text{best}} = 1.02$

$$\left(\kappa_{WW}^{H^{++}}\right)^2 = \frac{6}{5}(1.02^2 - 1) = 0.048 \Rightarrow \sin^2\theta_H = \frac{1}{2} \cdot 0.048 = 0.024$$

From perturbative unitarity:

$$\sin^2 \theta_H \le \frac{3(8\pi v^2 - 2m_h^2)}{2(4m_5^2 + 5m_h^2)} \Rightarrow m_5 \le \sqrt{\frac{3(8\pi v^2 - 2m_h^2) - 10m_h^2 \sin^2 \theta_H}{8\sin^2 \theta_H}}$$

Evaluating:

 $m_5 \approx 4800 \text{ GeV for } \sin^2 \theta_H = 0.024$

APPENDIX: Mass estimates using Experimental limits

2HDM

From:

$$\kappa^2 = \sin^2(\beta - \alpha) \Rightarrow \cos^2(\beta - \alpha) = 1 - \kappa^2$$

Using: $\kappa_{\text{low}} = 0.86 \Rightarrow \cos^2(\beta - \alpha) = 1 - 0.86^2 = 0.26$ Then the theoretical mass bound:

$$\cos^{2}(\beta - \alpha) \leq \frac{4\pi v^{2} - m_{h}^{2}}{m_{H}^{2} - m_{h}^{2}} \Rightarrow m_{H} \leq \sqrt{\frac{(4\pi v^{2} - m_{h}^{2}) + m_{h}^{2}\cos^{2}(\beta - \alpha)}{\cos^{2}(\beta - \alpha)}}$$

Evaluating:

 $m_H \approx 1695~{
m GeV}$

Unphysical Regions and Their Exclusion

- GM Model: The low bound on $\kappa_{WW}^{H^{++}}$ gives $(\kappa^2 1) < 0$, which is unphysical as $\sin^2 \theta_H$ becomes negative. Hence, we take $\sin^2 \theta_H = 0$ as the conservative lower limit.
- Septet Model: Similarly, the 2σ lower bound leads to negative $\sin^2 \theta_7$, which is unphysical, and we set it to zero.
- 2HDM: The best-fit and upper values of κ exceed 1, leading to negative values of cos²(β − α) and hence undefined behavior.
 We only retain the 2σ lower bound.

al as $\sin^2 \theta_H$ becomes negative. Hence, we take is unphysical, and we set it to zero.

Bibliography and References

- [1]Lectures on perturbative unitarity and decoupling in Higgs physics: Heather E. Logan (arXiv:2207.01064v2)
- [2]<u>Constraining the scalar septet model through vector boson scattering Mary-Jean Harris and Heather E.</u>
- Logan (arXiv:1703.03832v2)
- [3]A portrait of the Higgs boson by the CMS experiment ten years after the discovery: The CMS
- <u>Collaboration</u>.
- <u>[4]A 95 GeV Higgs Boson in the Georgi-Machacek Model (arXiv:2312.13239v2)</u>
- <u>[5]Theory and phenomenology of two-Higgs-doublet models G. C. Branco (arxiv:1106.0034v3)</u>
- [6]<u>HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals</u>
- <u>Henning Bahl</u> (arXiv:2210.09332v2)
- <u>[7]The Higgs boson mixes with an SU(2) septet representation Junji Hisano (arxiv:1301.6455v1)</u>