**Colloquium Bachelor Thesis** 

### "Parameter determination for dark matter candidates in the MSSM"

Robin Heine

#### 27.03.2025

Supervisors: Prof. Dr. Gudrid Moortgat-Pick and Prof. Dr. Sven Heinemeyer



#### Goals

- Existing code for this endeavor from Florian Lika [1] is implemented
- Study of the reconstruction of supersymmetric parameters and their accuracy
- Employ measurements of the future possible Linear Collider ILC
- Calculation of dark matter relic density  $\Omega \hbar^2$  and its accuracy
- Optimize the code in terms of accuracy, application on current excesses in CMS [2] and ATLAS [3]



# The Minimal Supersymmetric Standard Model (MSSM)

- Minimal Supersymmetric Standard Model (MSSM) is assumed
- Fermions get bosonic partners (prefix "s"), Bosons get fermionic partners (suffix "ino")
- MSSM adds 105 new parameters to existing SM parameters
- Of special interest are:
  - 1.  $M_1$  (Bino mass parameter)
  - 2.  $M_2$  (Wino mass parameter)
  - *3.*  $\mu$  (Higgsino mass parameter)
- tan β (ratio of vacuum expactation values of both Higgs-Doublets)



27.03.2025

3

#### Mass matrices in the MSSM

- MSSM can be characterized utilizing Bino-Wino-Basis
- Mass mixing matrix of Charginos  $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$
- Mass mixing matrix Neutralinos  $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$
- Find eigenvalues (diagonalizing)

$$M_C = \begin{pmatrix} M_2 & \sqrt{2}m_W \cos\beta \\ 8\sqrt{2}m_W \sin\beta & \mu \end{pmatrix}$$

$$= \begin{pmatrix} M_1 & 0 & -m_Z \cos\beta\sin\theta_W & m_Z \sin\beta\sin\theta_W \\ 0 & M_2 & m_Z \cos\beta\cos\theta_W & -m_Z \sin\beta\cos\theta_W \\ -m_Z \cos\beta\sin\theta_W & m_Z \cos\beta\cos\theta_W & 0 & -\mu \\ m_Z \sin\beta\sin\theta_W & -m_Z \sin\beta\cos\theta_W & -\mu & 0 \end{pmatrix}$$



[5]

 $M_N$ 

#### Mass hierarchies of the $\tilde{\chi}_i^{\pm}$ and $\tilde{\chi}_j^0$



- Computed eigenvalues assigned as masses to  $\tilde{\chi}_i^{\pm}$  and  $\tilde{\chi}_j^0$  respectively, ascending hierarchy
- Determine, which parameter acts on which  $m_{\tilde{\chi}_i^{\pm}}, m_{\tilde{\chi}_j^{0}}$ , if mass parameter hierarchy known
- For example:  $m_{\tilde{\chi}_1^0}$  mainly dependent on  $M_1$ , if  $M_1 < M_2 < \mu$
- $\tilde{\chi}_1^0$  is then called "bino-like"

[5]



#### Data

- Input SLHA files contain points in SUSY parameter space
- The analyzed SLHA files are taken from *"The new "MUON G-2" result and supersymmetry"* [6] and conform to the following constraints:
  - 1. Experimental constraints, determined by the LHC
  - 2. Dark matter relic density needs to comply with constraints put up by *"Planck 2018 results"* [7]
  - 3. Direct dark matter searches restricting energy spectrum for WIMPS's
  - 4. Points considered need to have stable vacuum state
  - 5. Muon g 2 contribution (does not play relevant role)
- Keep in mind, that  $M_1 \approx M_2$ , resulting in  $m_{\tilde{\chi}_1^0} \approx m_{\tilde{\chi}_1^{\pm}}$

| $100GeV \le M_1 \le 1T$            | $eV  M_1 \le M_2 \le 1.1M_1$                   |
|------------------------------------|------------------------------------------------|
| $1.1M_1 \le \mu \le 10M$           | $5 \le \tan \beta \le 60$                      |
| $M_1 \le m_{\tilde{l}_L} \le 1.2M$ | $I_1 \qquad M_1 \le m_{\tilde{l}_R} \le 10M_1$ |



#### **Data Analysis**

- Points are used to determine:
  - 1. chargino pair production cross-section  $\sigma(e^-e^+ \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^+)$
  - 2. masses of lightest Neutralino and Chargino,  $m_{\tilde{\chi}_1^0}$  and  $m_{\tilde{\chi}_1^\pm}$
- Mixing angles  $\Phi_{L,R}$  can be determined, utilizing cross-section
- Scanned over parameter space conforms to  $M_1 < M_2 < \mu < 10M_2$ , enforcing bino/wino-like dark matter
- Reconstructing parameters from  $\Phi_{L,R}$ ,  $m_{\tilde{\chi}_1^0}$  and  $m_{\tilde{\chi}_1^\pm}$ , this will show, within which uncertainty mass parameters could be determined in a real experiment
- With reconstructed SUSY parameter points (including their experimental uncertainties), dark matter relic density is constructed and compared to "real" dark matter relic density, obtained by original points



#### **Chargino pair production**

Mixing angles and cross-section are related via

 $\sigma^{\pm}\{ij\} = c_1 \cos^2(2\Phi_L) + c_2 \cos(2\Phi_L) + c_3 \cos^2(2\Phi_R) + c_4 \cos(2\Phi_R) + c_5 \cos(2\Phi_L) \cos(2\Phi_R) + c_6$ 



Universität Hamburg

27.03.2025

Robin Heine Colloquium Bachelorthesis

### **Mixing angles**

- Results in ellipsis of valid angles
- 3 different beam configurations needed
- 1 solution in mixing-angle-space remains
- 4 differents beam configurations were used



| $\sqrt{s}$      | $P_{e^-}$ | $P_{e^+}$ |
|-----------------|-----------|-----------|
| $400~{\rm GeV}$ | -0.8      | +0.6      |
| $400~{\rm GeV}$ | +0.8      | -0.6      |
| $500~{\rm GeV}$ | -0.8      | +0.6      |
| $500~{\rm GeV}$ | +0.8      | -0.6      |



27.03.2025

Robin Heine Colloquium Bachelorthesis

#### Mixing angles and masses

- Uncertainties in polarization, crosssection must be considered
- Ellipses expand into elliptical bands
- Intersection point (single solution) becomes crossing surface (many solutions)
- Data reconstruction can now begin





### Scanning for valid points

- 3 criteria need to be met for a point to be considered valid:
  - 1. Charginomass  $m_{\tilde{\chi}_1^{\pm}}$  of point is checked against measured mass (0.5% error)
  - Mixing angles are determined, if point 2. within crossing surface, point is valid
  - 3. Neutralinomass  $m_{\tilde{\chi}_1^0}$  is calculated, if it is within error of 0.5% of measured mass, point is valid
- Spread of valid points showcases uncertainties of reconstruction



Scan results with cross-section condition visualised using the intersection surface.

27.03.2025

#### **Results**

- From this point, shown data encompasses all data points, not just the example point!
- Goal was, to determine accuracy of reconstruction for mass parameters and dark matter relic density
- Relative distance of upper and lower boundary of a scan spread to true value of parameter will be used, i.e. largest and smallest value of a scan spread studied

$$D_{rel} = \frac{Q_{scan} - Q_{true}}{Q_{true}}$$

- Q<sub>scan</sub> is upper or lower boundary of scan spread of that parameter point, Q<sub>true</sub> is true value of a MSSM parameter
- Positive  $D_{rel}$  are interpreted as a boundary being larger than the true value, negative  $D_{rel}$  mean a boundary being smaller









## $\mu$ scan results

UН

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

#### Assessment of the reconstruction

- $M_1$  and  $M_2$  were reconstructed with rather high accuracy, while  $\mu$  was reconstructed highly inaccurate
- Remember the dependency of the mass hierarchy  $(m_{\tilde{\chi}_i^{\pm}}, m_{\tilde{\chi}_j^0})$  on the mass parameter hierarchy  $(M_1 < M_2 \ll \mu)$
- $m_{\tilde{\chi}_1^\pm}$  and  $m_{\tilde{\chi}_1^0}$  are highly dependent on  $M_1$  and  $M_2$ , while being insensitive to  $\mu$
- Thus, the high accuracy in reconstruction of  $M_1$  and  $M_2$  and low accuracy of  $\mu$  is expected
- DM relic density in Chargino co-annihilation scenario mainly dependent on  $M_1$  and  $M_2$  as well, low accuracy of  $\mu$  is no problem





#### Conclusion

- Code was successfully implemented
- $D_{rel}$  of scan boundaries, instead of  $D_{rel}$  of average scan value [1]
- Fixing of Neutralino mass matrix, every scan spread now encompasses true value
- $M_1$  and  $M_2$  could be reconstructed with accuracy of 1% 4%
- $\mu$  reconstruction highly inaccurate
- $\Omega \hbar^2$  calculation accuracy low, even though  $M_1, M_2$  reconstructed with high accuracy



#### Outlook

Code could be adapted to include different scenarios

 $\rightarrow$  Better  $\mu$  reconstruction accuracy

- Further studies on low calculation accuracy of relic density  $\Omega \hbar^2$
- Usage of existing code to study data points from the excesses found at CMS [2] and ATLAS [3]
  - → Scanning over SLHA files studied in "Consistent Excesses in the Search for  $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ : Wino/bino vs. Higgsino Dark Matter" [8]



#### References

[1] Lika, F. SUSY Parameter determination within Dark Matter Phenomenology at future  $e^+e^-$  Colliders, Universität Hamburg. Dec. 2023

[2] Tumasyan, A. et al. Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at s=13 TeV. Journal of High Energy Physics 2022, 1–58 (2022)

[3] Aad, G. et al. Searches for electroweak production of supersymmetric particles with compressed mass spectra in s= 13 TeV pp collisions with the ATLAS detector. Physical review D 101, 052005 (2020)

[4] Chung, D. *et al.* The soft supersymmetry-breaking Lagrangian: theory and applications. *Physics Reports* 407, 1–203 (2005)

[5] Desch, K., Kalinowski, J., Moortgat-Pick, G., Nojiri, M. M. & Polesello, G. SUSY parameter determination in combined analyses at LHC/LC. *Journal of High Energy Physics* 2004, 035 (Mar. 2004)

[6] Chakraborti, M., Heinemeyer, S. & Saha, I. The new "MUON G-2" result and supersymmetry. *The European Physical Journal C (arXiv:2104.03287)* 81. issn: 1434-6052 (Dec. 2021)



27.03.2025

#### References

[7]Aghanim, N. *et al.* Planck 2018 results-VI. Cosmological parameters. *Astronomy & Astrophysics* 641, A6 (2020)

[8] Chakraborti, M., Heinemeyer, S. & Saha, I. Consistent Excesses in the Search for  $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ : Wino/bino vs. Higgsino Dark Matter. arXiv preprint arXiv:2403.14759 (2024)



#### Acknowledgements

- Special Thanks to
  - Gudrid Moortgat-Pick
  - Sven Heinemeyer
  - Jasmin Becks
  - Florian Lika



