Probing the CP-violating HZZ coupling at e^+e^- collider

Silas Hardt in collaboration with Cheng Li and Gudrid Moortgat-Pick

Oktober 2023

Motivation

In light of the future e^+e^- collider, how can one probe the CP properties of the *HZZ* coupling?

At 250 GeV for Higgs Strahlung Cheng Li showed that this is possible with transverse polarized beams [EPS-HEP 2023: Cheng Li].

What happens at higher energies?

How can we probe the CP properties of the HZZ coupling for Z-Fusion? Can we make use of transverse polarized beams for Z-Fusion?

CP-violating HZZ coupling

We only take the leading-order CP-odd term into account

$$\mathcal{L}_{eff} = c_{SM} Z_{\mu} Z^{\mu} H + \frac{c_{HZZ}}{v} Z_{\mu\nu} Z^{\mu\nu} H + \frac{\tilde{c}_{AZZ}}{v} Z_{\mu\nu} \tilde{Z}^{\mu\nu} H$$
(1)

To simplify the analysis, we ignore the CP-even term $Z_{\mu\nu}Z^{\mu\nu}H$.

At LHC:
$$H \longrightarrow 4\ell$$

 $(\tilde{c}_{AZZ})_{CMS} \sim [-1.65, 0.63]$ [CMS-HIG-17-034] (2)
 $(\tilde{c}_{AZZ})_{ATLAS} \sim [-1.2, 1.75]$ [CERN-EP-2023-030] (3)

Higgs Strahlung

With transverse polarized beams, we can construct an observable sensitive to CP-Mixing [EPS-HEP 2023: Cheng Li]:

 $\mathcal{O}_{HS} \propto \eta_H \sin(2\phi_{\mu^-}) \propto [\vec{s}_{e^-} \cdot \vec{p}_{\mu^-}] [(\vec{s}_{e^-} \times \vec{p}_{e^-}) \cdot \vec{p}_{\mu^-}] [\vec{p}_{e^-} \cdot \vec{p}_H]$ (4)

 \vec{s}_{e^-} is the direction of the transverse polarization of the e^- beam. In the Figure $\vec{s}_{e^-}\parallel \vec{e}_y$.

Higgs Strahlung

The initial polarization is carried by the Z boson and transferred to the $\mu^+\mu^-$ pair after it has passed the HZZ coupling. CP-Mixing now leads to an asymmetry in the azimuthal angle ϕ_{μ^-} .

Higgs Strahlung - Asymmetry

$$\mathcal{O}_{HS} \propto \eta_H \sin(2\phi_{\mu^-})$$
 (5)

We define the asymmetry:

$$\mathcal{A}_{HS} = \frac{N(\mathcal{O}_{HS} < 0) - N(\mathcal{O}_{HS} > 0)}{N_{tot}}$$
(6)

Statistical uncertainty of the asymmetry:

$$\Delta \mathcal{A}_{HS} = \sqrt{\frac{1 - \mathcal{A}_{HS}^2}{N_{tot}}} \tag{7}$$

For a CP-conserving result:

$$\mathcal{A}_{HS}(2000 \text{ fb}^{-1}, 250 \text{ GeV}) = (0 \pm 0.0078)$$
 (8)

$$\mathcal{A}_{HS}(2000 \text{ fb}^{-1}, 300 \text{ GeV}) = (0 \pm 0.009)$$
 (9)

Higgs Strahlung - Monte Carlo simulation

Simulations were done with Whizard and the Modell: HC_NLO_X0. We fix $c_{SM} = 1$ and vary \tilde{c}_{AZZ} to look for the $|\tilde{c}_{AZZ}|$ value after which $|\mathcal{A}_{HS}|$ is above $2\Delta \mathcal{A}_{HS}$ for every point.

Higher polarization improves the determination of CP-odd coupling.

Higgs Strahlung - Monte Carlo simulation

At higher energies, it becomes difficult to determine the CP-odd coupling. This is probably a result of the decreasing cross-section.

Higgs Strahlung - Summary

We have defined an observable

$$\mathcal{O}_{HS} \propto \eta_H \sin(2\phi_{\mu^-})$$
 (10)

and used the asymmetry

$$\mathcal{A}_{HS} = \frac{N(\mathcal{O}_{HS} < 0) - N(\mathcal{O}_{HS} > 0)}{N_{tot}}$$
(11)

to detirmen the $|\tilde{c}_{AZZ}|$ limit, for which CP-mixing is detectable.

$(P_{e^{-}}^{T}, P_{e^{+}}^{T})$	\sqrt{s}	<i>ĉ_{AZZ}</i> limit
(80%,30%)	250 GeV	< 0.22
(90%,40%)	250 GeV	< 0.12
(80%,30%)	300 GeV	-
(90%,40%)	300 GeV	-

Z-Fusion

Looking at Z-Fusion, we can construct an observable that only uses longitudinal polarization [arXiv:2307.16514].

$$\mathcal{O}_{ZF} = \Delta \Phi = sgn(\sin(\Delta \Phi)) \cdot \arccos(\cos(\Delta \Phi))$$
(12)

$$\cos(\Delta\Phi) = -\vec{n}_{1} \cdot \vec{n}_{2} \qquad sgn(\sin(\Delta\Phi)) = \frac{\vec{q}_{Z} \cdot (\vec{n}_{1} \times \vec{n}_{2})}{|\vec{q}_{Z} \cdot (\vec{n}_{1} \times \vec{n}_{2})|}$$
(13)
$$\vec{n}_{1} = \frac{\vec{q}_{e_{i}^{-}} \times \vec{q}_{e_{f}^{-}}}{|\vec{q}_{e_{i}^{-}} \times \vec{q}_{e_{f}^{-}}|} \qquad \vec{n}_{2} = \frac{\vec{q}_{e_{i}^{+}} \times \vec{q}_{e_{f}^{+}}}{|\vec{q}_{e_{i}^{+}} \times \vec{q}_{e_{f}^{+}}|}$$
(14)

Z-Fusion - Histogram of \mathcal{O}_{ZF}

The Histogram of \mathcal{O}_{ZF} shows, that for $\tilde{c}_{AZZ} \neq 0$ the minimum of the distribution moves off center.

The magnitude of the offset depends on the magnitude of \tilde{c}_{AZZ} .

Z-Fusion - Asymmetry

Using the previous observation, we define the asymmetry

$$\mathcal{A}_{ZF} = \frac{N(\mathcal{O}_{ZF} < 0) - N(\mathcal{O}_{ZF} > 0)}{N_{tot}}$$
(15)

Statistical uncertainty:

$$\Delta \mathcal{A}_{ZF} = \sqrt{\frac{1 - \mathcal{A}_{ZF}^2}{N_{tot}}} \tag{16}$$

For a CP-conserving result¹:

$$\mathcal{A}_{ZF}(2000 \text{ fb}^{-1}, 250 \text{ GeV}) = (0 \pm 0.026)$$
 (17)

$$\mathcal{A}_{ZF}(2000 \text{ fb}^{-1}, 300 \text{ GeV}) = (0 \pm 0.018)$$
 (18)

 $^{1}\mathrm{For}~P_{e^{-}}^{L}=P_{e^{+}}^{L}$ = 0. Changes due to polarization have to be taken into account.

Z-Fusion - Monte Carlo simulation

$$\mathcal{L}_{eff} = c_{SM} Z_{\mu} Z^{\mu} H + \frac{c_{HZZ}}{v} Z_{\mu\nu} Z^{\mu\nu} H + \frac{c_{AZZ}}{v} Z_{\mu\nu} \tilde{Z}^{\mu\nu} H$$
(19)

We fix $c_{SM} = 1$ and vary \tilde{c}_{AZZ} .

 $L = 2000 \text{ fb}^{-1} \quad \sqrt{s} = 250 \text{ GeV} \qquad L = 2000 \text{ fb}^{-1} \quad \sqrt{s} = 250 \text{ GeV} \\ P_{e^{-}}^{L} = 0\% \qquad P_{e^{+}}^{L} = 0\% \qquad P_{e^{-}}^{L} = 80\% \qquad P_{e^{+}}^{L} = 30\% \\ \end{array}$

The polarization slightly improves the determination of the $|\tilde{c}_{AZZ}|$ limit.

Z-Fusion - Monte Carlo simulation

The higher energy improves the determination of the $|\tilde{c}_{AZZ}|$ limit.

Z-Fusion - Summary

Similar to Higgs Strahlung, we defined an observable

$$\mathcal{O}_{ZF} = \Delta \Phi = sgn(\sin(\Delta \Phi)) \cdot \arccos(\cos(\Delta \Phi))$$
(20)

and an asymmetry

$$\mathcal{A}_{ZF} = \frac{N(\mathcal{O}_{ZF} < 0) - N(\mathcal{O}_{ZF} > 0)}{N_{tot}}$$
(21)

to detirmen the $|\tilde{c}_{AZZ}|$ limit, for which CP-mixing is detectable.

$(P_{e^{-}}^{L}, P_{e^{+}}^{L})$	\sqrt{s}	<i>ĉ_{AZZ}</i> limit
(0%,0%)	250 GeV	< 0.084
(80%,30%)	250 GeV	< 0.079
(0%,0%)	300 GeV	< 0.041
(80%,30%)	300 GeV	< 0.035

Z-Fusion - Transverse polarization

Constructing an observable dependent on transverse polarized beams (like for Higgs Strahlung) to detect the CP-Mixing yielded no result.

Possible explanation: the spin information is not transferred by the virtual Z bosons. Hence, initial transverse polarization is unable to probe the CP-violation of the HZZ coupling.

Analytical analysis is needed.

W-Fusion

W-Fusion has neutrinos in the final state. Since our previous considerations are dependent on the final state momenta, this makes our analysis impossible to fit onto W-Fusion.

Only the Higgs decay products could be used for detecting CP-Mixing.

Summary

Higgs Strahlung		Z-Fusion			
(transverse polarization)		(longitudinal polarization)			
$(P_{e^{-}}^{T}, P_{e^{+}}^{T})$	\sqrt{s}	$ \tilde{c}_{AZZ} $ limit	(P_{e^-},P_{e^+})	\sqrt{s}	$ \tilde{c}_{AZZ} $ limit
(80%,30%)	250 GeV	< 0.22	(0%,0%)	250 GeV	< 0.084
(90%,40%)	250 GeV	< 0.12	(80%,30%)	250 GeV	< 0.079
(80%,30%)	300 GeV	-	(0%,0%)	300 GeV	< 0.041
(90%,40%)	300 GeV	-	(80%,30%)	300 GeV	< 0.035

We have two asymmetries to test at the future collider.

Both, for Higgs Strahlung and Z-Fusion, we are able to improve the $|\tilde{c}_{AZZ}|$ limit compared to the experimentally determined range of \tilde{c}_{AZZ} at LHC:

$(\tilde{c}_{AZZ})_{CMS} \sim [-1.65, 0.63]$	[CMS-HIG-17-034]	(22)
$(\tilde{c}_{AZZ})_{ATLAS} \sim [-1.2, 1.75]$	[CERN-EP-2023-030]	(23)

Outlook

- Analytical analysis of Z-Fusion with transverse polarized beams.
 - could confirm our hypothesis
 - could yield another observable to detect CP-Mixing
 - (consistency check for Whizard)
- The CP-even operator $Z_{\mu\nu}Z^{\mu\nu}H$ can be included.
- The Z-Fusion analysis can be done for a constant σ_{tot} .