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The next-to-minimal supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of
mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the
degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive
region of the NMSSM parameter space, corresponding to the “alignment limit” in which one of the neutral
Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum
expectation value, the observed Higgs boson is predicted to have Standard-Model–like properties. We
derive analytical expressions for the alignment conditions and show that they point toward a more natural
region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the
theory up to the Planck scale. Moreover, the alignment limit in the NMSSM leads to a well-defined
spectrum in the Higgs and Higgsino sectors and yields a rich and interesting Higgs boson phenomenology
that can be tested at the LHC. We discuss the most promising channels for discovery and present several
benchmark points for further study.
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I. INTRODUCTION

The recent discovery of a scalar resonance [1,2], with
properties similar to the Higgs boson of the StandardModel
(SM) motivates the study of models of electroweak
symmetry breaking which are weakly coupled at the
weak scale. Low-energy supersymmetric theories with
flavor-independent mass parameters are particularly well-
motivated models of this class, in which electroweak
symmetry breaking is triggered by radiative corrections
of the Higgs mass parameters induced by supersymmetry
breaking effects in the top-quark sector.
The Higgs sector of the minimal supersymmetric exten-

sion of the Standard Model (MSSM) is a two-Higgs-
doublet model (2HDM) in which the tree-level mass of
the CP-even Higgs boson associated with electroweak
symmetry breaking is bounded from above by the Z boson
mass mZ. Consistency with the observed Higgs mass may
be obtained by means of large radiative corrections, which
depend logarithmically on the scalar-top quark (top squark)
masses and on the top squark mixing mass parameters in a
quadratic and quartic fashion [3–10]. The large values of
the top squark mass parameters and mixings necessary to
obtain the proper Higgs mass also lead to large negative
corrections to the Higgs mass parameter that in general
must be canceled by an appropriate choice of the super-
symmetric Higgsino mass parameter μ in order to obtain the
proper electroweak symmetry breaking scale. For large top

squark masses, such a cancellation is unnatural in the
absence of specific correlations among the supersymmetry
breaking parameters (whose origins are presently
unknown).
The next-to-minimal supersymmetric extension of the

Standard Model (NMSSM) [11] shares many properties
with the MSSM, but the Higgs sector is extended by the
addition of a singlet superfield, leading to two additional
neutral Higgs bosons. The tree-level Higgs mass receives
additional contributions proportional to the square of the
superpotential coupling λ between the singlet and the
doublet Higgs sectors and thus is no longer bounded from
above by mZ. Such contributions become negligible for
large values of tan β, the ratio of the two-Higgs-doublet
vacuum expectation values (VEVs). Therefore, for sizable
values of λ and values of tan β of order one, an observa-
tionally consistent Higgs mass may be obtained without the
need for large radiative corrections, enabling a more natural
breaking of the electroweak symmetry than in the MSSM.
The SM-like properties of the 125 GeV Higgs boson in

both the MSSM and the NMSSM may be ensured via the
decoupling limit, where all the Higgs bosons (excluding the
observed Higgs boson with a mass of 125 GeV) are much
heavier than the electroweak scale. However, the decou-
pling limit is not the only way to achieve a SM-like Higgs
boson, as observed in Ref. [12] and rediscovered recently in
Refs. [13–17]: a SM-like Higgs can be obtained by way of
the “alignment limit,” where one of the neutral Higgs mass
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eigenstates is approximately aligned in field space with the
Higgs doublet VEV. Subsequent studies have continued to
focus on the alignment limit in 2HDMs [18,19]. In
particular, approximate alignment may be obtained in
the MSSM for moderate to large values of tan β and for
large values of the ratio μAt=M2

S, where At is the top squark
mixing mass parameter, μ is the supersymmetric Higgsino
mass parameter, and M2

S is the average of the two top
squark squared masses [16]. Moreover, there is an inter-
esting complementarity between precision measurements
of the SM-like Higgs properties and direct searches for
nonstandard Higgs bosons in the MSSM [19].
In this work we extend the study of alignment without

decoupling beyond the 2HDM to the NMSSM where there
is an additional singlet scalar as well as the two doublet
scalars. In fact, it will become clear that our analysis is quite
general and can be applied even beyond the NMSSM. We
demonstrate that the alignment conditions in the NMSSM
Higgs sector are fulfilled in regions of parameter space
consistent with a natural breaking of the electroweak
symmetry, where the top squark mass parameters are of
the order of the electroweak scale. Moreover, under the
assumption that all couplings remain perturbative up to the
Planck scale, we show that the requirements of natural
electroweak symmetry breaking and the alignment limit in
the Higgs sector lead to well-defined spectra for Higgs
bosons and Higgsinos that may be tested experimentally in
the near future at the LHC.
There have been several recent works analyzing similar

questions in the NMSSM after the discovery of the Higgs
boson (for example, see Refs. [20–34]). In particular, in
Ref. [34] a numerical scan over the NMSSM parameter
space was employed to determine the regions of the
NMSSM parameter space that are consistent with present
Higgs boson precision measurements and searches for
other Higgs boson states and supersymmetric particles.
These parameter regions include those that are consistent
with the alignment conditions examined in this paper.
Consequently, the benchmark scenarios presented in
Ref. [34] exhibit similar features to the ones presented
in Appendix D of this work. In contrast to previous studies,
in this paper we develop an analytic understanding of the
alignment conditions that lead to consistency with the
observed Higgs physics, and we present a detailed phe-
nomenological study of the non-SM-like Higgs boson
couplings to fermions and gauge bosons.
This paper is organized as follows. In Sec. II, we analyze

the alignment conditions in extensions of the Higgs sector
with two doublets and one singlet and discuss the NMSSM
as a particular example. In Sec. III, we examine the
associated Higgs phenomenology. In Sec. IV, we study
the Higgs production and decay modes relevant for run 2 of
the LHC, and we present our conclusions in Sec. V. In
Appendix A, details of the scalar potential in the Higgs
basis for the two-doublet–one-singlet model are given,

along with the corresponding expressions for the NMSSM
Higgs sector. Explicit expressions for the rotation matrix
elements relating the Higgs basis and mass eigenbasis are
provided in Appendix B. In Appendix C, we exhibit the
trilinear scalar self-couplings and the couplings of the
neutral scalars to the Z boson. Finally, in Appendix D we
present several NMSSM benchmark scenarios that illus-
trate features of the Higgs phenomenology considered in
this paper.

II. NMSSM ALIGNMENT CONDITIONS

A. Generalities

The scalar sector of the NMSSM consists of two
electroweak doublets and one electroweak singlet. We first
present some general considerations of the alignment limit
in the Higgs sector that can be applied broadly to any Higgs
sector made up of two doublets and one singlet. Similar to
the case of the 2HDM, the discussion is most transparent
when one adopts the Higgs basis [35,36], in which only the
neutral component of one of the two doublet scalars
acquires a nonzero VEV.1

In the paradigm of spontaneous electroweak symmetry
breaking, a tree-level scalar coupling to massive electro-
weak gauge bosons is directly proportional to the strength
of the VEV residing in any scalar with nontrivial SUð2ÞL ×
Uð1ÞY quantum numbers. Thus, in the Higgs basis, if the
scalar doublet Higgs field with the nonzero VEV coincides
with one of the scalar mass eigenstates (the so-called
alignment limit), then this state couples to W and Z bosons
with full SM strength and is the natural candidate to be the
SM-like 125 GeV Higgs boson. Nonzero couplings of the
other mass eigenstates to the massive gauge bosons arise
only away from the alignment limit.
In the Higgs basis, we define the hypercharge-one

doublet fields H1 and H2 such that the VEVs of the
corresponding neutral components are given by

hH0
1i ¼

vffiffiffi
2

p ; hH0
2i ¼ 0; ð1Þ

where v≃ 246 GeV. The singlet scalar field S also
possesses a nonzero VEV,

hSi≡ vs: ð2Þ

We shall make the simplifying assumption that the scalar
potential preserves CP, which is not spontaneously broken
in the vacuum. Thus, the phases of the Higgs fields can be

1Here, we are implicitly assuming that no charge-breaking
minima exist; that is, all charged scalar VEVs are zero. As shown
in Ref. [37], the condition for a local charge-conserving mini-
mum in the NMSSM is equivalent to the requirement that the
physical charged Higgs bosons of the model have positive
squared masses.
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chosen such that vs is real. We then define the following
neutral scalar fields:

HSM ≡ ffiffiffi
2

p
ReH0

1 − v;

HNSM ≡ ffiffiffi
2

p
ReH0

2;

HS ≡ ffiffiffi
2

p
ðReS − vsÞ; ð3Þ

ASM ≡ ffiffiffi
2

p
ImH0

1;

ANSM ≡ ffiffiffi
2

p
ImH0

2;

AS ≡ ffiffiffi
2

p
ImS; ð4Þ

where ASM is the Goldstone field that is absorbed by the Z
and provides its longitudinal degree of freedom. Under the
assumption of CP conservation, the scalar fields HSM,
HNSM and HS mix to yield three neutral CP-even scalar
mass eigenstates of the following real symmetric squared-
mass matrix:

M2
S ¼

0
BB@

M2
11 M2

12 M2
13

M2
12 M2

22 M2
23

M2
13 M2

23 M2
33

1
CCA: ð5Þ

The exact alignment limit is realized when the following
two conditions are satisfied:

M2
12 ¼ 0; M2

13 ¼ 0: ð6Þ

In this case, HSM is a CP-even mass-eigenstate scalar with
squared mass M2

11, and its couplings to massive gauge
bosons and fermions are precisely those of the SM Higgs
boson. In practice, we only need to require that the
observed 125 GeV scalar (henceforth denoted by h) is
SM-like, which implies that the alignment limit is approx-
imately realized. In this case, Eq. (6) is replaced by the
following conditions:

M2
12 ≪ Oðv2Þ; M2

13 ≪ Oðv2Þ; ð7Þ

which imply that

m2
h ≃M2

11 ¼ ð125 GeVÞ2: ð8Þ

Corrections to Eq. (8) appear only at second order in the
perturbative expansion and thus are proportional to the
squares of M2

12 or M2
13, respectively.

We shall denote the CP-even Higgs mass-eigenstate
fields by h, H, and hS, where h is identified with the
observed SM-like Higgs boson, H is a dominantly doublet
scalar field and hS is a dominantly singlet scalar field.2

The mass-eigenstate fields fh;H; hSg are related to
fHSM; HNSM; HSg by a real orthogonal matrix R:0

B@
h

H

hS

1
CA ¼ R

0
B@

HSM

HNSM

HS

1
CA; ð9Þ

where3

R ¼ R0
23R13R12 ¼

0
B@

1 0 0

0 −c23 −s23
0 −s23 c23

1
CA
0
B@

c13 0 s13
0 1 0

−s13 0 c13

1
CA
0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA

¼

0
B@

c13c12 c13s12 s13
c23s12 þ c12s13s23 −c12c23 þ s12s13s23 −c13s23
−c12c23s13 þ s12s23 −c23s12s13 − c12s23 c13c23

1
CA; ð10Þ

where cij ≡ cos θij and sij ≡ sin θij. The mixing angles θij
are defined modulo π. It is convenient to choose jθijj ≤ 1

2
π,

in which case cij ≥ 0. The mixing angles θij are determined
by the diagonalization equation

RM2
SR

T ¼ diagðm2
h; m

2
H;m

2
hS
Þ: ð11Þ

We can use Eqs. (10) and (11) to obtain exact expressions
for the mixing angles in terms of m2

h and the elements of
M2

S as follows. Multiply Eq. (11) on the left by RT and
consider the first column of the resulting matrix equation.

This yields three equations, which can be rearranged into
the following form:

xM2
12 þ yM2

13 ¼ m2
h −M2

11; ð12Þ

xM2
23 þM2

13 ¼ yðm2
h −M2

33Þ; ð13Þ

2The special case where the mass eigenstate is evenly split by
the doublet and the singlet fields constitutes a region of parameter
space of measure zero and will be ignored in this work.

3R0
23 is an improper rotation matrix, resulting in detR ¼ −1.

The reason for this choice is addressed below.
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yM2
23 þM2

12 ¼ xðm2
h −M2

22Þ; ð14Þ

where x≡ s12=c12 and y≡ s13=ðc12c13Þ and correspond to
the ratios of the NSM and S components to the SM
component of h, respectively. Eliminating y from Eqs. (13)
and (14) yields an expression for x. To obtain the corre-
sponding expression for y, it is more convenient to return to
Eqs. (13) and (14) and eliminate x. The resulting expres-
sions are

x≡ s12
c12

¼ M2
13M

2
23 −M2

12ðM2
33 −m2

hÞ
ðM2

22 −m2
hÞðM2

33 −m2
hÞ −M4

23

; ð15Þ

y≡ s13
c12c13

¼ M2
12M

2
23 −M2

13ðM2
22 −m2

hÞ
ðM2

22 −m2
hÞðM2

33 −m2
hÞ −M4

23

; ð16Þ

which are equivalent to Eqs. (B2) and (B3) of Appendix B.
Inserting the above results for x and y back into Eq. (12)
then yields a cubic polynomial equation for m2

h,
which we recognize as the characteristic equation obtained
by solving the eigenvalue problem for M2

S. The approxi-
mate alignment conditions given in Eq. (7) imply
that js12j ≪ 1 and js13j ≪ 1, in which case one can
approximate m2

h ≃M2
11 in Eqs. (15) and (16) to very

good accuracy.
Likewise, repeating the above exercise for H, we can

obtain the ratio of the S component to the NSM component
of H [cf. Eq. (B5)]:

c13s23
c12c23 − s12s13s23

¼ M2
23ðM2

11 −m2
HÞ −M2

12M
2
13

M4
23 þ ðM2

11 −m2
HÞðm2

H −M2
33Þ

:

ð17Þ

In the exact alignment limit where M2
12 ¼ M2

13 ¼ 0 (and
hence s12 ¼ s13 ¼ 0), and when M2

23 ≪ m2
H, Eq. (17)

reduces to

s23
c23

¼ M2
23

m2
H −M2

33

: ð18Þ

Our choice of detR ¼ −1 in Eq. (9) requires an
explanation. In the limit where there is no mixing of HS

with the Higgs doublet fields HSM and HNSM, we have
s13 ¼ s23 ¼ 0 (and c13 ¼ c23 ¼ 1 by convention), which
yields4

h ¼ c12HSM þ s12HNSM;

H ¼ s12HSM − c12HNSM: ð19Þ

The transformation from fHSM; HNSMg to fh;Hg given in
Eq. (19) employs a 2 × 2 orthogonal matrix of determinant
−1. Indeed, in the standard conventions of the 2HDM
literature (see Refs. [38,39] for reviews), we identify c12 ¼
sinðβ − αÞ and s12 ¼ cosðβ − αÞ.
We next turn to the Higgs couplings to vector bosons and

fermions. The interaction of a neutral Higgs field with a
pair of massive gauge bosons VV ¼ WþW− or ZZ arises
from scalar field kinetic energy terms after replacing an
ordinary derivative with a covariant derivative when acting
on the electroweak doublet scalars. After spontaneous
symmetry breaking, only the interaction term HSMVV is
generated.5 Using Eq. (9),

HSM ¼ R11hþR21H þR31hS; ð20Þ
which then yields the following couplings normalized to
the corresponding SM values:

ghVV ¼ R11 ¼ c13c12; ð21Þ

gHVV ¼ R21 ¼ c23s12 þ c12s13s23; ð22Þ

ghSVV ¼ R31 ¼ −c12c23s13 þ s12s23: ð23Þ

Note that in the limit where there is no mixing of HS

with the Higgs doublet fields HSM and HNSM, we recover
the standard 2HDM expressions ghVV ¼ sinðβ − αÞ and
gHVV ¼ cosðβ − αÞ.
For the Higgs interactions with the fermions, we employ

the so-called type-II Higgs-fermion Yukawa couplings [40]
as mandated by the holomorphic superpotential [41,42],6

−LYuk ¼ ϵij½hbbRHi
dQ

j
L þ httRQi

LH
j
u� þ H:c:; ð24Þ

where QL ¼ ðu; dÞ. The scalar doublet fields Hd and Hu
have hypercharges −1 and þ1, respectively, and define the
supersymmetry (SUSY) basis. In the SUSY basis, the
corresponding neutral VEVs are denoted by7

hH0
di≡ vdffiffiffi

2
p ; hH0

ui≡ vuffiffiffi
2

p ; ð25Þ

where v2 ≡ jvdj2 þ jvuj2 ¼ ð246 GeVÞ2 is fixed by the
relation mW ≡ 1

2
gv. Without loss of generality, the phases

of the Higgs fields can be chosen such that both vu and vd
are non-negative. The ratio of the VEVs defines the
parameter

4In the original 2HDM literature, the CP-even Higgs mixing
angle was defined by a transformation that rotated fHSM; HNSMg
into fH; hg. With this ordering of the mass eigenstates, the
determinant of the corresponding transformation matrix is þ1.

5In the Higgs basis there are no HNSMVV and HSVV
interactions since hH0

2i ¼ 0 and HS is an electroweak singlet.
6Here, we neglect the full generation structure of the Yukawa

couplings and focus on the couplings of the Higgs bosons to the
third-generation quarks.

7Here, we deviate from the conventions of Ref. [11], where all
VEVs are defined without the

ffiffiffi
2

p
factor. In this latter convention

(not used in this paper), v ¼ 174 GeV.
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tan β≡ vu
vd

; ð26Þ

where the angle β represents the orientation of the SUSY
basis with respect to the Higgs basis. To relate the doublet
fields Hd and Hu to the hypercharge-one, doublet Higgs
basis fields H1 and H2 defined above, we first define two
hypercharge-one, doublet scalar fieldsΦd and Φu following
the notation of [42]:

Φj
d ≡ ϵijH�i

d ; Φj
u ¼ Hj

u: ð27Þ
Then, the Higgs basis fields are defined by

H1 ¼
�
Hþ

1

H0
1

�
≡ vdΦd þ vuΦu

v
;

H2 ¼
�
Hþ

2

H0
2

�
≡ −vuΦd þ vdΦu

v
: ð28Þ

In terms of the Higgs basis fields, the neutral CP-even
Higgs interactions given in Eq. (24) can be rewritten as

LYuk ¼
mt

v
tLtRðHSM þ cot βHNSMÞ

þmb

v
bLbRðHSM − tan βHNSMÞ þ H:c:; ð29Þ

after identifying ht ¼
ffiffiffi
2

p
mt=vu and hb ¼

ffiffiffi
2

p
mb=vd.

Using Eq. (9),

HNSM ¼ R12hþR22H þR32hS; ð30Þ
along with Eq. (20), we can rewrite Eq. (29) as

LYuk¼
mt

v
tLtRfðR11þR12 cotβÞhþðR21þR22 cotβÞH

þðR31þR32 cotβÞhSg
þmb

v
bLbRfðR11−R12 tanβÞh

þðR21−R22 tanβÞHþðR31−R32 tanβÞhSg:
ð31Þ

In the limit where there is no mixing of HS with the
Higgs doublet fields HSM and HNSM, we have
R11 ¼ −R22 ¼ sinðβ − αÞ, R12 ¼ R21 ¼ cosðβ − αÞ,
R33 ¼ 1, and all other matrix elements of R vanish.
Inserting these values above yields the standard 2HDM
type-II Yukawa couplings of the neutral CP-even Higgs
bosons.
Current experimental data on measurements and

searches in the WW and ZZ channels already place strong
constraints on the entries of the squared-mass matrix given
in Eq. (5). In addition, under the assumption of type-II
Yukawa couplings, the Higgs data in the fermionic chan-
nels will also yield additional constraints.

It is convenient to rewrite the rotation matrixR [defined
in Eq. (10)] as0

B@
h

H

hS

1
CA ¼

0
B@

κhSM κhNSM κhS
κHSM κHNSM κHS

κhSSM κhSNSM κhSS

1
CA
0
B@

HSM

HNSM

HS

1
CA: ð32Þ

Explicit expressions for the entries of the mixing matrix of
Eq. (32) are given in Appendix B, following the procedure
used to derive Eqs. (15) and (16).
On the one hand, the non-SMcomponents of the 125GeV

Higgs will be constrained by the LHC measurements of the
properties of the 125GeVHiggs boson. On the other hand, a
small, nonzero component inHSM of the non-SM-likeHiggs
bosons induces a small coupling toW and Z bosons, which
can be constrained by searches for exotic resonances in the
WW and ZZ channels. In the notation of Eq. (32), the
couplings of the threeCP-even Higgs statesϕ ¼ fh;H; hSg
to the gauge bosons VV [cf. Eqs. (21)–(23)] and the up- and
down-type fermions [cf. Eq. (31)], normalized to those of the
SM Higgs boson, are given by

gϕVV ¼ κϕSM; ð33Þ
gϕtt ¼ κϕSM þ κϕNSM cot β; ð34Þ
gϕbb ¼ κϕSM − κϕNSM tan β: ð35Þ

These couplings may be used to obtain the production cross
section, such as in the gluon fusion channel, of these states,
which is mostly governed by gϕtt, as well as the branching
ratios, under the assumption that the decay into nonstandard
particles is suppressed. Although a more detailed study of
the Higgs phenomenology will be presented below, it is
useful to obtain first an understanding of the bounds on these
components based on current Higgs measurements as well
as searches for exotic Higgs resonances.
In the left panel of Fig. 1 we show the constraints on

κhNSM and κhS for the 125 GeV Higgs boson h, derived from
the LHC run 1 measurements on its production cross
section and branching ratios. Here we have assumed that
the decay branching fractions into bottom quarks and
massive vector boson cannot deviate by more than 30%
from their SM values. In anticipation of our focus on the
NMSSM, we concentrate on small values of tan β. In the
right panel of Fig. 1, we consider the constraints on κH=hS

SM
and κH=hS

NSM for the non-SM-like scalars from resonance
searches in the WW and ZZ channels [43], assuming
production from gluon fusion processes.
First note that the singlet component of the observed

125 GeV scalar, which is only constrained by its unitarity
relationship with the SM and NSM components, is allowed
to be quite large. However, the NSM component is
restricted to be small, except in the narrow region of
parameter space where the ghbb coupling is approximately
equal in magnitude but with opposite sign as the SM
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bottom Yukawa [44]. This can only occur far away from
alignment and we shall not explore this region.
On the other hand, the search for exotic Higgs reso-

nances puts strong constraints on the value of κH=hS
SM . These

constraints are satisfied when κH=hS
SM is very small, so that

the decay into WW=ZZ is suppressed, or when the linear
combination of κH=hS

SM and κH=hS
NSM is such that the coupling to

top quarks in Eq. (34) is small, resulting in a small
production rate in the gluon fusion channel.

B. The Z3-invariant NMSSM

In this paper, we shall analyze the NMSSM under the
assumption that there are no mass parameters in the
superpotential, which can be ensured by imposing a Z3

symmetry under which all chiral superfields are trans-
formed by a phase e2πi=3. The superpotential then must
contain only cubic combinations of superfields. The coef-
ficients of the possible cubic terms include the usual matrix

Yukawa couplings hd, hu and he, the coupling λ of the
singlet to the doublet Higgs superfields, and the singlet
Higgs superfield self-coupling parameter κ:

W ¼ λŜĤu · Ĥd þ
κ

3
Ŝ3 þ huQ̂ · ĤuÛ

c
R þ hdĤd · Q̂D̂c

R

þ hlĤd · L̂Ê
c
R; ð36Þ

where we are following the notation for superfields given in
Ref. [11]. In particular, we employ the dot product notation
for the singlet combination of two SU(2) doublets. For
example,

Ĥu · Ĥd ≡ ϵijĤ
i
uĤ

j
d ¼ Ĥþ

u Ĥ
−
d − Ĥ0

uĤ
0
d: ð37Þ

All Higgs mass parameters are associated with soft
supersymmetry breaking terms appearing in the scalar
potential,

Vsoft ¼ m2
SS

†Sþm2
Hu
H†

uHu þm2
Hd
H†

dHd þ
�
λAλSHu ·Hd þ

1

3
κAκS3 þ H:c:

�
þm2

QQ
†Qþm2

UU
c†
R Uc

R þm2
DD

c†
R Dc

R þM2
LL

†Lþm2
EE

c†
R Ec

R

þ ðhuAuQ ·HuUc
R þ hdAdHd ·QDc

R þ hlAlHd · LEc
R þ H:c:Þ; ð38Þ

where the scalar component of the corresponding
superfield is indicated by the same symbol but without
the hat. For completeness, we also include the soft
supersymmetry breaking terms that are associated with
the squark fields (where generation labels are suppressed).
The Higgs scalar potential receives contributions from

(i) soft supersymmetry breaking terms in the scalar potential

given in Eq. (38), (ii) from the supersymmetry-conservingD
terms, which depend quadratically on the weak gauge
couplings, and (iii) from the supersymmetry-conserving F
terms associatedwith the scalar components of the derivatives
of the superpotential with respect to the Higgs, quark and
lepton superfields. Explicitly, the supersymmetry-conserving
contributions to the Higgs scalar potential are given by

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

S
h125

N
SMh1
25

tan 2, bb 1 0.3, VV 1 0.3

(a)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

SM

N
SM

tan 2, VV 0.12 0.06, m 200 GeV

(b)

FIG. 1. In the left panel we show the constraints on the possible singlet and non-SM doublet component of the 125 GeV state derived
from precision measurements on its production cross section and branching ratios. In the right panel we show the constraints on the
SM and non-SM doublet component of a Higgs state coming from the searches for Higgs bosons decaying intoW pairs, away from the
SM Higgs mass values.
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VSUSY ¼ 1

8
ðg2 þ g02ÞðH†

uHu −H†
dHdÞ2

þ 1

2
g2jH†

dHuj2 þ jλj2jHu ·Hdj2

þ jλj2S†SðH†
uHu þH†

dHdÞ þ jκj2ðS†SÞ2
þ ðκ�λS�2Hu ·Hd þ H:c:Þ: ð39Þ

In the MSSM, the quartic terms of the Higgs scalar
potential are proportional to gauge couplings. As a result,
the tree-level mass of the observed SM-like Higgs boson
can be no larger than mZ. To obtain the observed Higgs
mass of 125 GeV, significant radiative loop corrections
(dominated by loops of top quarks and top squarks) must be
present. A novel feature of the NMSSM is the appearance
of tree-level contributions to the Higgs doublet quartic
couplings that do not depend on the gauge couplings. The
new quartic couplings in VSUSY play a very important role
in the Higgs phenomenology. Moreover, they provide a
new tree-level source for the mass of the SM-like Higgs
boson such that the observed 125 GeV mass can be
achieved without the need of large radiative corrections.
The structure of the scalar potential of the NMSSM allows
for the alignment of one of the mass eigenstates of the
CP-even Higgs bosons with the Higgs basis field H1

(which possesses the full Standard Model VEV), while
at the same time yielding a sizable tree-level contribution to
the observed Higgs mass naturally, without resorting to
large radiative corrections.
To simplify the analysis, we henceforth assume that the

Higgs scalar potential and vacuum are CP conserving. That
is, given the Higgs potential

V ¼ VSUSY þ Vð1Þ
soft; ð40Þ

where Vð1Þ
soft is the first line of Eq. (38), we assume that all

the parameters of V can be chosen to be real. The CP
conservation of the vacuum can be achieved by assuming
that the product λκ is real and positive, as shown in [37].
Minimizing the Higgs potential, the neutral Higgs fields

acquire VEVs denoted by Eqs. (2) and (25). The nonzero
singlet VEV vs yields effective μ and B parameters:

μ≡ λvs; B≡ Aλ þ κvs: ð41Þ

Conditions for the minimization of the Higgs potential
allow one to express the quadratic mass parameters m2

S,
m2

Hu
and m2

Hd
in terms of the VEVs vu, vd, vs, the A

parameters Aλ and Aκ, and the dimensionless couplings that
appear in the Higgs potential. Using Eq. (41),

m2
Hd

¼ μB
vu
vd

− μ2 −
1

2
λ2v2u þ

1

8
ðg2 þ g02Þðv2u − v2dÞ; ð42Þ

m2
Hu

¼ μB
vd
vu

− μ2 −
1

2
λ2v2d þ

1

8
ðg2 þ g02Þðv2d − v2uÞ; ð43Þ

m2
S ¼

1

2
μB

vdvu
v2s

þ 1

2
λκvdvu −

1

2
λ2ðv2d þ v2uÞ − κAκvs

− 2κ2v2s : ð44Þ

The Higgs mass spectrum can now be determined from
Eq. (40) by expanding the Higgs fields about their VEVs.
Eliminating the Higgs squared-mass parameters using
Eqs. (42)–(44), we obtain squared-mass matrices for the
CP-even and the CP-odd scalars, respectively.
To analyze the alignment conditions of the NMSSM

Higgs sector, we compute the squared-mass matrices of the
CP-even and theCP-odd neutral Higgs bosons in the Higgs
basis. It is convenient to introduce the squared-mass
parameter M2

A, which corresponds to the squared mass
of the CP-odd scalar in the MSSM:

M2
A ≡ μB

sβcβ
; ð45Þ

where sβ ≡ sin β ¼ vu=v and cβ ≡ cos β ¼ vd=v. In the
fHSM; HNSM; HSg basis defined in Eq. (3), the tree-level
CP-even symmetric squared-mass matrix is given by

M2
S ¼

0
BBBBB@

M2
Zc

2
2β þ 1

2
λ2v2 −M2

Zs2βc2β
ffiffiffi
2

p
λvμ
�
1 − M2

A
4μ2

s22β −
κ
2λ s2β

�
M2

A þM2
Zs

2
2β − 1ffiffi

2
p λvμc2β

�
M2

A
2μ2

s2β þ κ
λ

�
1
4
λ2v2s2β

�
M2

A
2μ2

s2β − κ
λ

�
þ κμ

λ

�
Aκ þ 4κμ

λ

�

1
CCCCCA; ð46Þ

where we have introduced the squared-mass parameter

M2
Z ≡m2

Z −
1

2
λ2v2 ð47Þ

and we have employed the shorthand notation c2β ¼ cos 2β and s2β ≡ sin 2β. The matrix elements below the diagonal have
been omitted since their values are fixed by the symmetric property of M2

S.
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Including the leading one-loop top squark contributions, the elements of the CP-even Higgs squared-mass matrix M2
S

involving the Higgs doublet components are8

M2
11 ¼ M2

Zc
2
2β þ

1

2
λ2v2 þ 3v2s4βh

4
t

8π2

�
ln

�
M2

S

m2
t

�
þ X2

t

M2
S

�
1 −

X2
t

12M2
S

��
; ð48Þ

M2
22 ¼ M2

A þ s22β

	
M2

Z þ 3v2h4t
32π2

�
ln

�
M2

S

m2
t

�
þ XtYt

M2
S

�
1 −

XtYt

12M2
S

��

; ð49Þ

M2
12 ¼ −s2β

	
M2

Zc2β −
3v2s2βh

4
t

16π2

�
ln
�
M2

S

m2
t

�
þ XtðXt þ YtÞ

2M2
S

−
X3
t Yt

12M4
S

�

; ð50Þ

whereMS is the geometric mean of the two top squark mass
eigenstates Xt ¼ At − μ cot β and Yt ¼ At þ μ tan β.
In the CP-odd scalar sector, since we identify ASM as the

massless neutral Goldstone boson, the physical CP-odd
Higgs bosons are identified by diagonalizing a 2 × 2
symmetric matrix. In the fANSM; ASg basis defined in
Eq. (4), the tree-level CP-odd symmetric squared-mass
matrix is given by

M2
P¼

0
BB@ M2

A
1ffiffi
2

p λv
�
M2

A
2μ s2β−

3κμ
λ

�
1ffiffi
2

p λv
�
M2

A
2μ s2β−

3κμ
λ

�
1
2
λ2v2s2β

�
M2

A
4μ2

s2βþ3κ
2λ

�
−3κAκμ

λ

1
CCA:

ð51Þ

We denote the CP-odd Higgs mass-eigenstate fields by A
and AS, where A is the dominantly doublet CP-odd scalar
field and AS is the dominantly singlet CP-odd scalar field.
For completeness, we record the mass of the charged

Higgs boson:

m2
H� ¼ M2

A þm2
W −

1

2
λ2v2; ð52Þ

in terms of the squared-mass parameter M2
A [cf. Eq. (45)].

Exact alignment can be achieved if the following two
conditions are fulfilled:

M2
12 ¼

1

tan β
½M2

11 − c2βm2
Z − λ2v2s2β�

þ 3v2s2βh
4
t μXt

16π2M2
S

�
1 −

X2
t

6M2
S

�
¼ 0; ð53Þ

M2
13 ¼

ffiffiffi
2

p
λvμ

�
1 −

M2
As

2
2β

4μ2
−
κs2β
2λ

�
¼ 0; ð54Þ

after noting that Yt − Xt ¼ μ=ðsβcβÞ. In what follows, we
will study under what conditions alignment can occur in
regions of parameter space where no large cancellation is
necessary to achieve the spontaneous breaking of electro-
weak symmetry.
Since jμj2 is the diagonal Higgs squared-mass parameter

at tree level in the absence of supersymmetry breaking, it is
necessary to demand that jμj ≪ MS. Furthermore, the SM-
like Higgs mass in the limit of small mixing is approx-
imately given byM2

11 [cf. Eq. (48)]. The one-loop radiative
top squark corrections toM2

12 exhibited in Eq. (50) that are
not absorbed in the definition of M2

11 are suppressed by
μ=MS (in addition to the usual loop suppression factor), as
shown in Eq. (53), and thus can be neglected (assuming
tan β is not too large) in obtaining the condition of align-
ment. Hence, satisfying Eq. (53) fixes λ, denoted by λalt, as
a function of mh, mZ and tan β:

ðλaltÞ2 ¼ m2
h −m2

Zc2β
v2s2β

: ð55Þ

The above condition may only be fulfilled in a very narrow
band of values of λ ¼ 0.6 − 0.7 over the tan β range of
interest. This is clearly shown in Fig. 2, where the blue
band exhibits the values of λ that lead to alignment as a
function of tan β. It is noteworthy that such values of λ are
compatible with the perturbative consistency of the theory
up to the Planck scale and lead to large tree-level correc-
tions to the Higgs mass for values of tan β of order one.
This is shown by the green band, which depicts the values
of λ necessary to obtain a tree-level Higgs mass mh ¼
125� 3 GeV as a function of tan β.
The separation of the green and blue bands in Fig. 2 for a

given value of tan β is an indication of the required radiative
corrections necessary to achieve a Higgs mass consistent
with observations. In particular, for a given Higgs mass, the
value of the top squark loop corrections Δ~t necessary to lift
M2

11 to m2
h, obtained from Eqs. (48) and (55), is given by

Δ~t ¼ −c2βðm2
h −m2

ZÞ: ð56Þ
8For notational convenience, the subscript S will be dropped

when referring to the individual elements of the CP-even Higgs
squared-mass matrix M2

S.
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In the right panel of Fig. 2 we show the necessary values of
MS as a function of tan β to obtain the required radiative
corrections for mh ¼ 125 GeV, for two different values of
the top squark mass mixing parameter, Xt ¼ 0 and
Xt ¼ MS. We see that for moderate values of Xt the values
of MS relevant for the radiative corrections to the Higgs
mass parameter remain below 1 TeV for values of tan β
below about 3. In the following we shall concentrate on this
interesting region, which is complementary to the one
preferred in the MSSM.
It should be noted that there are previous studies on the

relation between fine-tunings and a SM-like Higgs boson in
the NMSSM [45,46]. These works focus on the regime
where λ is large and mtree

h ¼ 125 GeV, i.e. the green band
region in Fig. 2(a), and conclude that a SM-like 125 GeV
Higgs requires decoupling of supersymmetric particles,
which in turn leads to more fine-tuning in the Higgs mass.
In contrast, in the present work we allow for moderate
contributions from the top squark loops to raise the Higgs
mass to keep λ ∼ 0.7, which yields a SM-like Higgs boson
via alignment without decoupling. The top squark mass
parameters do not need to be large, as can be seen in
Fig. 2(b), giving rise to natural electroweak symmetry
breaking.
The previous discussion assumed implicitly that the

singlets are either decoupled or not significantly mixed
with the CP-even doublet scalars, which is why we only
concentrated on the behavior of the mass matrix element
M2

12. If we now consider the case of a light singlet state,
then the second condition of alignment, namely small
mixing between the singlet and the SM-like CP-even
Higgs boson, requires M2

13 ≃ 0, as indicated in
Eq. (54). This yields the following condition:

M2
As

2
2β

4μ2
þ κs2β

2λ
¼ 1: ð57Þ

We shall take λ≃ 0.65, as required by the alignment
condition given in Eq. (55), and κ ≤ 1

2
λ, where the latter

is a consequence of the perturbative consistency of the
theory up to the Planck scale, as shown in the right panel of
Fig. 3. It follows that in order to satisfy Eq. (57) the mass
parameter MA must be approximately correlated with the
parameter μ:

MA ∼
2jμj
s2β

: ð58Þ

In the parameter regime where 100≲ jμj≲ 300 GeV (so
that no tree-level fine-tuning is necessary to achieve
electroweak symmetry breaking) and 1≲ tan β ≲ 3, we
see that MA is somewhat larger than jμj. This is shown in
the left panel of Fig. 3, in which the values ofMA leading to
the cancellation of the mixing with the singlet CP-even
Higgs state is shown in the jμj − tan β plane. Here, we have
chosen a value of κ ≃ 1

2
λ, which as mentioned above is

about the maximal value of κ that could be obtained for
tan β ≳ 2 if the theory is to remain perturbative up to the
Planck scale.
The condition M2

13 ¼ 0 has implications for the value
of M2

23, which governs the mixing between the singlet
CP-even state and the nonstandard CP-even component of
the doublet states. More precisely, if M2

13 vanishes, as
implied by the condition of alignment given in Eq. (54),
then

M2
23 ¼ −

ffiffiffi
2

p
λvμ

c2β
s2β

; ð59Þ
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FIG. 2. Left panel: The blue shaded band displays the values of λ as a function of tan β, necessary for alignment for
mh ¼ 125� 3 GeV. Also shown in the figure as a green band are values of λ that lead to a tree-level Higgs mass of
125� 3 GeV. Right panel: Values of MS necessary to obtain a 125 GeV mass for values of λ fixed by the alignment condition
and top squark mixing parameter Xt¼0 and Xt¼MS. The dominant two-loop corrections are included.
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leading to a nonvanishing mixing effect between the light
singlet and the heaviest CP-even Higgs boson when
tan β ≠ 1. For the range of values of the parameters
employed in Fig. 3, the ratio M2

23=M
2
A ≪ 1.

In practice, for λ≃ 0.65, the inequality M2
12 ≪ M2

13

holds unless the mass parameters MA and μ are tuned to
obtain almost exact alignment. Hence, based on the
discussion above, we shall henceforth assume that the
following hierarchy among the elements of the CP-even
Higgs squared-mass matrix is fulfilled close to the align-
ment limit:

M2
12 ≪ M2

13 ≪ M2
23;M

2
11;M

2
33 ≪ M2

22: ð60Þ

Given the above observations, it is not difficult to see that
all mixing angles in the CP-even Higgs mixing matrix are
small. Therefore, the mass eigenstate h, whose predomi-
nant component is HSM, is SM-like, whereas the predomi-
nant components of the other two eigenstates H and hS are
HNSM and HS, respectively. In particular,

m2
h ≃M2

11; m2
H ≃M2

22; m2
hS
≃M2

33; ð61Þ

and the hierarchy of masses

m2
H ≫ m2

h; m
2
hS

ð62Þ

is fulfilled in the region of parameter space under consid-
eration. Using Eqs. (15)–(17) and ignoring terms of order
ϵ1 ≡M2

12=M
2
22 and ϵ2 ≡M2

13M
2
23=M

4
22, we derive the

following approximate relationship between the interaction
and mass eigenstates:

0
B@

h

H

hS

1
CA≃

0
B@

1 −ηη0 η0

OðϵÞ −1 −η
−η0 −η 1

1
CA
0
B@

HSM

HNSM

HS

1
CA; ð63Þ

where the elements of the CP-even Higgs mixing matrix
are expressed in terms of

−κHS ¼ η ¼ M2
23

m2
H

; ð64Þ

κhS ¼ η0 ¼ M2
13

m2
h −M2

33

; ð65Þ

and OðϵÞ denotes a linear combination of terms of order ϵ1
and ϵ2, respectively. In Eq. (63), we have kept all terms in
the mixing matrix up to quadratic in the small quantities η
and η0. Given the assumed hierarchy of Eq. (60), the OðϵÞ
terms are at best of the same order as quantities that are
cubic in η and η0 and hence are truly negligible. This then
tells us that the following approximate relationship exists
between the mixing angles defined in Eq. (10):

s12 ≃ −s13s23; ð66Þ

and the alignment limit in the hierarchy of Eq. (60) is
primarily governed by two small mixing angles.
Equation (63) provides a useful guide for understanding

the Higgs phenomenology in our numerical study. In
particular, there are correlations among the different matrix
elements. For example,

κhS ≃ −κhSSM; ð67Þ

κhNSM ≃ κhSκ
H
S ; ð68Þ
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FIG. 3. Left panel: Values ofMA leading to a cancellation of the mixing of the singlet with the SM-like Higgs boson in the Higgs basis,
shown in the jμj- tan β plane. The values of λ were fixed so that the alignment condition among the doublet components is fulfilled.
Values of κ ¼ 1

2
λ close to the edge of the perturbativity consistency region were selected. Right panel: Maximum values of κ consistent

with perturbativity as a function of tan β for λ ¼ 0.65.
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κHS ≃ κhSNSM: ð69Þ

In light of Eqs. (58) and (59), it follows that [cf. Eqs. (64)
and (65)]

κHS ≃ κhSNSM ≃ λv

2
ffiffiffi
2

p
μ
c2βs2β: ð70Þ

We have previously argued that values of λ≃ 0.6–0.7 are
preferred from both the perspective of Higgs phenomenol-
ogy as well as perturbative consistency of the NMSSM up
to the Planck scale. In addition we note that the range of μ is
rather restricted: jμj > 100 GeV, in order to fulfill the LEP
chargino bounds; however, μ cannot be too large in order to
preserve a natural explanation for electroweak symmetry
breaking. Hence, we can see from Eq. (70) that if for
example jμj≲ 200 GeV, then

0.15≲ jκhSNSMj≲ 0.3; ð71Þ

which implies that all mixing angles are small if the
conditions of alignment are imposed. For the small values
of κ consistent with a perturbative extension of the theory
up to the Planck scale (see Fig. 3), the above estimate
continues to hold even after the κ-induced effects as well as
the corrections associated with the hS mass are included.

C. Spectrum of the Higgs sector near
the alignment limit

Close to the alignment limit, the mass parameter
MA ≃ 2jμj=s2β. Since jμj must be larger than about
100 GeV in order to fulfill the current LEP constraints
on the chargino masses, it follows that for tan β ≥ 2, the
CP-odd Higgs mass must be larger than about 250 GeV.
We conclude that M2

A ≫ m2
h. In light of this observation,

the spectrum of neutral Higgs bosons near the alignment
limit may be approximated by9

(i) a SM-like CP-even Higgs boson state of mass
m2

h ¼ ð125 GeVÞ2 ≃M2
11 ≪ M2

A;
(ii) a heavy CP-even Higgs boson state H of mass

mH ≃MA;
(iii) a heavy CP-odd Higgs boson state A of mass

mA ≃MA;
(iv) light, mostly singletlike CP-even and CP-odd Higgs

boson states with masses10

m2
hS
≃ κμ

λ

�
Aκ þ

4κμ

λ

�
þ λ2v2M2

A

8μ2
s42β

−
1

4
v2κλð3 − 2s22βÞs2β −

1

2
v2κ2

μ2

M2
A
c22β; ð72Þ

m2
AS

≃ 3κ

�
3

4
λv2s2β − μ

�
Aκ

λ
þ 3v2κμ

2M2
A

��
: ð73Þ

It is interesting to note that the singletlike Higgs masses
depend on the parameter Aκ which is not restricted by the
conditions of alignment. As such, these masses are not
correlated with the other Higgs boson masses. For positive
values of μ and κ, larger values of Aκ lead to an increase in
m2

hS
and a decrease in m2

AS
. Therefore, for fixed values of

the other parameters, the value of Aκ is restricted by the
requirement of non-negativem2

hS
andm2

AS
. In particular, due

to the anticorrelation in the behavior of m2
hS

and m2
AS

with
Aκ, the maximal possible value ðm2

hS
Þmax is achieved when

m2
AS

¼ 0. Likewise, the maximal value ðm2
AS
Þmax is

achieved when m2
hS

¼ 0. Using Eqs. (72) and (73) to
eliminate Aκ, and making use of Eq. (57) in the alignment
limit to eliminate μ2,

m2
AS

þ 3m2
hS
≃ 3M2

As
2
2β

1 − 1
2
κs2β=λ

�
κ2

λ2
þ λ2v2

2M2
A

�
1 −

κ2

λ2

��
: ð74Þ

In the parameter region of interest, κ ≤ 1
2
λ and s2β is near

1. Close to the alignment limit (where λ≃ 0.65), we have
noted above that m2

A ≃M2
A ≫ 1

2
λ2v2, in which case

ðm2
hS
Þmax ≲ 1

3
m2

A and ðm2
AS
Þmax ≲m2

A. In the left and right
panels of Fig. 4, we display the contours of the singletlike
CP-even Higgs mass in the mA −mAS

plane for κ ≃ 1
2
λalt

and for tan β ¼ 2 and tan β ¼ 3, respectively. Whereas mAS

may become of order mA for low values of tan β (i.e. for
s2β ≃ 1), the singlet CP-even Higgs mass remains below
1
2
mA over most of the parameter space, in agreement

with Eq. (74).

III. NUMERICAL RESULTS OF MASSES
AND MIXING ANGLES

In the previous section, we have performed an analytical
study of the implications of the alignment limit on themasses
andmixing angles of the Higgs mass eigenstates. To obtain a
more accurate picture, we complement the above analysis
with the results obtained from a numerical study, including
all relevant corrections to the CP-even and CP-odd Higgs
squared-mass matrix elements. In our numerical evaluation
we have used the code NMHDecay [47] and the code
Higgsbounds [48] included in NMSSMTools [49]. We keep
parameter points that are consistent with the present con-
straints coming from measurements on properties of the

9Note that mA is the mass of the mostly doublet CP-odd
neutral Higgs boson, whereas MA is the mass parameter defined
in Eq. (45). In this paper we always employ a lowercase m when
referring to the physical mass of a particle. In contrast, an
uppercaseM refers to some quantity with mass dimensions that is
defined in terms of the fundamental model parameters.

10Equations (72) and (73) are obtained in an approximation
that includes the first nontrivial corrections to m2

hS
≃M2

33 and
m2

AS
≃ ðM2

PÞ33 due to the off-diagonal elements of the corre-
sponding squared-mass matrix.

ALIGNMENT LIMIT OF THE NMSSM HIGGS SECTOR PHYSICAL REVIEW D 93, 035013 (2016)

035013-11



125 GeV Higgs boson h, as well as those coming from
searches for the new Higgs bosonsH and hS, which impose
constraints on κϕi similar to those shown in Fig. 1. We do not
impose flavor constraints since they depend on the flavor
structure of the supersymmetry breaking parameters, which
has only a very small impact on Higgs physics. Moreover, in
most of our analysis we have assumed the gaugino mass
parameters to be large by fixing the electroweak gaugino
masses to 500 GeVand the gluino mass to 1.5 TeV. Since the
Higgsinomass parameter is small in our region of interest, the
resulting dark matter relic density due to the lightest super-
symmetric particle (LSP) tends to be smaller than the
observed value, which implies that other particles outside
of the NMSSM (e.g. axions) must contribute significantly to
the dark matter relic density. Alternatively, it is possible to
saturate the observed relic density with the LSP by lowering
the value of the electroweak gaugino masses chosen above.
We have also fixed μ > 0, but we have checked that the
generic behavior discussed in this work does not depend on
the sign of μ, as can be understood analytically from the
expressions given in Sec. II. The implications of lowering the
gaugino masses to obtain the proper relic density will be
briefly discussed below.
In our numerical study, we have chosen λ ¼ 0.65. The top

squark spectrum has been determined to reproduce the
observed Higgs mass, assuming small top squark mixing,
and we have varied all other relevant parameters allowed by
the above constraints. As shown in Fig. 2, for tan β ≥ 2 and
common values of the left- and right-top squark supersym-
metry breaking parameters, the assumption of small top
squarkmixing leads to top squarks that are heavier than about
600 GeVand essentially decouple from Higgs phenomenol-
ogy. For tan β≃ 2, larger values of the top squark mixing
may lead to lighter top squarks, resulting in a variation of the
Higgs production cross section in the gluon fusion channel.
We shall briefly comment on such possible effects below.

As discussed in Sec. II B, a value of λ≃ 0.65 leads to an
approximate cancellation of the mixing between the SM
and non-SM doublet components for all moderate or small
values of tan β and allows a perturbative extension of the
theory up to energy scales of order the Planck scale.
Moreover, close to the alignment limit, the SM-like
Higgs mass receives a significant tree-level contribution,
which reduces the need for large radiative corrections
associated with heavy top squarks, as shown in Fig. 2.
Due to the strong perturbativity constraints shown in Fig. 2,
we focus on the NMSSM parameter regime with tan β ¼ 2,
2.5 and 3, which we henceforth display in blue, red and
yellow, respectively.
The allowed values ofMA and μ are shown in Fig. 5, for

the values of κ ¼ κmax, the maximal values consistent with
the perturbative consistency of the theory up to the Planck
scale (left panel) and for values of κ ¼ 1

4
κmax (right panel).

The solid lines represent the correlation betweenMA and μ
necessary to get alignment at tree level [cf. Eq. (57)]. The
dots represent the allowed values of these parameters as
obtained from NMSSMTools. We find that the present
constraints on the SM-like Higgs properties allow values
of MA and μ that deviate not more than 10% from the
alignment condition specified in Eq. (57).
The correlations obtained in Eqs. (67)–(69) among

the interaction eigenstate components, HSM, HNSM and
HS, of the mass-eigenstate neutral Higgs bosons are clearly
displayed in Figs. 6–8. The right panel of Fig. 6 displays
the correlation between the singlet component of h with the
SM component of the mostly singlet state hS, whereas the
left panel exhibits the correlation between κhNSM with
κhSκ

hS
NSM. We see the correlation given in Eq. (67) is

preserved over most of the parameter space; however,
there are small departures from the correlations exhibited
in Eqs. (67) and (68) due to neglected terms that are higher
order in η and η0.
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FIG. 4. Values of the singlet CP-even Higgs mass mhS for tan β ¼ 2 (left panel) and tan β ¼ 3 (right panel) in the plane of mA vsmAS
,

imposing a SM-like Higgs boson with a mass of 125 GeV (with λ and μ satisfying the alignment conditions and κ ¼ 1
2
λ).
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Similarly, the right panel of Fig. 7 shows the corre-
lation between κhS and κhSNSM, with values of 0.15≲
jκhSj ≲ 0.35, as anticipated in Eq. (71). In the left panel
we show the values of κhSNSM and κhSNSM, which are
proportional to η and η0, respectively. Whereas κhSSM
can become very small in the region of alignment, there
is no strong correlation between these two singlet
components. There is only a weak correlation associated
with the dependence of the singlet production cross
section on the doublet components, which leads to
negative values of κhSSM being somewhat more restricted
than positive ones for μ > 0, as could be anticipated from
the behavior exhibited in Fig. 1.

Due to the specific values of κhSNSM under consideration,
and the correlation between κhNSM and the product of
κhSκ

hS
NSM, a mild correlation appears between the non-SM

components of the SM-like Higgs, which is displayed in the
left panel of Fig. 8. The largest singlet components are
associated with the smallest SM component and hence the
smallest values of the couplings to vector bosons. The
bottom-quark coupling can be visibly suppressed in this
region, but the branching ratios and signal strengths remain
in the allowed region due to the suppression of the vector
bosons coupling and a small enhancement of the up-quark
couplings, as follows from Eqs. (33)–(35). In contrast, as
shown in the right panel of Fig. 8, enhancements of the
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FIG. 6. For the points allowed by LHC constraints in the left panel we plot the correlation between the non-SM doublet component of
the 125 GeV Higgs state with the product of the non-SM doublet component of the mainly singlet state and the singlet component of the
125 GeV Higgs state. In the right panel we plot the correlation between the SM doublet component of the singlet state with the singlet
component of the 125 GeV Higgs state. Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.
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FIG. 5. Values of the mass parameters MA and μ consistent with the current LHC constraints on the SM-like Higgs properties, for
values of κ ¼ κmax, the maximal value of κ leading to perturbative consistency of the theory up to the Planck scale (left panel) and for
κ ¼ 1

4
κmax (right panel). Solid lines represent the alignment condition, Eq. (57), and the colors blue, red and yellow represent values of

tan β ¼ 2, 2.5 and 3, respectively.
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bottom couplings are more restricted due to a suppression
of the h branching ratios to photons and vector bosons and
an additional suppression of the gluon fusion production
cross section associated with smaller top-quark couplings.

IV. HIGGS BOSON PRODUCTION AND DECAY

The study of the properties of the 125 GeV Higgs
boson and their proximity to SM expectations has been
the subject of intensive theoretical and experimental analy-
ses and will remain one of the most important research
topics at the LHC. Close to the alignment limit, and in the
absence of beyond-the-SM light charged or colored
particles, the properties of one of the neutral scalars
(identified with the observed Higgs boson of mass

125 GeV) are nearly identical to those of the SM Higgs
boson. However, as demonstrated in the right panel of
Fig. 8, the current Higgs data allow for variations, of up to
about 30%, of the 125 GeV Higgs boson production and
decay rates with respect to the SM predictions. Such
deviations can be understood as a function of the mixing
of the observed SM-like Higgs boson with additional non-
SM-like Higgs scalars that could be searched for at
the LHC.
In this section, we shall mainly concentrate on the non-

SM-like Higgs boson production and decay rates and their
possible search channels at the LHC. It is noteworthy that,
due to the smallness of κHSM, the couplings of the heavy
Higgs bosons to the up and down quarks are close to the
MSSM decoupling values. In particular, using Eq. (63),
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FIG. 8. For the points allowed by LHC constraints, in the left panel we plot the correlation between the non-SM doublet component
and the singlet component of the 125 GeV Higgs state. In the right panel we plot the square of the couplings of the 125 GeV Higgs state,
normalized to its SM value. Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.

0.2 0.1 0.0 0.1 0.2 0.3
0.35

0.30

0.25

0.20

0.15

SM
hS

N
SM

h S

(a)

0.35 0.30 0.25 0.20 0.15
0.35

0.30

0.25

0.20

0.15

NSM
hS

SH

(b)
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the ratios of their couplings to the SM ones given by
Eqs. (33)–(35) are

gHVV ≃OðϵÞ;

gHtt ≃ −
1

tan β
þOðϵÞ;

gHbb ≃ tan β þOðϵÞ; ð75Þ

where the terms of OðϵÞ ≪ 1 represent a linear combina-
tion of terms of order M2

12=M
2
22 and M2

13M
2
23=M

4
22

[cf. the discussion below Eq. (62)].
Similarly, theCP-odd couplings are given approximately

by their MSSM expressions

gAtt ≃ 1

tan β
;

gAbb ≃ tan β: ð76Þ

Finally, the hS couplings are given by

ghSVV ¼ −η0;

ghStt ¼ −η0 −
η

tan β
;

ghSbb ¼ −η0 þ η tan β: ð77Þ

Considering the typical values of the mixing angles η and
η0, we see that the production cross section of hS via top-
quark-induced gluon fusion is generally at least an order of
magnitude lower than the one for a SM-Higgs boson of the
same mass. Due to the smallness of the bottom Yukawa
couplings and the small values of tan β considered in this
work, the decay branching ratios are mainly determined by
the hS mass and will be of order of the SM ones. Therefore

the present constraint on the signal strength of the pro-
duction of hS decaying to vector bosons, μVV ≲ 0.1 dis-
cussed in Sec. II A is not expected to strongly constrain
this model.
In Sec. II C we discussed the analytical constraints on the

Higgs spectrum that play a crucial role in the phenom-
enology of the non-SM-like Higgs bosons. In Fig. 4 we
showed contours of the singlet CP-even Higgs mass for
different values of MA ≃mA ≃mH and the lightest
CP-odd Higgs mass, which tends to be mostly singlet in
this region of parameter space. In Fig. 9, we exhibit the
correlation between the mass mA ≃mH of the heaviest
CP-odd and -even Higgs bosons (which possess a signifi-
cant doublet component) and the lighter mostly singlet
CP-even Higgs boson mass (left panel), and the anticorre-
lation between the mass of the lightest CP-odd Higgs
boson (which possesses a significant singlet component)
and the mostly singletlike CP-even Higgs boson (right
panel). These numerical result verify the expectations based
on the analytical analysis of Sec. II C. In particular, these
singletlike Higgs boson masses are always smaller than mA
and the relation

mA ≥ 2mhS ð78Þ

is fulfilled. On the other hand, the anticorrelation between
the CP-odd and -even mainly singlet Higgs boson masses
implies that values of mAS

≲ 150 GeV constrain mhS to be
larger than about 120 GeV, while values ofmhS ≲ 120 GeV
imply mAS

≳ 150 GeV.
In general, large values of MA ≃mA ≃mH are allowed,

as in the usual decoupling regime, but in this work we are
mostly interested in having a SM-like Higgs boson for
values of MA ≲ 500 GeV, where the non-SM-like Higgs
bosons are not heavy. Given that we are interested in values
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FIG. 9. Correlation between mH ≃mA and the lightest non-SM-like CP-even Higgs boson mass (left panel) and anticorrelation
between the masses of the lightest non-SM-like CP-even Higgs boson and the lightest, mostly singlet CP-odd Higgs boson (right panel),
for values of κ ¼ κmax. Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.

ALIGNMENT LIMIT OF THE NMSSM HIGGS SECTOR PHYSICAL REVIEW D 93, 035013 (2016)

035013-15



of tan β ∼ 2 and MA ≃ jμj=sβcβ, this leads also to low
values of μ, improving the naturalness of the theory.
Considering the LEP lower bound on jμj, the above relation
also implies MA ≳ 250 GeV. Therefore, the decays

H → hhS; H → hShS and H → hh ð79Þ
are always allowed. However, since the coupling gHhh
approaches zero in the alignment limit [cf. Appendix C],
the first two decay rates are in general more significant than
the decay into pairs of SM-like Higgs bosons. Moreover,
from Table III of Appendix C, it follows that when MA ≃
2jμj=s2β and κ is small,

gHhhS ≃
ffiffiffi
2

p
λμ cot 2β; gHhShS ≃ 4

ffiffiffi
2

p
ηλμ: ð80Þ

Hence, for 0.15≲ η≲ 0.35, these couplings are of the same
order as jμj for 2≲ tan β ≲ 3, which implies that these

decay channels may contribute significantly to the H
decay width.
On the other hand, mixing between the doublet and

singlet states in the CP-odd sector is also dictated by η and
hence nonvanishing. Therefore, the decay channels

H → ASZ and A → hSZ ð81Þ
may become significant. In particular, for values of the
heavy Higgs states below the tt threshold, the decay
branching ratio in these channels may become dominant
at low values of tan β, for which the couplings to down-
quark fermions and charged leptons are small, of the order
of the corresponding SM Yukawa couplings.
Figures 10 and 11 show the branching ratio for the decay

of the heaviest CP-even Higgs boson into lighter bosons.
We observe that these branching ratios are appreciably
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FIG. 10. Branching ratio of the decay of the heaviest CP-even Higgs boson into pairs of identical CP-even Higgs bosons. The left
panel shows the decay into pairs of h and the right panel shows the decay into pairs of hS. Blue, red and yellow represent values of
tan β ¼ 2, 2.5 and 3, respectively.
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FIG. 11. Branching ratios of the decay of the heavy CP-even Higgs boson into a pair of nonidentical lighter CP-even Higgs bosons
H → hhS (left panel) and into the lightest CP-odd Higgs boson and a Z boson (right panel). Blue, red and yellow represent values of
tan β ¼ 2, 2.5 and 3, respectively.
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large for values of the heaviest Higgs boson masses smaller
than 350 GeV, for which the decay into top-quark pairs is
forbidden, and remain significant for larger value of mA,
particularly for the largest values of tan β considered. In
particular, the decay of H into a pair of nonidentical lighter
CP-even Higgs bosons is the most important one. In
Figs. 10 and 11 we differentiate between the cases in
which the lightest CP-even Higgs boson is identified with
the SM-like Higgs boson with mass 125 GeV, represented
by snowflakes, from the case in which the lightest CP-even
Higgs boson is singletlike (hence with mass below
125 GeV), represented by crosses. We clearly see from
Fig. 10 that the decay of H → hh is suppressed, being at
most of order of 10% as a result of the proximity to
alignment.
Similarly, in Figs. 12 and 13 we exhibit the branching

ratios of the decay of the heaviest CP-odd Higgs boson into
the lighter CP-odd and CP-even Higgs bosons and the

branching ratio of its decay into a CP-even Higgs boson
and a Z boson. From Fig. 13 we can see that the branching
ratio into a Z and the SM-like Higgs boson h is always
suppressed. However, the decay of the heavy CP-odd
scalar into a Z and hS is unsuppressed and hence may
serve as a good discovery channel. This possibility will be
addressed later in this section.
As a result of the approximate alignment conditionMA ≃

2jμj=s2β [cf. Eq. (58)], decays of the heavy CP-even and
CP-odd Higgs bosons into pairs of charginos and neutra-
linos are kinematically allowed. In contrast to the case of the
MSSM, where heavy gauginos imply a suppression of
the coupling of the Higgs bosons to Higgsino pairs, in
the NMSSM the coupling λ induces a non-negligible
coupling to charginos via the singlet component of H.
Moreover, the coupling λ and the self-coupling parameter κ
induce new decays in the neutralino sector due to the mixing
of the singlinos and Higgsinos. Indeed, the singlino mass
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FIG. 12. Branching ratio of the decay of the heaviest CP-odd Higgs boson into a pair of nonidentical Higgs bosons consisting of the
lightest CP-odd Higgs boson and one of the two lighter CP-even Higgs bosons, hS (shown in the left panel) or h (shown in the right
panel). Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.
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FIG. 13. Branching ratio of the decay of the heaviest CP-odd Higgs boson into a Z and the lightest CP-even Higgs bosons h (left
panel) and hS (right panel). Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.
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m ~S ≃ 2κ

λ
μ ð82Þ

is constrained to be below the Higgsino mass μ due to the
condition of perturbative consistency up to the Planck scale
(see Fig. 2), implying that the decays

H;A → χ0;�i χ0;∓j ð83Þ

are likely to have sizable rates in the region of parameters
under consideration.
Figure 14 illustrates that the heavy Higgs bosons H and

A have sizable decay branching ratios into charginos and
neutralinos. These branching ratios become more promi-
nent for larger values of tan β and for masses below
350 GeV where the decays into top quarks are suppressed.
For completeness, we present the branching ratio of the

heaviest CP-even and CP-odd Higgs bosons into top
quarks in Fig. 15. As expected, this branching ratio tends

to be significant for masses larger than 350 GeV and
becomes particularly important at low values of tan β, for
which the couplings of the heaviest non-SM-like Higgs
bosons to the top quark are enhanced. In spite of being
close to the alignment limit, this branching ratio is always
significantly lower than 1, due to the decays of the Higgs
bosons to final states consisting of the lighter Higgs bosons
and chargino and/or neutralino pairs, as noted above.
Indeed, apart from the decays into top-quark pairs, whose

observability demands a good top reconstruction method
and is quite challenging [50,51], the heaviest Higgs bosons
exhibit prominent branching ratios into lighter Higgs bosons
(as in the case of generic 2HDMs [52]).Moreover, in light of
the large gluon fusion A=H production cross sections, the
heavy Higgs decays into charginos and neutralinos are also
relevant and yield production rates that are of the same order
of magnitude as the chargino or neutralino Drell-Yan
production cross sections. Unfortunately, the subsequent
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FIG. 14. Branching ratio of the decay of the heaviest CP-even (left panel) and CP-odd (right panel) Higgs bosons into charginos and
neutralinos. Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.
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FIG. 15. Branching ratio of the decay of the heaviest CP-even Higgs boson (left panel) and the heaviest CP-odd Higgs boson (right
panel) into pairs of top quarks. Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.
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decays of the charginos intoW=Z andmissing energy render
these search modes challenging.
In order to ascertain the constraints on the heavy non-SM-

like Higgs bosons arising from their decays into the lightest
Higgs bosons, one must analyze the decay branching ratios
of hS and AS. Since these particles are singletlike, their
couplings are controlled via the mixing with the doublet
states. As shown in Fig. 7, the CP-even singlet state has
small mixing with the SM-like Higgs boson, κhSSM ¼ −η0,
which is small and can be no larger than 0.3. On the other
hand, the mixing with the non-SM doublet component κhSNSM
is small but nonvanishing. Therefore, as shown in Fig. 16,
the bottom-quark decays are clearly dominant for masses
below 130 GeV, while the WW and eventually ZZ decay
branching ratios may become dominant for masses above
130 GeV, depending on the proximity to alignment. For
mass values above about 150 GeV, decays into two CP-odd
singletlike Higgs bosons open up for certain regions of
parameter space.11 The singletlikeCP-odd Higgs boson has
dominant decay into bottom-quark pairs for masses up to
about 200 GeV, whereas decays into ZhS and into neutra-
linos may open up for slightly heavier masses.
Based on the study of the non-SM-like Higgs boson

branching ratios presented above we will now discuss the
main search channels which may lead to discovery of the
additional scalar states at the LHC. In Fig. 17 we present
the 8 TeV production cross sections of the heaviest CP-odd
scalar A, decaying into a Z and a hS in the mA-mhS plane.
The cross sections presented in the left panel of Fig. 17 take
into account the decay branching ratios of Z → ll
and hS → bb, since these final states provide excellent
search modes at the LHC. The CMS experiment

has already performed searches for scalar resonances
decaying into a Z and lighter scalar resonance using
8 TeV data [53]. In the right panel of Fig. 17 we have
used the CMS ROOT files12 to compare the limits extracted
from these searches with the predictions of the scenario
considered here.
We observe that although this mode fails at present to

probe a large fraction of the NMSSM Higgs parameter
space, the current limit is close to the expected cross
section for values of mhS ≲ 130 GeV. Hence, A → ZhS →
ðllÞðbbÞ provides a very promising channel for
non-SM-like Higgs boson searches in the next run of the
LHC. It is also clear from Fig. 17 that for values of the hS
mass above 130 GeV, where its decay branching ratio into
bottom quarks becomes small, the A → ZhS search channel
becomes less efficient. However, in this case the decay
modes into weak gauge bosons may become relevant, and
searches for hS → WWð�Þ=ZZð�Þ may provide an excellent
complementary probe.
As discussed in Sec. II, searches for heavy scalar

resonances decaying to WWð�Þ have been performed at
the LHC and already constrain the signal strength in the
channel gg → hS → WWð�Þ to be less than 10% of the
signal strength from a SM Higgs boson of the same mass.
Since the suppression of the decay branching ratio of hS
into bottom quarks is in part caused by the increase of the
branching ratio into W pairs, it is interesting to investigate
the correlation between the search for heavy CP-odd Higgs
bosons decaying into hSZ in the ðbbÞðllÞ channel and the
search for the mainly singlet CP-even Higgs hS decaying
into WWð�Þ. To exhibit the complementarity between the
two channels, we also show in Fig. 18 the ratios of the event
rates for the heavy CP-odd scalar decaying to hSZ, with the
same colors used in the right panel of Fig. 17. We observe
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FIG. 16. Branching ratio of the lightest non-SM-like CP-even Higgs boson into bottom quarks (left panel) and pair ofW gauge bosons
(right panel). Blue, red and yellow represent values of tan β ¼ 2, 2.5 and 3, respectively.

11For sufficiently heavy hS and light neutralinos, the decays
into neutralinos could also open, although such a channel does
not show up in the benchmarks to be discussed later. 12These have been obtained from Ref. [54].

ALIGNMENT LIMIT OF THE NMSSM HIGGS SECTOR PHYSICAL REVIEW D 93, 035013 (2016)

035013-19



that a large fraction of the parameter space that is difficult to
probe in the A → ZhS → ðllÞðbbÞ channel becomes viable
in the search for gg → hS → WWð�Þ. There is a small region
where searches in both channels become difficult. This is
the region where hS has a small coupling to the top quark,
thereby suppressing its production cross section, or where
the singlet CP-odd scalar mass mAS

is small and the decay
hS → ASAS may be allowed. In the latter case, we may use
the decay channel H → ZAS instead.
In Fig. 19 we display the ratio of the observed limit to the

production cross section of a heavy CP-even Higgs boson
H decaying into H → ZAS, with Z → ll and AS → bb.
Due to the somewhat smaller production of H as compared
to A, there is no point in the NMSSM Higgs parameter
space that can be probed at the 8 TeV run of the LHC in this

channel. However, for low values of the AS mass, the LHC
will become increasingly sensitive to searches in this
channel. Moreover, in Fig. 20 we observe the correlation
between this ratio and the same ratio for the A → ZhS →
ðllÞðbbÞ channel. The left panel of this figure shows that
there is a complementarity in the LHC sensitivity in these
two search channels. The right panel shows that an
increase of the sensitivity in these two channels by 2 orders
of magnitude would serve to test the full parameter space.
Finally, we consider the decays of the heavy CP-even

Higgs bosons into two lighter CP-even scalars, which as
shown in Figs. 10 and 11 become prominent in a large
region of parameter space. Due to the large size of the
branching ratio, it is instructive to focus on the decays of

140 160 180 200 220 240 260

1. 10 6

0.00001

0.0001

0.001

0.01

0.1

mhS GeV

gg
h S

W
W

,
SM

gg A Z hS ll bb,

Obs. Lim

Currently Excluded

0.5 1

0.1 0.5

10 2 10 1

10 2

FIG. 18. The production cross section times branching ratio of
the decay of the second heaviest CP-even Higgs into pairs of W,
showing the ratio of the observed limit for the heaviest CP-odd
Higgs boson into a Z and a CP-even Higgs bosons.

300 350 400 450 500

50

100

150

200

250

mA GeV

m
h S

G
eV

gg A Z hS ll bb fb

1 fb

1 5 fb

5 10 fb

10 30 fb

30 50 fb

50 70 fb

(a)

300 350 400 450 500

50

100

150

200

250

mA GeV

m
h S

G
eV

gg A Z hS ll bb, Obs. Lim

Currently Excluded

0.5 1

0.1 0.5

10 2 10 1

10 2

(b)

FIG. 17. The production cross section times branching ratio (left panel), and the ratio of the observed limit to the production cross
section times branching ratio (right panel) of the decay of the heaviest CP-odd Higgs boson into a Z and a CP-even Higgs boson as a
function of the heaviest CP-odd and the singletlike CP-even Higgs boson masses. The cross sections are computed for LHC processes
with

ffiffiffi
s

p ¼ 8 TeV, and the branching ratio includes the subsequent decay of the Z boson into dileptons and hS into a bottom-quark pair.
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FIG. 19. Ratio of the observed limit to the production cross
section times branching ratio of the decay of the heaviest CP-
even Higgs boson into a Z and the lightest CP-odd Higgs bosons.
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the heavy Higgs bosons into hhS. This is shown in Figs. 21
and 22, where we display the 8 TeV LHC cross section of
these channels assuming that the SM-like Higgs decays
into a pair of bottom quarks and hS decays intoWWð�Þ and
bottom pairs, respectively. We see that the cross sections are
sizable, of orders of tens or hundreds of femtobarns, and
there is a large complementarity between the bbWW and
4b search channels, associated with the significant size of
the corresponding hS decay branching ratios.
Most aspects of the NMSSM Higgs phenomenology

outlined above can be illustrated by choosing specific
benchmarks points in the NMSSM Higgs parameter space.
In Appendix D, we present three particular NMSSM

benchmarks that illustrate the most important features of
the Higgs phenomenology considered in this section.

V. CONCLUSIONS

In this paper, we have studied the conditions for the
presence of a SM-like Higgs boson in models containing
two Higgs doublets and an additional complex singlet
scalar. In this so-called alignment limit, one of the neutral
Higgs fields approximately points in the same direction in
field space as the doublet scalar vacuum expectation value.
The main focus of this work is the Z3-invariant NMSSM,
which provides a predictive framework in which the
interactions of scalars and fermions are well defined.
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FIG. 21. Production cross section times branching ratio of the
decay of the heaviest CP-even Higgs boson into h and hS, with h
decaying into bb̄ and hS decaying into WW.
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FIG. 22. Production cross section times branching ratio of the
decay of the heaviest CP-even Higgs boson into h and hS, with
both h and hS decaying into bb̄.
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FIG. 20. The left panel shows the ratio of the two channels, A → ZhS and H → ZAS, vs the ratio of the observed limit to the model
limit. The right panel shows the correlation between the two channels for the ratio of the observed limit to the production cross sections.
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Moreover, in this model the SM-like Higgs mass receives
additional tree-level contributions with respect to the
MSSM and the Higgsino mass parameter μ arises from
the vacuum expectation value of the singlet field.
The condition of alignment is naturally obtained for the

same values of the singlet-doublet coupling, λ≃ 0.65, that
leads to a relevant contribution to the SM-like Higgs mass
at low values of tan β, while maintaining the perturbative
consistency of the theory up to the Planck scale.
Consequently, the top squarks can be light, inducing only
a moderate contribution to the SM-like Higgs mass via
radiative loop corrections.
Moreover, the condition of perturbative consistency of the

theory up to the Planck scale implies small values of the
singlet self-coupling κ. The mixing of the SM-like Higgs
boson with the singlet is reduced and alignment is obtained
for values of the mass parameter MA not far from 2jμj=s2β.
For these values ofMA, κ and μ, the constraints coming from
current Higgs boson measurements are satisfied, and the
spectrumof the theory in theHiggs sectormay be obtained as
a function of Aκ, which controls the masses of the CP-even
and CP-odd singlet components.
We have shown that for values of MA ≲ 500 GeV, the

entire Higgs and Higgsino spectra is accessible at the LHC.
Two of the most important probes of this scenario are the
searches for heavy scalar resonances, decaying into lighter
scalar resonances and a Z, as well as the searches for
resonances in the WW and ZZ channels. Moreover, the
search for scalar resonances decaying into two lighter scalars
is also important (with the exception of the decay into hh
which tends to be suppressed). Thus it is very important to
expand these searches into final states inwhich at least one of
the two light scalars has a mass different from mh ¼
125 GeV. We have presented detailed studies of the Higgs

phenomenology and considered three benchmarks that
capture the dominant features discussed. A comprehensive
study of the discovery prospects of these benchmark points at
the upcoming LHC run 2 will be treated in future work.
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APPENDIX A: THE HIGGS SCALAR POTENTIAL
IN THE HIGGS BASIS

It is convenient to rewrite the NMSSM Higgs potential
[cf. Eqs. (38)–(40)] in terms of the Higgs basis fields H1

and H2 [defined in Eq. (28)] and the singlet field S,13

V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ½Y3H

†
1H2 þ H:c:� þ Y4S†S

þ ½C1H
†
1H1Sþ C2H

†
2H2Sþ C3H

†
1H2Sþ C4H

†
2H1Sþ C5ðS†SÞSþ C6S3 þ H:c:�

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2 þ Z3ðH†
1H1ÞðH†

2H2Þ þ Z4ðH†
1H2ÞðH†

2H1Þ

þ
	
1

2
Z5ðH†

1H2Þ2 þ ½Z6ðH†
1H1Þ þ Z7ðH†

2H2Þ�H†
1H2 þ H:c:



þ S†S½Zs1H

†
1H1 þ Zs2H

†
2H2 þ ðZs3H

†
1H2 þ H:c:Þ þ Zs4S†S�

þ fZs5H
†
1H1S2 þ Zs6H

†
2H2S2 þ Zs7H

†
1H2S2 þ Zs8H

†
2H1S2 þ Zs9S†SS2 þ Zs10S4 þ H:c:g: ðA1Þ

Assuming a CP-invariant Higgs potential and vacuum, all scalar potential coefficients can be taken real after an appropriate
rephasing ofH2. At theminimumof theHiggs potential, hH0

1i ¼ v=
ffiffiffi
2

p
and hSi ¼ vs (with all other VEVs equal to zero), and

Y1 ¼ −
1

2
Z1v2 − 2C1vs − ðZs1 þ 2Zs5Þv2s ; ðA2Þ

Y3 ¼ −
1

2
Z6v2 − ðC3 þ C4Þvs − ðZs3 þ Zs7 þ Zs8Þv2s ; ðA3Þ
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Y4 ¼ −
1

2
C1

v2

vs
− 3ðC5 þ C6Þvs −

1

2
ðZs1 þ 2Zs5Þv2

− 2Zs4v2s − 4ðZs9 þ Zs10Þv2s : ðA4Þ

The charged Higgs mass is given by

m2
H� ¼ M2

A −
1

2
ðZ4 − Z5Þv2; ðA5Þ

where the squared-mass parameter M2
A is defined by

M2
A¼Y2þ

1

2
ðZ3þZ4−Z5Þv2þ2C2vsþðZs2þ2Zs6Þv2s :

ðA6Þ

The CP-even squared-mass matrix is obtained from
Eq. (A1) by eliminating Y1, Y3 and Y4:

M2
S ¼

0
BBB@

Z1v2 Z6v2
ffiffiffi
2

p
v½C1 þ ðZs1 þ 2Zs5Þvs�

M2
A þ Z5v2

vffiffi
2

p ½C3 þ C4 þ 2ðZs3 þ Zs7 þ Zs8Þvs�
−C1

v2
2vs

þ 3ðC5 þ C6Þvs þ 4ðZs4 þ 2Zs9 þ 2Zs10Þv2s

1
CCCA; ðA7Þ

where the omitted elements below the diagonal are fixed since M2
S is a symmetric matrix.

Likewise, we can compute the CP-odd squared-mass matrix:

M2
P ¼

 
M2

A − vffiffi
2

p ½C3 − C4 þ 2ðZs7 − Zs8Þvs�
−C1

v2
2vs

− ðC5 þ 9C6Þvs − 2Zs5v2 − 4ðZs9 þ 4Zs10Þv2s

!
; ðA8Þ

where the omitted matrix element is fixed since M2
P is a

symmetric matrix. Comparing the scalar potential V with
Eqs. (38)–(40), we obtain the coefficients of the quadratic
terms:

Y1 ¼ m2
Hd
c2β þm2

Hu
s2β; ðA9Þ

Y2 ¼ m2
Hd
s2β þm2

Hu
c2β; ðA10Þ

Y3 ¼
1

2
ðm2

Hu
−m2

Hd
Þs2β; ðA11Þ

Y4 ¼ m2
S; ðA12Þ

the coefficients of the cubic terms [after employing
Eqs. (41) and (45)]:

C1 ¼ −C2 ¼ λcβsβ

�
κμ

λ
−
M2

A

μ
cβsβ

�
; ðA13Þ

C3 ¼ λc2β

�
κμ

λ
−
M2

A

μ
cβsβ

�
; ðA14Þ

C4 ¼ −λs2β

�
κμ

λ
−
M2

A

μ
cβsβ

�
; ðA15Þ

C5 ¼ 0; ðA16Þ

C6 ¼
1

3
κAκ; ðA17Þ

and the coefficients of the quartic terms:

Z1 ¼ Z2 ¼ −
1

2

�
λ2 −

1

2
ðg2 þ g02Þ

�
c22β þ

1

2
λ2; ðA18Þ

Z3 ¼ −
1

2

�
λ2 −

1

2
ðg2 þ g02Þ

�
s22β þ

1

4
ðg2 − g02Þ; ðA19Þ

Z4 ¼ −
1

2

�
λ2 −

1

2
ðg2 þ g02Þ

�
s22β −

1

2
g2 þ λ2; ðA20Þ

Z5 ¼ −
1

2

�
λ2 −

1

2
ðg2 þ g02Þ

�
s22β; ðA21Þ

Z6 ¼ −Z7 ¼
1

2

�
λ2 −

1

2
ðg2 þ g02Þ

�
s2βc2β; ðA22Þ

Zs1 ¼ Zs2 ¼ λ2; ðA23Þ
Zs4 ¼ κ2; ðA24Þ

Zs5 ¼ −Zs6 ¼ −
1

2
κλs2β; ðA25Þ

Zs7 ¼ κλs2β; ðA26Þ

Zs8 ¼ −κλc2β; ðA27Þ

Zs3 ¼ Zs9 ¼ Zs10 ¼ 0: ðA28Þ

Note that whereas Y1, Y3 and Y4 are determined from the
Higgs potential minimum conditions [Eqs. (A2)–(A4)], Y2

in generic two-doublet–one-singlet models is a free param-
eter. However, in the Z3-symmetric NMSSM Higgs sector,
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there is no bare Hu ·Hd term in Eq. (40). Consequently, Y2

is no longer an independent parameter. Indeed, Eqs. (A9)
and (A11) yield

Y2 ¼ Y1 þ
2c2β
s2β

Y3: ðA29Þ

Inserting the results of Eqs. (A2) and (A3) then yields

Y2 ¼−
1

2
Z1v2−2C1vs− ðZs1þ2Zs5Þv2s

−
2c2β
s2β

�
1

2
Z6v2þðC3þC4ÞvsþðZs3þZs7þZs8Þv2s

�
:

ðA30Þ

Inserting this result into Eq. (A6),

M2
A ¼ −

1

2

�
Z1 − Z3 − Z4 þ Z5 þ

2c2β
s2β

Z6

�
v2

þ 2

�
C2 − C1 −

c2β
s2β

ðC3 þ C4Þ
�
vs −

�
Zs1 − Zs2

þ 2

�
Zs5 − Zs6 þ

c2β
s2β

ðZs3 þ Zs7 þ Zs8Þ
��

v2s :

ðA31Þ

Using the results of this Appendix, one can check that
Eq. (A31) then reduces to the simple expression given
in Eq. (45).
All the results above correspond to tree-level results.

Including the leading Oðh4t Þ loop corrections, the Zi are
modified as follows:

Z1v2 ¼
�
m2

Z −
1

2
λ2v2

�
c22β þ

1

2
λ2v2 þ 3v2s4βh

4
t

8π2

�
ln

�
M2

S

m2
t

�
þ X2

t

M2
S

�
1 −

X2
t

12M2
S

��
; ðA32Þ

Z2v2 ¼
�
m2

Z −
1

2
λ2v2

�
c22β þ

1

2
λ2v2 þ 3v2c4βh

4
t

8π2

�
ln

�
M2

S

m2
t

�
þ Y2

t

M2
S

�
1 −

Y2
t

12M2
S

��
; ðA33Þ

Z3v2 ¼
1

4
ðg2 − g02Þv2 þ s22β

	
m2

Z −
1

2
λ2v2 þ 3v2h4t

32π2

�
ln

�
M2

S

m2
t

�
þ ðXt þ YtÞ2

4M2
S

−
X2
t Y2

t

12M4
S

�

; ðA34Þ

Z4v2 ¼
�
λ2 −

1

2
g2
�
v2 þ s22β

	
m2

Z −
1

2
λ2v2 þ 3v2h4t

32π2

�
ln

�
M2

S

m2
t

�
þ ðXt þ YtÞ2

4M2
S

−
X2
t Y2

t

12M4
S

�

; ðA35Þ

Z5v2 ¼ s22β

	
m2

Z −
1

2
λ2v2 þ 3v2h4t

32π2

�
ln

�
M2

S

m2
t

�
þ XtYt

M2
S

�
1 −

XtYt

12M2
S

��

; ðA36Þ

Z6v2 ¼ −s2β
	�

m2
Z −

1

2
λ2v2

�
c2β −

3v2s2βh
4
t

16π2

�
ln

�
M2

S

m2
t

�
þ XtðXt þ YtÞ

2M2
S

−
X3
t Yt

12M4
S

�

; ðA37Þ

Z7v2 ¼ s2β

	�
m2

Z −
1

2
λ2v2

�
c2β þ

3v2c2βh
4
t

16π2

�
ln

�
M2

S

m2
t

�
þ YtðXt þ YtÞ

2M2
S

−
XtY3

t

12M4
S

�

: ðA38Þ

APPENDIX B: COMPONENTS OF
THE MASS EIGENSTATES

We present here generic expressions for the
components of the CP-even Higgs mass eigenstates
in terms of the mass eigenvalues and the elements
of the CP-even Higgs squared-mass matrix. The
interaction eigenstates and the mass eigenstates are
related by

0
BB@

h

H

hS

1
CCA ¼

0
BB@

κhSM κhNSM κhS
κHSM κHNSM κHS

κhSSM κhSNSM κhSS

1
CCA
0
BB@

HSM

HNSM

HS

1
CCA: ðB1Þ

For the Higgs mass eigenstate h,

κhNSM
κhSM

¼ −
M2

12ðm2
h −M2

33Þ þM2
13M

2
23

M4
23 þ ðM2

22 −m2
hÞðm2

h −M2
33Þ

; ðB2Þ
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κhS
κhSM

¼ M2
13ðM2

22 −m2
hÞ −M2

12M
2
23

M4
23 þ ðM2

22 −m2
hÞðm2

h −M2
33Þ

: ðB3Þ

For the Higgs mass eigenstate H,

κHSM
κHNSM

¼ −
M2

12ðm2
H −M2

33Þ þM2
13M

2
23

M4
13 þ ðM2

11 −m2
HÞðm2

H −M2
33Þ

; ðB4Þ

κHS
κHNSM

¼ M2
23ðM2

11 −m2
HÞ −M2

12M
2
13

M4
13 þ ðM2

11 −m2
HÞðm2

H −M2
33Þ

: ðB5Þ

For the Higgs mass eigenstate hS,

κhSSM
κhSS

¼ −
M2

13ðm2
hS
−M2

22Þ þM2
12M

2
23

M4
12 þ ðM2

22 −m2
hS
Þðm2

hS
−M2

11Þ
; ðB6Þ

κhSNSM
κhSS

¼ M2
23ðM2

11 −m2
hS
Þ −M2

12M
2
13

M4
12 þ ðM2

22 −m2
hS
Þðm2

hS
−M2

11Þ
: ðB7Þ

APPENDIX C: ANALYTIC EXPRESSIONS FOR
THE HIGGS COUPLINGS

1. Trilinear Higgs couplings

In Table I we present the tree-level Higgs trilinear
couplings in terms of Higgs-basis scalar fields. The second
column of Table I displays the corresponding coefficients
derived from the Higgs potential, Eq. (A1), and the third
column of Table I evaluates these coefficients in the Z3-
invariant NMSSM using the results of Eqs. (A13)–(A28).
The corresponding Feynman rules are obtained by multi-
plication by a symmetry factor −in!, where n is the number
of identical bosons that are associated with the trilinear
coupling. From Table I we see that the coefficient of the
Higgs trilinear couplings HNSMHSMHSM and HSHSMHSM

are proportional to M2
12 and M2

13, Eq. (46), respectively,
and approach zero in the alignment limit.
We can also include the effects of the dominant

contributions to the one-loop radiative corrections to
the trilinear scalar interactions by employing the leading
Oðh4t Þ corrections given in Eqs. (A32)–(A38). These
corrections modify the trilinear Higgs couplings shown

TABLE I. Tree-level trilinear scalar interactions.

Coefficient in V [Eq. (A1)] Z3-invariant NMSSM

HSMHSMHSM 1
2
vZ1

1
8
v½2λ2s22β þ ðg2 þ g02Þc22β�

HSMHSMHNSM 3
2
vZ6

3
4
vðλ2 − g2 − g02Þs2βc2β

HSMHNSMHNSM 1
2
vðZ3 þ Z4 þ Z5Þ 1

8
½2λ2 þ ð2λ2 − g2 − g02Þð1 − 3s22βÞ�

HNSMHNSMHNSM 1
2
vZ7 − 1

4
vðλ2 − g2 − g02Þs2βc2β

HSMHSMHS ½C1 þ vsðZs1 þ 2Zs5Þ�=
ffiffiffi
2

p
λμffiffi
2

p ½1 − 1
2
s2βðκλ þ

M2
A

2μ2
s2βÞ�

HSMHNSMHS ½C3 þ C4 þ 2vsðZs3 þ Zs7 þ Zs8Þ�=
ffiffiffi
2

p
− λμc2βffiffi

2
p ðκλ þ

M2
A

2μ2
s2βÞ

HNSMHNSMHS ½C2 þ vsðZs2 þ 2Zs6Þ�=
ffiffiffi
2

p
λμffiffi
2

p ½1þ 1
2
s2βðκλ þ

M2
A

2μ2
s2βÞ�

HSMHSHS 1
2
vðZs1 þ 2Zs5Þ 1

2
vλðλ − κs2βÞ

HNSMHSHS 1
2
vðZs3 þ Zs7 þ Zs8Þ − 1

2
vκλc2β

HSHSHS ½C5 þ C6 þ 2vsðZs4 þ 2Zs9 þ 2Zs10Þ�=
ffiffiffi
2

p
κ

3
ffiffi
2

p ðAκ þ 6 κμ
λ Þ

HSMANSMANSM 1
2
vðZ3 þ Z4 − Z5Þ 1

4
v½λ2 þ ðλ2 − 1

2
ðg2 þ g02ÞÞc22β�

HNSMANSMANSM 1
2
vZ7 − 1

4
v½λ2 − 1

2
ðg2 þ g02Þ�s2βc2β

HSANSMANSM ½C2 þ vsðZs2 þ 2Zs6Þ�=
ffiffiffi
2

p
λμffiffi
2

p ½1þ 1
2
s2βðκλ þ

M2
A

2μ2
s2βÞ�

HSMANSMAS ½C4 − C3 − 2vsðZs7 − Zs8Þ� λμffiffi
2

p ðM2
A

2μ2
s2β − 3 κ

λÞ
HNSMANSMAS 0 0

HSANSMAS vðZs8 − Zs7Þ −κλv
HSMASAS 1

2
vðZs1 − 2Zs5Þ 1

2
vλðλþ κs2βÞ

HNSMASAS 1
2
vðZs3 − Zs7 − Zs8Þ 1

2
vκλc2β

HSASAS ½C5 − 3C6 þ 2vsðZs4 þ 6Zs10Þ�=
ffiffiffi
2

p
−κðAκ − 2 κμ

λ Þ=
ffiffiffi
2

p

HSMHþH− vZ3 − 1
2
½λ2 − 1

2
ðg2 þ g02Þ�s22β þ 1

4
ðg2 − g02Þ

HNSMHþH− vZ7 − 1
2
½λ2 − 1

2
ðg2 þ g02Þ�s2βc2β

HSHþH−
ffiffiffi
2

p ½C2 þ vsðZs2 þ 2Zs6Þ�
ffiffiffi
2

p
λμ½1þ 1

2
s2βðκλ þ

M2
A

2μ2
s2βÞ�
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in Table II. The results presented in Table II have
been obtained as follows. First, we work in the approxi-
mation that m2

h ≃ Z1v2. We then use Eq. (A32) to solve
for lnðM2

S=m
2
t Þ in terms of m2

h, m2
Z, λ, and Xt. The

resulting expression is then used in Eqs. (A33)–(A38) to
eliminate the logarithmic terms. Using the resulting
expressions for the Zi to evaluate the trilinear couplings
in Table I, we obtain the results shown in Table II after
dropping the additional corrections proportional to
ðXt − YtÞ=MS.

14 Note in particular that mh, which appears
in the trilinear Higgs couplings shown in Table II, is the
radiatively corrected Higgs mass in the NMSSM, which
we set equal to 125 GeV. That is, the leading radiative
corrections to the Higgs trilinear couplings have been
absorbed in the definition of mh.

2. Coupling of neutral Higgs bosons to
neutral gauge bosons

In contrast to the coupling of a CP-even Higgs boson to
pairs of gauge bosons, which is present only for HSM, the
derivative couplings of pairs of neutral scalars to the neutral
gauge boson are governed by the gauge interactions of the
non-SM Higgs doublet. That is,

gHNSMANSMZ ¼ 1

2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
ðp − p0Þμ; ðC1Þ

where p and p0 are the incoming momentum of HNSM and
ANSM, respectively, and igHNSMANSMZ is the corresponding
Feynman rule for the HNSMANSMZ vertex.

3. Couplings of the mass-eigenstate Higgs fields

It is instructive to derive the expressions for the cou-
plings among the different mass-eigenstate Higgs bosons in
the exact alignment limit. In light of Eq. (60), we shall also
assume that the mixing between the doublet and singlet

CP-even scalar fields is small. In the notation introduced in
Sec. II B, we take ϵ1 ¼ ϵ2 ¼ η0 ¼ 0 (corresponding to the
exact alignment limit) and jηj ≪ 1, in which case m2

h ¼
Z1v2 and Eq. (63) reduces to0

BB@
h

H

hS

1
CCA≃

0
BB@

1 0 0

0 −1 −η
0 −η 1

1
CCA
0
BB@

HSM

HNSM

HS

1
CCA: ðC2Þ

Similarly, we shall assume that the mixing between the
doublet and singlet CP-odd scalar fields is small. In this
approximation,�

A

AS

�
≃
�

1 ξ

−ξ 1

��
ANSM

AS

�
; ðC3Þ

where jξj ≪ 1.15 The interactions of the scalar mass
eigenstates are given in Table III, where terms quadratic
(and higher order) in η and ξ have been neglected. The
trilinear Higgs interactions are expressed in terms of the
coefficients, Cijk that appear in Table I, where the sub-
scripts i, j, k label the Higgs basis scalar fields. In
particular, CHNSMANSMAS ¼ 0 for the scalar potential given
in Eq. (A1), and CHSMHSMHNSM ¼ CHSMHSMHS ¼ 0 in the
exact alignment limit. These relations have been imple-
mented in obtaining Table III.
The Higgs interactions with a single Z boson are

expressed in terms of the HNSMANSMZ interaction, denoted
by G in Table III. The corresponding Feynman rules,
denoted by −igabc (where a, b and c label the Higgs mass-
eigenstate fields), are obtained by multiplying the entries of
the second column of Table III by −in!, where n is the
number of identical boson fields appearing in the inter-
action term.

TABLE II. Approximate one-loop corrected trilinear scalar interactions.

2v × trilinear Higgs coupling of the Z3-invariant NMSSM

HSMHSMHSM m2
h

HSMHSMHNSM 3s−1β ðm2
hcβ −m2

Zc2βcβ − 1
2
λ2v2s2βsβÞ

HSMHNSMHNSM 3s−2β ½m2
hc

2
β −m2

Zðc22β − 2
3
s2βÞ − λ2v2s2βðc2β þ 2

3
Þ�

HNSMHNSMHNSM s−3β ½m2
hc

3
β þm2

Zc2βcβð2s2β − c2βÞ − 1
2
λ2v2s2βsβð2c2β − s2βÞ�

HSMANSMANSM s−2β ðm2
hc

2
β −m2

Zc
2
2β − λ2v2c2βs2βÞ

HNSMANSMANSM s−3β ½m2
hc

3
β þm2

Zc2βcβð2s2β − c2βÞ − 1
2
λ2v2s2βsβð2c2β − s2βÞ�

HþH−HSM 4m2
W þ 2s−2β ðm2

hc
2
β −m2

Zc
2
2β − 1

2
λ2v2s22βÞ

HþH−HNSM 2s−3β ½m2
hc

3
β þm2

Zc2βcβð2s2β − c2βÞ − 1
2
λ2v2s2βsβð2c2β − s2βÞ�

14Although it is straightforward to keep track of the terms
proportional to ðXt − YtÞ=MS, in practice these terms provide
only a small correction to the results shown in Table II.

15In our numerical scans, we find that typical values of sin ξ lie
in a range between about 0.1 and 0.3. Thus, the results of Table III
provide a useful first approximation to the effects of the mixing
between the doublet and singlet CP-odd scalar fields.
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APPENDIX D: BENCHMARKS

In this section we present three benchmarks that illustrate
the most important features of the Higgs phenomenology
considered in Sec. IV. Except for the third-generation
squarks, the gluinos, the sleptons and the squarks are all
kept at the TeV scale and decouple from the low-energy
phenomenology at the electroweak scale. The value of
λ ¼ 0.65 is chosen to obtain alignment and preserve
the perturbativity up to the Planck scale. The relevant
parameters are given in Table IV.
The Higgs and top squark spectra obtained by

NMSSMTools using these input parameters are displayed
in Table V, and the chargino and neutralino masses are

given in Table VI. The production cross sections for the
neutral Higgs scalars at the LHC are presented in Table VII,
while some relevant processes, including the Higgs decay
branching ratios are summarized in Table VIII. In what
follows we will focus on the low-energy phenomenology
and discuss the salient features of each benchmark
scenario.

1. Benchmark scenarios 1a and 1b

The first two benchmarks, 1a and 1b, have similar
spectra but differ slightly in the degree of alignment of
the SM-like Higgs with the singlet state and the value of the
electroweak gaugino masses. Benchmark 1a has a dark
matter relic density consistent with the observed one and a
spin-independent direct detection scattering cross section
significantly below the current experimental bound, while
benchmark 1b has a heavier gaugino spectrum and a relic
density an order of magnitude below the observed one. In
both of these benchmarks the top squark spectrum has been
fixed to obtain the observed 125 GeV Higgs mass and the
b → sγ rate, keeping the non-SM Higgs bosons light. In
addition, benchmarks 1a and 1b have the following
properties:
Higgs searches.—The second-lightest Higgs boson h

behaves like the observed (SM-like) Higgs boson with
mass 125 GeV due to alignment at low tan β. The mostly
doublet non-SM Higgs boson masses mA and mH are

TABLE III. Interactions of the mass-eigenstate scalars in the
alignment limit. The coefficients C are given in Table I and G is
the ANSMHNSMZ interaction coefficient.

Vertex Term in the interaction Lagrangian

hhh CHSMHSMHSM

hhH 0

hHH CHSMHNSMHNSM þ 2ηCHSMHNSMHS

HHH −CHNSMHNSMHNSM − 3ηCHNSMHNSMHS

hhhS 0

hhSH −CHSMHNSMHS − ηCHSMHSHS þ ηCHSMHNSMHNSM

HHhS CHNSMHNSMHS − ηCHNSMHNSMHNSM þ 2ηCHNSMHSHS

hhShS CHSMHSHS − 2ηCHSMHNSMHS

HhShS −CHNSMHSHS þ 2ηCHNSMHNSMHS − ηCHSHSHS

hShShS CHSHSHS þ 3ηCHNSMHSHS

hAA CHSMANSMANSM þ 2ξCHSMANSMAS

HAA −CHNSMANSMANSM − ηCHSANSMANSM

hSAA CHSANSMANSM − ηCHNSMANSMANSM þ 2ξCHSANSMAS

hAAS CHSMANSMAS − ξCHSMANSMANSM þ ξCHSMASAS

HAAS −ηCHSANSMAS − ξCHNSMASAS þ ξCHNSMANSMANSM

hSAAS CHSANSMAS þ ξCHSASAS − ξCHSANSMANSM

hASAS CHSMASAS − 2ξCHSMANSMAS

HASAS −CHNSMASAS − ηCHSASAS

hSASAS CHSASAS − ηCHNSMASAS − 2ξgHSANSMAS

hHþH− CHSMHþH−

HHþH− −CHNSMHþH− − ηCHSHþH−

hSHþH− CHSHþH− − ηCHNSMHþH−

AhZ 0

AHZ G

AhSZ −ηG
AShZ 0

ASHZ −ξG
AShSZ 0

TABLE IV. Parameters for the three different benchmarks.

Benchmark
1a

Benchmark
1b

Benchmark
2

Benchmark
3

tan β 2.1 2.1 2.5 2.5
M1(GeV) 122 200 135 −400
M2(GeV) −500 600 −300 −800
At(GeV) −650 −750 −900 −1400
mQ3

(GeV) 700 700 700 800
mU3

(GeV) 340 340 700 800
κ 0.3 0.3 0.3 0.3
Aλ(GeV) 210 210 350 350
Aκ(GeV) −90 −75 −270. −100
μ(GeV) 122 120 174. 200.

TABLE V. Higgs and top squark masses in the three bench-
marks.

Benchmark
1a

Benchmark
1b

Benchmark
2

Benchmark
3

mh(GeV) 124.5 125.3 125.4 124.5
mhS (GeV) 93.4 94.5 72.54 160.3
mH(GeV) 301.0 293.0 470.37 513.1
mAS

(GeV) 175.4 167.7 280.16 208.4
mA(GeV) 295.3 286.4 466.26 507.6
mHþ (GeV) 280.6 272.0 456.5 500.0
m~t1 (GeV) 272.7 255.3 625.77 693.6
m~t2 (GeV) 722.3 726.7 826.26 966.6
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around 300 GeV, and hence the neutral Higgs boson decays
into top-quark pairs are forbidden, while the charged Higgs
boson decays mostly into top and bottom quarks, with
BRðH� → tbÞ ≈ 0.7. Both neutral Higgs bosons decay into
electroweakinos with combined branching ratios of about
40% or larger, whereas the charged Higgs decay into
electroweakinos is only at the 10% level. The other relevant
decays of the neutral CP-even Higgs boson are into hhS
(40%) and hShS (10%).
TheCP-odd scalarA has a sizable decaywith a branching

ratio of about 36% (20%) intohSZ in scenario 1a (1b) and the
charged Higgs decays intoWhS with a 15% branching ratio.
The increase in the branching ratio of the decay of A → hSZ
in scenario 1a compared to 1b is due to the decrease of the
decay into charginos. Such an increase makes the A
signatures compatible with an excess observed by CMS
in the bbll channel [53] for masses of the heavier and
lighter Higgs states consistent with the one assumed in
benchmark 1a. On the other hand, the decay ofH and A into
charginos in benchmark 1b leads to a chargino production
cross section of the sameorder as the one coming fromDrell-
Yan processes and makes it possible to test this scenario in
the search for charginos at run 2 of the LHC.
The mainly singlet CP-even Higgs boson hS decays

dominantly into bottom-quark pairs, while the mainly
singlet CP-odd Higgs boson AS decays overwhelmingly
into a pair of the lightest neutralinos. The small increase of
the misalignment in benchmark 1a compared to 1b implies
a possible contribution to the LEP eþe− → Z� → ZhS cross
section of the order of 5.5%, consistent with a small excess
observed at LEP in this channel for this range of masses.

It therefore follows that the most promising discovery
modes for these two benchmarks at the LHC are in the
topologies 2l2b, 4b or 2b2W arising mainly from the
gluon fusion production of H and A with subsequent
decays A → ZhS and H → hhS, respectively, as discussed
in Sec. IV, as well as in the search for chargino pair
production.
Top squark searches.—In both benchmark 1a and 1b, the

mass of one of the top squarks is approximately equal to the
sum of the mass of the top and the lightest neutralino. This
motivates the search for top squarks at the LHC in this
challenging region of parameters. The other top squark,
mainly ~tL, is about 725 GeV in mass and can be searched for
in decays into top or bottom quarks and electroweakinos.
The lightest sbottom is also about 700 GeV in mass and can
be searched for in several channels at the LHC.
Electroweakino searches.—The lightest neutralinos are

singlino-Higgsino admixtures, with an additional bino
component in benchmark 1a. Both the second- and
third-lightest neutralinos have a mass gap with respect to
the lightest neutralino which is less than mZ and therefore
will decay into Z�χ01. The lightest chargino has a mass of
about 110 GeV and is Higgsino-like. The small mass
difference between the lightest chargino and neutralino
makes the leptons coming from the chargino decays soft
and difficult to detect.

2. Benchmark scenario 2

Benchmark 2 is more traditional in the sense that
the relic density is consistent with the observed one.
The spin-independent direct detection cross section is
below but close to the LUX [55] experimental bound
and therefore can be soon tested by the next generation of
xenon experiments. In addition, it has the following
properties:
Higgs searches.—The second-lightest Higgs boson h

behaves like the observed (SM-like) Higgs boson with mass
125 GeV due to alignment at low tan β. The lightest, mostly
singlet CP-even Higgs boson hS is lighter than the Z boson
and decays predominantly to bottom-quark pairs. The light-
estCP-oddHiggs bosonAS has amass of about 300GeVand
decays predominantly into neutralinos, with a 4% branching

TABLE VI. Electroweakino masses in the three benchmarks.

Benchmark
1a

Benchmark
1b

Benchmark
2

Benchmark
3

mχ0
1
(GeV) 77.0 77.7 106.6 170.7

mχ0
2
(GeV) 145.5 164.4 171.3 226.9

mχ0
3
(GeV) 164.0 169.2 200.1 255.1

mχ0
4
(GeV) 187.8 216.9 237.1 401.4

mχ0
5
(GeV) 519.5 619.5 327.4 812.4

mχ�
1
(GeV) 130.4 110.9 179.9 207.2

mχ�
1
(GeV) 519.5 619.4 327.3 812.4

TABLE VII. Relevant production cross sections for the three benchmarks.

Benchmark 1a Benchmark 1b Benchmark 2 Benchmark 3

σðgg → h → bb̄Þ=σSM 0.85 0.93 1.00 0.80
σðgg → h → VVÞ=σSM 1.28 1.16 1.01 1.12
σðgg → hS → VVÞ=σSM 1.1 × 10−3 8.1 × 10−4 � � � 0.05
σðVV → hS → bb̄Þ=σSM 0.054 0.036 6.2 × 10−4 0.8
σðgg → HÞ(pb) (8 TeV) 1.20 1.28 0.31 0.21
σðgg → HÞ(pb) (14 TeV) 3.83 4.14 1.28 0.89
σðgg → AÞ(pb) (8 TeV) 2.18 2.21 0.57 0.35
σðgg → AÞ(pb) (14 TeV) 7.10 7.11 2.28 1.48
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ratio into ZhS. The non-SM doublet Higgs bosonmassesmH
andmA are about 470GeV. Consequently, both neutral Higgs
bosons have relevant decays into top-quark pairs. Given that
the charged Higgs boson mass is about 460 GeV, the b → sγ
rate is consistent with observationswithout the need of a light
top squark. The dominant decays for the heavy neutral CP-
even Higgs bosonH are 40% into tt, 25% into hhS and about
30% into electroweakinos. Similarly, A decays 55% of the
time into tt, 16% into ZhS and about 30% into electro-
weakinos. The charged Higgs boson decays 55% of the time
into tb, 20% into WhS, and 25% into electroweakinos.
Similar to benchmarks 1a and 1b, the most promising
discovery modes for A and H in this benchmark scenario
at theLHCarevia the topologies2l2b,4b or2b2W.However
the fact that they are heavier and both have significant decays
into top-quark pairs makes detection more challenging.
Top squark searches.—Both top squarks are in the

625–825 GeV range and decay into many different chan-
nels, including bottom-chargino and top-neutralino final
states. Their masses can be raised somewhat by lowering
the top squark mixing, without spoiling the consistency
with the observed Higgs mass. The left-handed sbottom
masses are of the same order.
Electroweakino searches.—Many different electrowea-

kinos are present in the mass range of 100–350 GeV. The
lightest neutralino mass is about 110 GeV. The second- and
third-lightest neutralinos, as well as the charginos, are about
180 GeVand hence can be looked for in trilepton searches.
Since the lightest electroweakinos are Higgsino- and sin-
glinolike, the cross sections are smaller than for winos
[56,57]. In particular, observe that χ02 is in the region
marginally excluded by CMS for winos, but since it is
mostly an admixture of Higgsino and singlino, its produc-
tion cross section is suppressedwith respect to thewino one.

Hence there are good prospects to search for some of the
electroweakinos efficiently at run 2 of the LHC.

3. Benchmark scenario 3

Benchmark 3 presents a scenario where hS → WW is a
relevant search channel at the LHC. The thermal relic
density contribution is small, demanding the presence of
nonthermal production of the lightest neutralino. The spin-
independent cross section is an order of magnitude smaller
than the current LUX bound. In addition, this scenario has
the following properties:
Higgs searches.—The lightest Higgs boson h is the

observed (SM-like) Higgs boson with mass 125 GeV, while
the second-lightest CP-even Higgs hS is mostly singlet, has
a mass close to the WW threshold and hence decays
dominantly into W� pairs. The gluon fusion production
cross section of hS times its branching ratio intoW� pairs is
about 4% of the SM cross section for a Higgs boson of the
same mass. Hence hS can be efficiently searched for at
the current run of the LHC. The main difference between
the Higgs phenomenology for benchmarks 2 and 3 is the
exchange of roles between the two lightest mainly singlet
Higgs bosons, hS and AS, since now AS has a mass of about
130 GeV and decays predominantly in bottom-quark pairs.
The heavy Higgs boson H decays prominently into top
pairs (45%), into two different lightest Higgs bosons hhS
(21%) and into electroweakinos (32%). The CP-odd Higgs
boson A has also prominent decays into top pairs (54%),
into ZhS (15%) and into electroweakinos (21%). Therefore,
this benchmark may be tested efficiently at the LHC in the
topologies 2l2W, 2b2W or 4W through the gluon pro-
duction of A and H and their subsequent decays into ZhS
and hhS, respectively.

TABLE VIII. Relevant processes in the three benchmarks.

Benchmark 1a Benchmark 1b Benchmark 2 Benchmark 3

BRðb → sγÞ × 104 3.76 3.57 3.68 3.59
Ωh2 0.119 0.013 0.128 0.011
σSIðpbÞ × 1010 2.41 × 10−2 3.17 11.0 0.02
BRðhS → bb̄Þ 0.91 0.91 0.91 0.57
BRðhS → WþW−Þ 7.5 × 10−5 8 × 10−5 � � � 0.23
BRðH → tt̄Þ � � � � � � 0.39 0.52
BRðH → hhSÞ 0.47 0.39 0.24 0.16
BRðH → χ0i χ

0
jÞ 0.33 0.31 0.26 0.20

BRðH → χþ1 χ
−
1 Þ 0.009 0.14 0.008 0.001

BRðA → tt̄Þ � � � � � � 0.53 0.59
BRðA → ZhSÞ 0.36 0.21 0.16 0.14
BRðA → χ0i χ

0
jÞ 0.51 0.47 0.31 0.18

BRðA → χþ1 χ
−
1 Þ 0.001 0.19 0.01 0.0005

BRðAS → bb̄Þ 0.01 0.005 0.007 0.87
BRðAS → χ01χ

0
1Þ 0.99 0.99 0.96 � � �

BRðHþ → tb̄Þ 0.73 0.73 0.55 0.62
BRðHþ → WþhSÞ 0.15 0.15 0.18 0.15
BRðHþ → χþ1 χ

0
i Þ 0.10 0.11 0.24 0.18
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Top squark searches.—The top squark and sbottom
spectra are similar to the ones in benchmark 2. Charginos
and neutralinos are heavier, but the third-generation squarks
may decay into multiple channels and may be searched for
efficiently at run 2 of LHC.

Electroweakino searches.—The lightest electroweaki-
nos are admixtures of singlinos and Higgsinos, with mass
gaps that are smaller than the weak gauge boson masses.
Hence, searches at the LHC are difficult and will demand
high luminosity.
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