

Domain Walls in the N2HDM: Exploring Vacuum Trapping and Scalar Potential Evolution

Master Thesis

Rohan Gupta
G. Moortgat-Pick, Simone Blasi, Mohamed Younes Sassi

19.06.2025

Motivation

- The Standard Model is incomplete:
 - No explanation for dark matter, baryogenesis, or vacuum metastability
 - ➤ No solution to the hierarchy problem
- Extended Higgs sectors like the N2HDM offer
 - Richer vacuum structures and new phase transitions
 - Possibility of solving cosmological problems
- Research Questions
 - Can the scalar potential in the N2HDM lead to vacuum trapping?
 - > Can domain walls rescue the universe from a false vacuum?
- Objectives
 - Study vacuum structure and trapping in the Z'2-conserving N2HDM
 - > Analyze loop effects and singlet composition on vacuum fate

Limitations of the Standard Model

- The Standard Model (SM) has several known shortcomings:
 - Hierarchy Problem:
 - Quadratic divergences in Higgs mass not naturally cancelled
 - No Dark Matter Candidate:
 - SM lacks a stable, neutral particle
 - Baryon Asymmetry:
 - SM CP-violation insufficient for observed matter-antimatter imbalance
 - Vacuum Metastability:
 - Higgs potential may not be absolutely stable at high energies
- Need for Extensions:
 - Provide strong 1st-order phase transitions
 - ➤ Introduce scalar dark matter candidates
 - Offer new symmetry-breaking patterns to stabilize the vacuum

The Two-Higgs Doublet Model (2HDM)

 $2HDM = SM(\phi_1) + Second Higgs Doublet(\phi_2)$

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2}$$

$$+ \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

EW vacuum:
$$\Phi_1 = \begin{pmatrix} \phi_1^{\dagger} \\ \frac{1}{\sqrt{2}} (v_1 + \rho_1 + i \eta_1) \end{pmatrix}$$
, $\Phi_2 = \begin{pmatrix} \phi_2^{\dagger} \\ \frac{1}{\sqrt{2}} (v_2 + \rho_2 + i \eta_2) \end{pmatrix}$

Symmetries: Z_2 : $\phi_1 \rightarrow \phi_1$, $\phi_2 \rightarrow -\phi_2$ only softly broken by m_{12}^2

Scalar Physical Spectrum: 2 CP-Even (h, H), 1 CP-Odd (A), and 2 Charged Scalars (H⁺, H⁻)

Parameter Space: m_h , m_H , m_A , $m_{H^{\pm}}$, $\tan \beta$, α , m_{12}^2

Next-to 2 Higgs Doublet Model (N2HDM)

N2HDM = SM(
$$\phi_1$$
) + Second Higgs Doublet(ϕ_2) + Real Scalar Singlet(ϕ_s)
= 2HDM(ϕ_1, ϕ_2) + Real Scalar Singlet(ϕ_s)

Scalar tree-level potential

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2}$$

$$+ \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

$$\left(+ \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + \frac{\lambda_{6}}{8} \Phi_{S}^{4} + \frac{\lambda_{7}}{2} (\Phi_{1}^{\dagger} \Phi_{1}) \Phi_{S}^{2} + \frac{\lambda_{8}}{2} (\Phi_{2}^{\dagger} \Phi_{2}) \Phi_{S}^{2} \right)$$

Symmetries: Z_2 : $\phi_1 \to \phi_1$, $\phi_2 \to -\phi_2$ and $\phi_s \to \phi_s$, only softly broken by m_{12}^2 Z_2' : $\phi_1 \to \phi_1$, $\phi_2 \to \phi_2$ and $\phi_s \to -\phi_s$, spontaneously broken by v_s

Next-to 2 Higgs Doublet Model (N2HDM)

EW vacuum:
$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \xi_1 + i\chi_1 \\ (v_1 + \rho_1 + i\eta_1) \end{pmatrix}$$
, $\Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \xi_2 + i\chi_2 \\ (v_2 + \rho_2 + i\eta_2) \end{pmatrix}$, $\Phi_S = v_S + \rho_S$

$$<\Phi_1>|_{T=0} = \frac{1}{\sqrt{2}} {0 \choose v_1}, \qquad <\Phi_2>|_{T=0} = \frac{1}{\sqrt{2}} {0 \choose v_2}, \qquad <\Phi_1>|_{T=0} = \frac{v_s}{\sqrt{2}}$$

Scalar Spectrum: 3 CP-Even (H_1, H_2, H_3) , 1 CP-Odd (A), and 2 Charged Scalars (H^+, H^-)

Extension of Z_2 to Yukawa sector \Rightarrow 4 types of the (N)2HDM

	u-type	d-type	leptons
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Type III (lepton-specific)	Φ_2	Φ_2	Φ_1
Type IV (flipped)	Φ_2	Φ_1	Φ_2

Next-to 2 Higgs Doublet Model (N2HDM)

Minimization Conditions:

$$\frac{\partial V}{\partial \phi_1} = v_1 \left(m_{11}^2 + \lambda_1 v_1^2 + \lambda_3 v_2^2 + \lambda_7 v_S^2 - m_{12}^2 \frac{v_2}{v_1} \right) = 0$$

$$\frac{\partial V}{\partial \phi_2} = v_2 \left(m_{22}^2 + \lambda_2 v_2^2 + \lambda_3 v_1^2 + \lambda_8 v_S^2 - m_{12}^2 \frac{v_1}{v_2} \right) = 0$$

$$\frac{\partial V}{\partial \phi_S} = v_S \left(m_S^2 + \lambda_6 v_S^2 + \lambda_7 v_1^2 + \lambda_8 v_2^2 \right) = 0.$$

Using the rotation matrices in terms of the mixing angles $\alpha 1$, $\alpha 2$, $\alpha 3$ and β , we switch to the mass basis

$$R = \begin{pmatrix} c_{\alpha_1}c_{\alpha_2} & s_{\alpha_1}c_{\alpha_2} & s_{\alpha_2} \\ -(c_{\alpha_1}s_{\alpha_2}s_{\alpha_3} + s_{\alpha_1}c_{\alpha_3}) & c_{\alpha_1}c_{\alpha_3} - s_{\alpha_1}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ -(c_{\alpha_1}s_{\alpha_2}c_{\alpha_3} - s_{\alpha_1}s_{\alpha_3}) & -(c_{\alpha_1}s_{\alpha_3} + s_{\alpha_1}s_{\alpha_2}c_{\alpha_3}) & c_{\alpha_2}c_{\alpha_3} \end{pmatrix} \qquad R_{\beta} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix}$$

Loop Corrections and Coleman-Weinberg Potential

Why Loop Corrections?

- Tree-level potential may miss critical features of the vacuum structure
- Quantum corrections can shift the location and depth of minima
- Crucial for studying metastability and vacuum transitions

Coleman-Weinberg (CW) Potential

One-loop correction to the effective potential:

$$V_{\rm eff}(\phi) = V_{\rm tree}(\phi) + V_{\rm CW}(\phi)$$

General form of the CW Potential:

$$V_{\text{CW}}(\phi) = \sum_{j} \frac{n_{j}}{64\pi^{2}} (-1)^{2s_{j}} m_{j}^{4}(\phi) \left[\ln \left(\frac{m_{j}^{2}(\phi)}{\mu^{2}} \right) - c_{j} \right]$$

- Sums over all particle species: scalars, fermions and gauge bosons.

```
m_j(\phi): Field-dependent mass of particle species j.

n_j: Number of degrees of freedom for particle j.

s_j: Spin of particle j.

\mu: Renormalization scale
```

One-Loop Effects on Vacuum Nucleation

From Loop corrections to Tunneling Suppression

- \triangleright The CW correction $V_{CW}(\phi)$ reshapes the potential:
 - Shifts minima positions and barrier height
 - Affects the difference $\Delta V = V_{false} V_{true}$

Vacuum Nucleation

Nucleation Rate:

$$\Gamma(T) \sim T^4 \exp\left(-\frac{S_3(T)}{T}\right)$$

 Γ : probability per unit volume for bubble nucleation S_3 :bounce action — computed from the shape of the effective potential

- Higher potential barriers \Rightarrow larger $S_3 \Rightarrow$ suppressed tunneling
- One-loop effects can thus:
 - Prevent nucleation → Vacuum Trapping
 - Or enable transition by lowering the barrier

Vacuum Trapping

What is Vacuum Trapping?

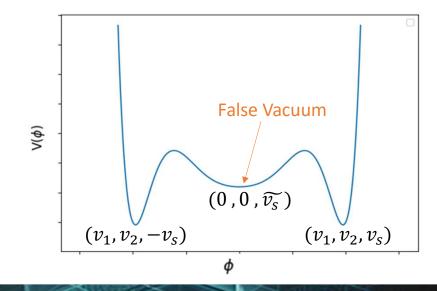
- > During the early universe, phase transitions occur as the temperature drops.
- Universe could find itself in a local vacuum state rather than the global one.
- If the barrier separating this from the true vacuum is too high, the field becomes trapped.

Consequences

- > The universe remains in a metastable vacuum:
 - Prevents Electroweak Symmetry Breaking (EWSB)
 - Unphysical particle masses or couplings

Conditions for Vacuum Trapping

- Coexisting minima along with:
 - Large potential barrier
 - Weak tunneling (large bounce action)



Domain Walls

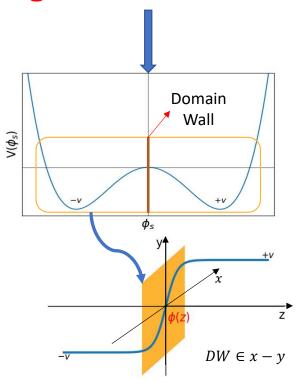
Discrete Symmetry

SSB

What are Domain Walls?

- > Topological defects arising from a spontaneously broken discrete symmetry.
- Act as boundaries/transition region for distinct degenerate vacuum states.
- Inside the Domain Wall, Energy of Metastable state > True EW Vacuum
- ➤ Problematic → Dominate the energy of the universe at some point in time.
- ➤ Permitted → For approx. discrete symmetries
 - If annihilation occurs before energy domination

Degenerate vacuum



Domain Walls

Thin-Wall Approximation

- > Bubble of true vacuum forms inside false vacuum, separated by a thin-wall
- Energy needed to nucleate a bubble of true vacuum

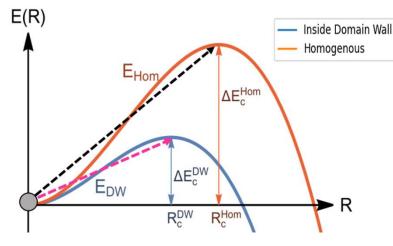
$$E(R) = 4\pi R^2 \sigma_B - \frac{4}{3}\pi R^3 \Delta V - \pi R^2 \sigma_{DW}$$

ightharpoonup Critical radius R_c at which the nucleated bubble becomes energetically favorable

$$R_c = \frac{2}{\Delta V} \left(\sigma_B - \frac{1}{4} \sigma_{\rm DW} \right)$$

Modifies the Bounce Action and hence the tunneling probability

$$\frac{S_3}{T} \approx \frac{16\pi}{3T} \frac{(\sigma_B - \sigma_{\rm DW}/4)^3}{\Delta V^2}$$



S. Blasi and A. Mariotti, Domain Walls Seeding the Electroweak Phase Transition

Analysis of Vacuum Trapping in N2HDM

Tools used

- ScannerS for parameter space scanning
- BSMPT for effective potential and analysing phase transitions

Physical Input Parameters

- > Type 2 N2HDM
- Parameters chosen in a way to support a First-Order Electroweak Phase Transition (FOEWPT)
- > Consistent with electroweak precision constraints
 - CP-even Higgs bosons m_{h_1} , m_{h_2} , m_{h_3}
 - CP-odd Higgs bosons m_A
 - Charged Higgs bosons $m_{H^{\pm}}$
 - Soft breaking Z_2 term m_{12}^2

- Singlet VEV v_s
- Ratio of the VEVs $tan \beta = \frac{v_2}{v_1}$
- EW scale $v = \sqrt{v_1^2 + v_2^2} \approx 246 \text{ GeV}$
- Mixing angles α_1 , α_2 , α_3

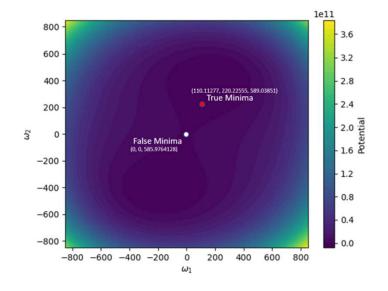
Vacuum Trapping in N2HDM

Parameter space scanned in the N2HDM

$m_{h_1}(\text{GeV})$	$m_{h_2}({ m GeV})$	$m_{h_3}({ m GeV})$	$m_{A,H^{\pm}}$ (GeV)	$\tan \beta$	α_1	α_2	α_3	$m_{12}^2(\text{GeV})$	v_s (GeV)
125.09	400	[300, 1000]	650	2	1.10714	1.82×10^{-8}	[-1.5, 1.5]	255 ²	[1, 1000]

Structure of the Effective Potential in Field Space

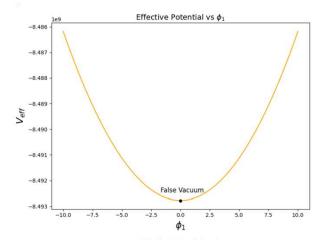
- Contour Plot suggests the presence of both a local (false) and global (true) minimum
- Variation in the effective potential values across the field space is numerically small

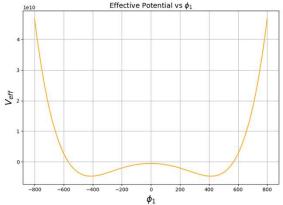


Vacuum Trapping in N2HDM

Isolating the minima

- For the false minimum, we compute $V_{eff}(\Phi 1)$ while fixing $\Phi 2 = 0$ and $\Phi S = vS$, and scanning over $\Phi 1$
- For the global minimum, we perform 1D scans along Φ1, fixing the remaining fields at values corresponding to the known minimum configurations
- > These 1D slice highlights the fine structure of the false minimum
- Such configurations are prime examples of vacuum trapping





Thermal Evolution and BSMPT Analysis

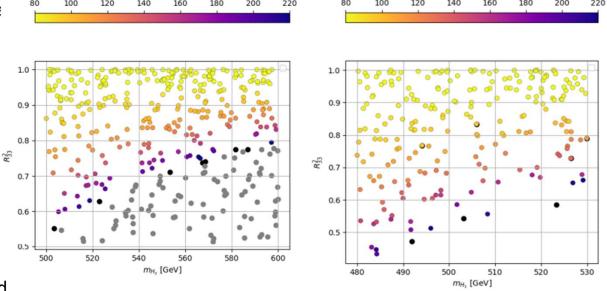
- ightharpoonup As the temperature decreases, during the universe's expansion, the structure of V_{eff} evolves dynamically
- ightharpoonup Using BSMPT, we determine the Critical Temperature T_{crit} and the Nucleation Temperature T_{nuc}
- Scan was performed at finite temperatures ranging from T = 0 GeV up to T = 1000 GeV
- Classification of the parameter points:
 - Complete transitions: Points where both T_{crit} and T_{nuc} are defined
 - Trapped vacua candidates: Points where T_{crit} is defined, but T_{nuc} is undefined (suggesting vacuum trapping)
 - Undefined transitions: Points where T_{crit} could not be determined

Thermal Evolution and BSMPT Analysis

- > Two different plots between $R_{33}^2 \ vs \ m_{H_3}$ are shown for different ranges of the value of m_{H_3}
- The different points are represented as
 - Black points: Trapped vacuum candidates
 - Colored points: Completed phase transitions __
 - Gray points: Undefined critical temperature

Interpretation

- Vacuum trapping candidates (black points) tend to appear for intermediate singlet compositions
- ➤ For the gray points, the Universe remains in the electroweak (EW) minimum throughout the entire temperature range upto T= 600 GeV



Thus, for the gray points, electroweak symmetry is not restored at high temperatures.

Thermal Evolution and BSMPT Analysis

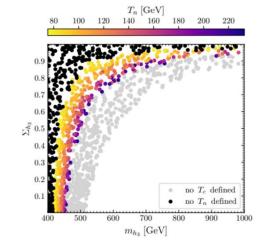
Cross-Check with Reference points

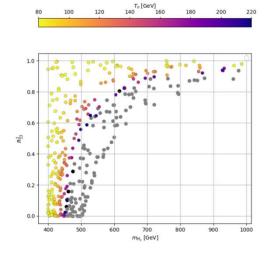
Exact Nucleation Condition

$$\frac{\Gamma(T_n)}{H^4(T_n)}=1$$

ApproximateNucleation Condition

$$\frac{S_3(T_n)}{T_n} \sim 140,$$





Only a small subset of the points indicated vacuum trapping whereas most points successfully completed their phase transitions when analyzed using the exact nucleation condition

Future Prospects.

- Improved Phenomenology
 - Study full bubble wall profiles beyond thin-wall approximation
- ➤ Incorporate quantum corrections to the scalar potential of the N2HDM
- ➤ Extending the study to incorporate full one-loop quantum corrections
- ➤ Reevaluate vacuum trapping points under radiative corrections and determine how loop effects modify the scalar landscape
- Investigate domain wall stability and its interplay with thermal tunneling using loop-corrected potentials beyond existing tools

Bibliography

- [1] <u>T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, and G. Weiglein, Fate of Electroweak Symmetry in the Early Universe: Non-restoration and Trapped Vacua in the N2HDM, (2021).</u>
- [2] S. Blasi and A. Mariotti, Domain Walls Seeding the Electroweak Phase Transition, 129 26, (2022).
- [3] M. Mühlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, *The N2HDM Under Theoretical and Experimental Scrutiny*, (2016).
- [4] <u>D. Goncalves, A. Kaladharan, and Y. Wu, Electroweak Phase Transition in the 2HDM: Collider and Gravitational Wave Complementarity, 105, (2022).</u>
- [5] R. A. Battye, A. Pilaftsis, and D. G. Viatic, *Domain Wall Constraints on Two-higgs-doublet Models* with Z 2 Symmetry, **102**, (2020).