

Florian Lika Supervisors: Gudrid Moortgat-Pick, Sven Heinemeyer

Minimal Supersymmetric Standard Model

- Gaugino and higgsino fields mix into mass eigenstates
- Neutralinos
- $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$
- Charginos

 ${\widetilde \chi}_1^\pm$, ${\widetilde \chi}_2^\pm$

International Linear Collider

- Future e^+e^- linear collider
- Model-independent Higgs searches
- Spin polarised beams
- Possible future experiment:
 - $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$
 - Luminosity $L = 500 \text{ fb}^{-1}$
 - $\sqrt{s} = 500 \text{ GeV}$

Neutralino Sector

- Bino Parameter M₁
- Wino Paramter M₂
- Higgsino parameter μ , tan β
- $\tan\beta = \frac{v_1}{v_2}$
- *M*₁ can only be determined with Neutralinos
- M_2 , μ , tan β are determined using chargino data

K. Desch, J. Kalinowski, G. Moortgat-Pick, M.M. Nojiri, G. Polesello https://arxiv.org/abs/hep-ph/0312069

$$\mathcal{M}_{N} = \begin{pmatrix} M_{1}\cos^{2}\theta_{W} + M_{2}\sin^{2}\theta_{W} & (M_{2} - M_{1})\sin\theta_{W}\cos\theta_{W} & 0 & 0\\ (M_{2} - M_{1})\sin\theta_{W}\cos\theta_{W} & M_{1}\cos^{2}\theta_{W} + M_{2}\sin^{2}\theta_{W} & m_{Z} & 0\\ 0 & m_{Z} & \mu\sin2\beta & -\mu\cos2\beta\\ 0 & 0 & -\mu\cos2\beta & -\mu\sin2\beta \end{pmatrix}$$

Neutralino Sector

- Particles assigned by mass hierarchy
- Parameter hierarchy determines sensibility

 M_2 = 200 GeV 350 GeV μ = $\tan\beta$ = 20

Neutralino masses in regards to changes of the mass parameters

10.01.2024

Chargino Sector

- Two unitary transformations for chargino mixing $U_{L,R}$
- Two mixing angles $\Phi_{L,R}$

Goal:

• Measure $\Phi_{L,R}$, $m_{\widetilde{\chi}_1^\pm}$, $m_{\widetilde{\chi}_1^0}$ to reconstruct SUSY-parameters

K. Desch, J. Kalinowski, G. Moortgat-Pick, M.M. Nojiri, G. Polesello https://arxiv.org/abs/hep-ph/0312069

$$\mathcal{M}_{C} = \begin{pmatrix} M_{2} & \sqrt{2}m_{W}\cos\beta \\ \sqrt{2}m_{W}\sin\beta & \mu \end{pmatrix}$$
$$\begin{pmatrix} \tilde{\chi}_{1}^{-} \\ \tilde{\chi}_{2}^{-} \end{pmatrix}_{L,R} = U_{L,R} \begin{pmatrix} \tilde{W}^{-} \\ \tilde{H}^{-} \end{pmatrix}_{L,R}$$
$$U_{L,R} = \begin{pmatrix} \cos\Phi_{L,R} & \sin\Phi_{L,R} \\ -\sin\Phi_{L,R} & \cos\Phi_{L,R} \end{pmatrix}$$
$$m_{\tilde{\chi}_{1,2}^{\pm}}^{2} = \frac{1}{2}(M_{2}^{2} + \mu^{2} + 2m_{W}^{2} \mp \Delta_{C})$$
$$\cos 2\phi_{L,R} = -(M_{2}^{2} - \mu^{2} \mp 2m_{W}^{2}\cos 2\beta)/\Delta_{C}$$

 $\Delta_C = \left[(M_2^2 - \mu^2)^2 + 4m_W^4 \cos^2 2\beta + 4m_W^2 (M_2^2 + \mu^2) + 8m_W^2 M_2 \mu \sin 2\beta \right]^{1/2}$

Dark Matter

- Dark matter relic density $\Omega h^2 = 0.12$ determined by Planck Collaboration
- $ilde{\chi}_1^0$ is dark matter candidate in MSSM
- Dependent on M_1 , M_2 , μ , tan β
- Relic density determined with <u>micrOMEGAs</u>
- Chargino coannihilation scenario $M_1 \sim M_2$
 - \rightarrow DM relic density is reduced by $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm}$ decay into SM particles
 - \rightarrow Bino/Wino-like DM resulting from $M_1 \sim M_2$

Strategy

- Take a parameter point with correct dark matter relic density
- Assume measurement of $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ and lightest chargino mass
 - at $\sqrt{s} = 400 \text{ GeV}$, 500 GeV
 - With $P_{e^-} = \pm 0.8$ and $P_{e^+} = \pm 0.6$
 - Considering necessary uncertainties especially from $M_{\widetilde{
 u}}$
- Calculate chargino mixing angles
- Redetermine chargino SUSY parameters $-M_2$, μ , tan β ,
- Assume measurement of lightest neutralino mass
- Redetermine neutralino SUSY parameters $-M_1$
- Use experimentally determined parameters to calculate DM relic density
- Compare indirectly derived DM relic density with correct DM relic density

Dataset

Constraints:

- Muon (g 2) BNL and Fermilab
- Vacuum stability stable and correct EW vacuum
- LHC constraints all relevant SUSY searches
- Dark matter relic density constraints *Planck 2018*
- Direct dark matter detection *XENON1T*

100 GeV	\leq	M_1	\leq	1 TeV
<i>M</i> ₁	\leq	<i>M</i> ₂	\leq	$1.1M_{1}$
$1.1M_{1}$	\leq	μ	\leq	10 <i>M</i> ₁
5	\leq	tanβ	\leq	60
100 GeV	\leq	$m_{ ilde{l}_{L,R}}$	\leq	1 TeV

M_1	$175.09~{\rm GeV}$	$\sigma^{400}_{-0.8,+0.6}$	$1744.2519 { m ~fb}$	100 GeV	\leq	M_1	\leq	1 TeV
M_2	$178.25~{\rm GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$	<i>M</i> ₁	≤	M_2	≤	1.1 <i>M</i> ₁
μ	$1215.85~{\rm GeV}$	$\sigma^{500}_{-0.8,+0.6}$	1265.4737 fb	$1.1M_{1}$	\leq	μ	\leq	$10M_1$
aneta	34.81	$\sigma^{500}_{+0.8,-0.6}$	$35.6168 { m ~fb}$	5	\leq	tanβ	\leq	60
$M_{\tilde{\nu}}$	$536.9~{ m GeV}$	$m_{\chi_1^{\pm}}$	$177.1484 {\rm GeV}$	100 GeV	\leq	$m_{\tilde{l}_{L,R}}$	\leq	1 TeV

Dataset

• Red dot corresponds to example point

10.01.2024

M_1	$175.09 { m ~GeV}$	$\sigma^{400}_{-0.8,+0.6}$	$1744.2519 { m ~fb}$
M_2	$178.25~{ m GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$
μ	$1215.85~{\rm GeV}$	$\sigma^{500}_{-0.8,+0.6}$	$1265.4737 { m ~fb}$
aneta	34.81	$\sigma^{500}_{+0.8,-0.6}$	$35.6168 { m ~fb}$
$M_{ ilde{ u}}$	$536.9~{ m GeV}$	$m_{\chi_1^{\pm}}$	$177.1484~{\rm GeV}$

Cross sections

- Sneutrino mass $M_{\widetilde{\nu}}$ relevant in t-channel propagator
- → Finding sensible limit becomes important objective

$$\sigma^{\pm}\{ij\} = \sigma(e^+e^- \to \tilde{\chi}_i^{\pm}\tilde{\chi}_j^{\mp})$$

M_1	$175.09~{ m GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25~{ m GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$
μ	$1215.85~{\rm GeV}$	$\sigma^{500}_{-0.8,+0.6}$	1265.4737 fb
aneta	34.81	$\sigma^{500}_{+0.8,-0.6}$	$35.6168 { m ~fb}$
$M_{\tilde{\nu}}$	$536.9~{ m GeV}$	$m_{\chi_1^{\pm}}$	$177.1484~{\rm GeV}$

Chargino mixing angles

- Single beam energy causes ambiguities
- → At least three beam configurations remove ambiguity
- Ellipses are not continuous
- \rightarrow Intersection difficult to obtain

Chargino mixing angles with intersection of all four beam configurations

		100	
M_1	$175.09 \mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	$1744.2519 { m ~fb}$
M_2	$178.25~{ m GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$
μ	$1215.85~{\rm GeV}$	$\sigma^{500}_{-0.8,+0.6}$	1265.4737 fb
aneta	34.81	$\sigma^{500}_{+0.8,-0.6}$	$35.6168 { m ~fb}$
$M_{\tilde{\nu}}$	$536.9~{ m GeV}$	$m_{\chi_1^{\pm}}$	$177.1484 {\rm GeV}$

Chargino mixing angles

- Adding uncertainties
 - 0.5% on chargino mass
 - Gaussian error on cross section
 - 0.5% on polarisation
 - \rightarrow Sneutrino mass error not included
- 1D Curves now become 2D bands
- Intersection becomes 2D area

1.0		400	1744 0510 0
M_1	175.09 GeV	$\sigma_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25 { m GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$
μ	$1215.85 { m GeV}$	$\sigma^{500}_{-0.8,+0.6}$	1265.4737 fb
aneta	34.81	$\sigma^{500}_{+0.8,-0.6}$	$35.6168 { m ~fb}$
$M_{\tilde{\nu}}$	$536.9~{ m GeV}$	$m_{\chi_1^{\pm}}$	$177.1484 {\rm GeV}$

Chargino mixing angles

- Set theory approach
 - Mixing angle bands are defined as polygons using the *shapely* Python libary
 - Intersection of polygons is calculated
- Accurately describes all the points within and on the boundary
- Calculation is easier, more efficient and less ambiguous compared to 1D case

Chargino mixing angles with uncertainties and the resulting intersection highlighted

M_1	$175.09~{ m GeV}$	$\sigma^{400}_{-0.8,+0.6}$	$1744.2519 { m ~fb}$
M_2	$178.25~{ m GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$
μ	$1215.85 { m ~GeV}$	$\sigma_{-0.8,\pm0.6}^{500}$	1265.4737 fb
aneta	34.81	$\sigma^{500}_{\pm 0.8,-0.6}$	$35.6168 { m ~fb}$
$M_{ ilde{ u}}$	$536.9~{ m GeV}$	$m_{\chi^{\pm}_1}$	$177.1484 { m ~GeV}$
	1	Λ <u>Ι</u>	1

Parameter Reconstruction – Scan

- Reconstruction done by parameter scan
- Random points from M_1, M_2, μ space are filtered by constraints
- Constraints:
 - Chargino masses within 0.5%
 - Cross-section condition
 - Neutralino masses within 0.5%

Scan results with cross-section condition visualised using the intersection surface.

-	M_1	$175.09~{\rm GeV}$	$\sigma^{400}_{-0.8,+0.6}$	$1744.2519 { m ~fb}$	100 GeV	\leq	M_1	\leq	1 TeV
	M_2	$178.25~{\rm GeV}$	$\sigma^{400}_{+0.8,-0.6}$	$49.8956 { m ~fb}$	<i>M</i> ₁	≤	M_2	≤	$1.1M_{1}$
	μ	$1215.85~{\rm GeV}$	$\sigma^{500}_{-0.8,+0.6}$	$1265.4737 { m ~fb}$	$1.1M_{1}$	\leq	μ	\leq	$10M_1$
	aneta	34.81	$\sigma^{500}_{+0.8,-0.6}$	$35.6168 { m ~fb}$	5	\leq	tanβ	\leq	60
_	$M_{\tilde{\nu}}$	$536.9~{ m GeV}$	$m_{\chi_1^{\pm}}$	$177.1484~{\rm GeV}$	100 GeV	\leq	$m_{\tilde{l}_{L,R}}$	\leq	1 TeV

Parameter Reconstruction – Scan

- Pink area: full scanning range
- Cyan points fulfill all conditions
- Green dotted lines describe allowed interval

2500Entire Scan Chargino Mass condition Neutralino Mass condition 2000Cross Section condition × Original point 1500μ 1000 500100 120140 160 180200 220 240 M_2

Scan results in the M_2, μ plane.

Mixing angles - $M_{\tilde{\nu}}$

Intersection shifts to border of physically allowed range

10.01.2024

Mixing angles - $M_{\tilde{\nu}}$

• No intersection at sufficient deviation of $M_{\tilde{\nu}}$

10.01.2024

-	M_1	$175.09 { m ~GeV}$	$\sigma^{400}_{08+0.6}$	1744.2519 fb
	M_2	178.25 GeV	$\sigma_{+0.8,\pm0.6}^{-0.8,\pm0.6}$	49.8956 fb
	11	1215.85 GeV	$\sigma^{+0.8,-0.6}$	1265.4737 fb
	$\frac{\mu}{\tan\beta}$	3/ 81	$\sigma^{-0.8,+0.6}$	35.6168 fb
		54.01	0+0.8,-0.6	$177 1494 \text{ C}_{\odot} \text{V}$
_	$M_{\widetilde{ u}}$	536.9 GeV	$m_{\chi_1^{\pm}}$	177.1484 Gev

Mixing angles - $M_{\tilde{\nu}}$

Cross-section area increases

400

500

- Blue border is created by taking the convex hull of all shapes
- Important:

Limits on $M_{\tilde{\nu}}$

600

 $M_{\tilde{\nu}}$ in GeV

700

800

900

10.01.2024

300

1000 800 $M_{\tilde{p}}$ in GeV

$$Q \in \{M_1, M_2, \mu, \Omega h^2\}$$

• Upper limit increasing with $M_{\tilde{\nu}}$ uncertainty

220

10.01.2024

$$D_{\rm rel} = \frac{\bar{Q}_{\rm Scan} - Q_{\rm True}}{Q_{\rm True}}$$

$$Q \in \{M_1, M_2, \mu, \Omega h^2\}$$

 $M_{1,\mathrm{True}}$

- Lower values of M_1 not reproduced
- Upper limit increasing with $M_{\tilde{\nu}}$ uncertainty 10.01.2024

$$D_{\rm rel} = \frac{\bar{Q}_{\rm Scan} - Q_{\rm True}}{Q_{\rm True}}$$

$$Q \in \{M_1, M_2, \mu, \Omega h^2\}$$

Results – μ Relative distance of the average value of μ produced by the scan without M_{ν} uncertainty 1.0with M_{ν} uncertainty 0.80.60.4 $D_{\rm rel}$ 0.20.0 -0.2-0.41000 1500 Ц

• Different scenario or heavier particles necessary for accurate reproduction

10.01.2024

$$D_{\rm rel} = \frac{\bar{Q}_{\rm Scan} - Q_{\rm True}}{Q_{\rm True}}$$

$$Q \in \{M_1, M_2, \mu, \Omega h^2\}$$

Additional constraints could be added to increase accuracy

10.01.2024

Results $-\Delta M$

• Relic density dependent on $M_2 - M_1$ explaining the outliers

10.01.2024

Conclusion

- *M*₂ reproduced most accuratly
- M_1 reproduced slightly less accuratly compared to M_2
 - Smaller values could not be reproduced
- More particles need to be analysed to reproduce μ conclusively
- Ωh^2 reproduced largely within allowed range
 - Accuracy can be improved by adding constraints

Next Steps

- Analysis for different scenarios
 - \tilde{l} coannihilation, Wino DM, higgsino DM
- Add analysis of heavier particles into the established analysis
- Different Beam configurations
 - Increase Energy
 - Different collider setups
- Increase performance and streamline evaluation

Thank you

https://xkcd.com/2205/

Backup

$$R = \sin^2 \theta_W$$

$$L = -\frac{1}{2} + \sin^2 \theta_W$$

$$\int_C = \frac{q_{\tilde{\chi}}}{2E_b^3 \pi} \int d \cos \theta_W$$

$$G = \frac{e^2}{s}$$

$$Z = \frac{g^2}{\cos^2 \theta_W (s - m_Z^2 + im_Z \Gamma_Z)}$$

$$\tilde{N} = \frac{g^2}{(t - m_{\tilde{\nu}}^2)}$$

$$c_{LR} = (1 - P(e^-))(1 + P(e^+))$$

$$c_{RL} = (1 + P(e^-))(1 - P(e^+))$$

$$f_1 = (p_1 p_2)(p_2 p_3)$$

$$f_2 = (p_1 p_3)(p_2 p_4)$$

$$f_3 = \frac{sm_{\tilde{\chi}_L^\pm}}{2}$$

 c_1

 c_4

 C_5

 c_6

$$\begin{split} c_1 &= \int_C |Z|^2 \{c_{LR}L^2 f_2 + c_{RL}R^2 f_1\} \\ c_2 &= \int_C |Z|^2 \{c_{LR}L^2 (1 - 4L) (2f_2 + f_3) + c_{RL}R^2 (1 - 4R) (2f_1 + f_3)\} \\ &- \int_C G \tilde{N}4 \{c_{LR}L (2f_2 + f_3) + c_{RL}R (2f_1 + f_3)\} - \int_C Re(Z) \tilde{N}c_{LR}L f_3 \\ c_3 &= \int_C |Z|^2 (c_{LR}L^2 f_1 + c_{RL}R^2 f_2) - \int_C Z \tilde{N}2 c_{LR}L f_1 + \int_C \tilde{N}^2 c_{LR} f_1 \\ c_4 &= \int_C |Z|^2 (1 - 4L) \{c_{LR}L^2 (2f_1 + f_3) + c_{RL}R^2 (2f_2 + f_3)\} + \int_C \tilde{N}^2 2c_{LR} f_1 \\ &+ \int_C Re(Z) \tilde{N}c_{LR}L \{-4f_1 - f_3 + 4L (2f_1 + f_3)\} + \int_C G \tilde{N}4 c_{LR} (2f_1 + f_3) \\ &- \int_C G Re(Z) 4 \{c_{LR}L (2f_1 + f_3) + c_{RL}R (2f_2 + f_3)\} \\ c_5 &= \int_C |Z|^2 (c_{LR}L^2 + c_{RL}R^2) f_3 - \int_C Re(Z) \tilde{N}c_{LR}L f_3 \\ c_6 &= \int_C |Z|^2 \{c_{LR}L^2 (1 - 8L) + c_{RL}R^2 (1 - 8L) + 16L^2 (c_{LR}L^2 + c_{RL}R^2)\} (f_1 + f_2 + f_3) \\ &- \int_C Re(Z) \tilde{N}c_{LR}L (1 - 4L) (2f_1 + f_3) + \int_C G^2 (c_{LR} + c_{RL}) (f_1 + f_2 + f_3) \\ &- \int_C Re(Z) G8 \{c_{RL}R + c_{LR}L (1 - 4L)\} (f_1 + f_2 + f_3) + \int_C \tilde{N}^2 c_{LR} f_1 \\ &+ \int_C G \tilde{N}4 c_{LR} (2f_1 + f_3) \end{split}$$

10.01.2024