Sparticle Decays and Intelligent Scans in the NMSSM

Thi Nhung Dao, **Felix Egle**, Martin Gabelmann, Margarete Mühlleitner 13.02.2025

Introduction

Goals of the Project

- Calculate the supersymmetric particle decays in the (complex) next-to-minimal supersymmetric extension of the Standard Model (NMSSM)
- Update the code SDECAY [M. Mühlleitner, Djouadi, and Mambrini 2005] from the MSSM to the NMSSM
- Link the code to NMSSMCALC [Baglio et al. 2014] to calculate Higgs masses
- Caveat in SUSY models: scalar masses are derived quantities, no "easy" scan of viable benchmark points with desired masses ⇒ set up program chain to perform "intelligent" scans, including current experimental limits

Illustration by Sandbox Studio, Chicago

Introduction

The known world of Standard Model particles

The hypothetical world of SUSY particles

SUSY force carriers

Reviews for SUSY

- MSSM: [Dawson 1997; Martin 1998; DJOUADI 2008]
- NMSSM: [Maniatis 2010; Ellwanger, Hugonie, and Teixeira 2010]

Introduction to the NMSSM

NMSSM Lagrangian

> NMSSM Superpotential W_{NMSSM} and soft breaking Lagrangian $\mathcal{L}_{NMSSM}^{soft}$:

$$\begin{split} \mathcal{W}_{\text{NMSSM}} = & \mathbf{Y}_u \hat{u} (\hat{Q}^{\mathsf{T}} \epsilon \hat{H}_u) - \mathbf{Y}_e \hat{e} (\hat{L}^{\mathsf{T}} \epsilon \hat{H}_d) - \mathbf{Y}_d \hat{d} (\hat{Q}^{\mathsf{T}} \epsilon \hat{H}_d) + \lambda \hat{S} (\hat{H}_u^{\mathsf{T}} \epsilon \hat{H}_d) + \frac{1}{3} \kappa \hat{S}^3 , \\ \mathcal{L}_{\text{NMSSM}}^{\text{soft}} = & - m_{H_d}^2 H_d^{\dagger} H_d - m_{H_u}^2 H_u^{\dagger} H_u - \mathbf{m}_{\tilde{Q}}^2 \tilde{Q}^{\dagger} \tilde{Q} - \mathbf{m}_{\tilde{L}}^2 \tilde{L}^{\dagger} \tilde{L} \\ & - \mathbf{m}_{\tilde{u}_R}^2 \tilde{u}_R^* \tilde{u}_R - \mathbf{m}_{\tilde{d}_R}^2 \tilde{d}_R^* \tilde{d}_R - \mathbf{m}_{\tilde{l}_R}^2 \tilde{I}_R^* \tilde{l}_R \\ & - \left(- \mathbf{T}_l H_d^{\mathsf{T}} \epsilon \tilde{L} \tilde{l}_R^* - \mathbf{T}_d H_d^{\mathsf{T}} \epsilon \tilde{Q} \tilde{d}_R^* + \mathbf{T}_u H_u^{\mathsf{T}} \epsilon \tilde{Q} \tilde{u}_R^* \right. \\ & + \frac{M_1}{2} \tilde{B} \tilde{B} + \frac{M_2}{2} \tilde{W}_i \tilde{W}_i + \frac{M_3}{2} \tilde{G} \tilde{G} + \text{h.c.} \end{split} \right) \\ & - m_S^2 |S|^2 + \left(T_\lambda S H_d^{\mathsf{T}} \epsilon H_u - \frac{1}{3} T_\kappa S^3 + \text{h.c.} \right) , \end{split}$$

All parameters in brackets can be complex

Superfield		scalar	fermion	generations	$ (U(1)_{Y}, SU(2)_{L}, SU(3)_{C})$
quark-squark	\hat{Q}	$\tilde{Q} = (\tilde{u}_{L}, \tilde{d}_{L})^{T}$	$Q = (u_{L}, d_{L})^{T}$	3	$(\frac{1}{6}, 2, 3)$
	\hat{u}	$ ilde{u}_{R}^{*}$	u_{R}^{\dagger}	3	$(-\frac{2}{3}, 1, \overline{3})$
	\hat{d}	$ ilde{d}_{R}^{*}$	d^{\dagger}_{R}	3	$(\frac{1}{3}, 1, \overline{3})$
lepton-slepton	\hat{L}	$ ilde{L} = (ilde{v}, ilde{l}_{L})^{T}$	$L = (v, l_{L})^{T}$	3	$(-\frac{1}{2}, 2, 1)$
	î	$ ilde{l}_{R}^*$	l_{R}^{\dagger}	3	(1, 1, 1)
Higgs-Higgsino	\hat{H}_u	$H_u = (H_u^+, H_u^0)^T$	$\tilde{H}_u = (\tilde{H}_u^+, \tilde{H}_u^0)^T$	1	$(\frac{1}{2}, 2, 1)$
	\hat{H}_d	$H_d = \left(H_d^0, H_d^-\right)^T$	$\tilde{H}_d = (\tilde{H}_d^0, \tilde{H}_d^-)^T$	1	$(-\frac{1}{2}, 2, 1)$
	\hat{S}	S	$ ilde{S}$	1	(0, 1, 1)
		Vector boson	fermion		
B-Bino	\hat{B}	В	$ ilde{B}$	1	(0, 1, 1)
W-Wino	\hat{W}	W	ilde W	1	(0, 3 , 1)
gluon-gluino	\hat{G}	g	$ ilde{g}$	1	(0, 1, 8)

Introduction to the NMSSM

Summary

- NMSSM: MSSM with an additional singlet superfield ⇒ solves the µ problem, more parameters
- NMSSM provides an interesting extended scalar sector, a DM candidate and overall rich phenomenology

Illustration by Sandbox Studio, Chicago

Sparticle Decays in the NMSSM

Decay Channels

- > Two-body decays (+ QCD corrections)
- Three-body decays
- Radiative loop decays

[A. Denner et al. 1992; Ansgar Denner et al. 1992]

Two-Body Decays

Notation

- Deutral Higgs scalars
- > f, f': are generic fermions; q, q' generic guarks (suppressed generation indices)
- Tilde indicates the corresponding superpartners

$$ig> ilde{\chi}^0_i$$
: neutralinos ($i=1,...,5$, $j=1,...,4$)

>
$$\tilde{\chi}^{\pm}_k$$
 charginos ($k=1,2$)

Two-Body Decay Channels

- Slepton (\tilde{l}) decays:
- Sneutrino ($\tilde{\nu}$) decays:
- Neutralino ($\tilde{\chi}^0$) decays:
- Chargino ($\tilde{\chi}^+$) decays:
- Gluino (\tilde{g}) decays: $\tilde{g} \rightarrow \tilde{q}^* q, \, \tilde{q} \bar{q}$

$$\tilde{\chi}^0_i \to W^{\pm} \tilde{\chi}^{\mp}_k, H^{\pm} \tilde{\chi}^{\mp}_k, Z \tilde{\chi}^0_j, \Phi \tilde{\chi}^0_j, \tilde{f} \bar{f}, \tilde{f}^* f$$

- $\tilde{\chi}_{k}^{+} \rightarrow W^{+} \tilde{\chi}_{i}^{0}, H^{+} \tilde{\chi}_{i}^{0}, Z \tilde{\chi}_{1}^{+}, \Phi \tilde{\chi}_{1}^{+}, ff'$
- Squark (\tilde{q}) decays: $\tilde{q} \rightarrow \tilde{\chi}_{i}^{0} \tilde{q}', \tilde{\chi}_{k}^{\pm} \tilde{q}', \tilde{g} \tilde{q}', H^{\pm} \tilde{q}', W^{\pm} \tilde{q}', \Phi \tilde{q}', Z \tilde{q}'$

Three-Body Decays

Three-Body Decay Channels

If two-body decays are kinematically forbidden, three-body decays become important. >

- Neutralino ($\tilde{\chi}^0$) decays: $\tilde{\chi}^0_i \to f \bar{f} \tilde{\chi}^0_i, f \bar{f}' \tilde{\chi}^{\pm}_k, q \bar{q} \tilde{g}$
- Chargino $(\tilde{\chi}^+)$ decays: $\tilde{\chi}^+_k \to f \bar{f} \tilde{\chi}^+_1, f \bar{f}' \tilde{\chi}^0_i, q \bar{q}' \tilde{q}$
- Gluino (\tilde{g}) decays: $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_i^0, q \bar{q}' \tilde{\chi}_k^{\pm}, q' \tilde{q} H^{\pm} / W^{\pm}$
- Squark (\tilde{q}) decays: $\tilde{q} \rightarrow q' \tilde{\chi}_i^0 W^{\pm} / H^{\pm}, q' \tilde{q} W^{\pm} / H^{\pm}, q' \tilde{f}' \tilde{f}, \tilde{a}' f' \tilde{f}$

Radiative Loop Decays [Haber and Wyler 1989]

Radiative Neutralino Decay

> $\tilde{\chi}_i^0 \rightarrow \tilde{\chi}_j^0 \gamma$ kinematically always allowed (i, j = 1, ..., 5, i > j)

Notation

- > Electrically charged fermions f, and superpartners \tilde{f}
- > Charginos $\tilde{\chi}_k^+$ (k = 1, 2), charged Higgs boson H^{\pm} , charged Goldstone boson G^{\pm}
- Diagrams with inverted arrows also have to be considered.

NLO QCD Corrections to Two-Body Decays

Literature

- NLO QCD corrections in the MSSM: [S. Kraml et al. 1996; Beenakker, Höpker, and Zerwas 1996; Djouadi, Hollik, and Jünger 1997; Beenakker, Höpker, Plehn, et al. 1997; Bartl, Eberl, Hidaka, Kon, et al. 1997; Bartl, Eberl, Hidaka, S. Kraml, et al. 1998; Arhrib et al. 1998]
- Compared results also with [Hollik, Lindert, and Pagani 2013; R. Gröber et al. 2015; Gavin et al. 2015]

QCD Corrections to Two-Body Decays

- QCD corrections to Neutralino/Chargino/Gluino decays into squark-quark pairs and all squark decays
- Numerical checks for UV and IR finiteness, small gluon and quark mass as IR and colinear regulators
- Implementation of loop integrals taken from QCDloop [Ellis and Zanderighi 2008]

Field Renormalization

Field and Mass Renormalization

$$ilde{q}_0 = \left(1 + \frac{1}{2}\delta Z^{\tilde{q}}\right)\tilde{q}, \qquad m_{\tilde{q},0}^2 = m_{\tilde{q}}^2 + \delta m_{\tilde{q}}^2,$$

$$m_{\tilde{q},0} = \left(1 + \frac{1}{2}\delta Z^{q_{L/R}}\right)q_{L/R}, \qquad m_{\pi,0} = m_{\pi} + \delta m_{\pi},$$

$$\begin{split} q_{\mathsf{L}/\mathsf{R},0} &= \left(1 + \frac{1}{2}\delta Z^{g_{\mathsf{L}/\mathsf{R}}}\right) q_{\mathsf{L}/\mathsf{R}}, \qquad m_{q,0} = m_q + \delta m_q, \\ \tilde{g}_{\mathsf{L}/\mathsf{R},0} &= \left(1 + \frac{1}{2}\delta Z^{\tilde{g}_{\mathsf{L}/\mathsf{R}}}\right) \tilde{g}_{\mathsf{L}/\mathsf{R}}, \qquad m_{\tilde{g},0} = m_{\tilde{g}} + \delta m_{\tilde{g}}, \end{split}$$

Notation

- q (q̃): quark (squark fields, g̃: gluino field
- δZ: wave function renormalization constant
- $> P_{L/R} = (1 \mp \gamma_5)/2$
- U^qL/R (W^{q̃}): quark (squark) rotation matrix
- > Σ_{ij}^q : quark self-energy

Squark Self-Energy

Quark Self-Energy

Gluino Self-Energy

$$\tilde{g}$$
 g \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g}

DESY. | Sparticle Decays and Intelligent Scans in the NMSSM | Felix Egle | 13.02.2025

Field Renormalization

Wave Function Renormalization Constants

$$\begin{split} \delta Z_{st}^{\tilde{q}} &= \begin{cases} - \widetilde{\mathsf{Re}} \, \frac{\partial \widetilde{\Sigma}_{ss}^{q}(p^{2})}{\partial p^{2}} \Big|_{p^{2} = m_{\tilde{q}s}^{2}} \quad s = t \\ \frac{2}{m_{\tilde{q}_{s}}^{2} - m_{\tilde{q}_{t}}^{2}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{st}^{\tilde{q}}(p^{2} = m_{\tilde{q}t}^{2}) \; s \neq t \quad , \end{cases} \\ \delta Z_{ij}^{q} &= \frac{2}{m_{\tilde{q}_{i}}^{2} - m_{\tilde{q}_{j}}^{2}} \left(m_{q_{i}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{Ls}}(m_{q_{j}}^{2}) + m_{q_{j}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{Rs}}(m_{q_{j}}^{2}) + m_{q_{j}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{L}}(m_{q_{j}}^{2}) + m_{q_{i}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{R}}(m_{q_{j}}^{2}) \right) (i \neq j) \, , \\ \delta Z_{ij}^{q} &= \frac{2}{m_{\tilde{q}_{i}}^{2} - m_{\tilde{q}_{j}}^{2}} \left(m_{q_{j}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{Ls}}(m_{q_{j}}^{2}) + m_{q_{i}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{Rs}}(m_{q_{j}}^{2}) + m_{q_{i}} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{L}}(m_{q_{j}}^{2}) + m_{q_{j}}^{2} \widetilde{\mathsf{Re}} \widetilde{\Sigma}_{ij}^{q,\mathsf{R}}(m_{q_{j}}^{2}) \right) (i \neq j) \, , \end{split}$$

Field Renormalization

Counterterms for Mixing Matrices

$$\begin{split} \delta u^{q_{\mathsf{L}/\mathsf{R}}} &= \frac{1}{4} \left(\delta Z^{q_{\mathsf{L}/\mathsf{R}}} - \delta Z^{q_{\mathsf{L}/\mathsf{R}}\dagger} \right) \\ \delta w^{\tilde{q}} &= \frac{1}{4} \left(\delta Z^{\tilde{q}} - \delta Z^{\tilde{q}\dagger} \right) \end{split}$$

Problem arises if squark masses are degenerate, or if quarks are massless.

Overall Vertex CT remains finite (do limit carefully)

Renormalization of the Strong Coupling Constant

Counterterm for Strong Coupling Constant

$$\begin{split} g^0_s &= g_s + \delta g_s \,, \\ \delta g^{\overline{\mathrm{MS}}}_s &= -\frac{\alpha_s}{8\pi} \beta_0 \Delta_{\mathrm{UV}} g_s \end{split}$$

- 5-flavour scheme for the running of the coupling.
- Decouple the top quark and all heavy SUSY particles:

$$\delta g_s^{\overline{\rm MS},5} = \delta g_s^{\overline{\rm MS}} - \frac{\alpha_s}{8\pi} \left[2\log\frac{m_{\tilde{g}}^2}{\mu_R^2} + \frac{1}{6}\sum_{i=1}^{12}\log\frac{m_{\tilde{q}_i}^2}{\mu_R^2} + \frac{2}{3}\log\frac{m_t^2}{\mu_R^2} \right] g_s$$

Notation

- MS: minimal subtraction scheme
- > μ_R^2 : renormalization scale

>
$$\beta_0 = 3$$

$$> \Delta_{\rm UV} = \epsilon^{-1} - \gamma_{\rm E} + \log 4\pi$$

Dimensional Regularization and SUSY [Martin and Vaughn 1993]

SUSY Restoring Counterterms

Dimensional regularization (DReg) breaks SUSY in contrast do dimensional reduction (DRed)

Additional counterterms to restore SUSY:

2007; Margarete Mühlleitner et al. 2015]

Squark Mass Matrix

$$\mathcal{M}_{\tilde{u}} = \begin{pmatrix} m_{\tilde{Q}}^{2} + m_{u}^{2} + \frac{-g_{1}^{2} + 3g_{2}^{2}}{24}v^{2}\cos(2\beta) & m_{u}\left(A_{u}^{*}e^{-i\varphi_{u}} - \mu_{\text{eff}}\cot\beta\right) \\ m_{u}\left(A_{u}e^{i\varphi_{u}} - \mu_{\text{eff}}^{*}\cot\beta\right) & m_{\tilde{u}_{R}}^{2} + m_{u}^{2} + \frac{g_{1}^{2}}{6}v^{2}\cos(2\beta) \end{pmatrix}$$
$$\mathcal{M}_{\tilde{d}} = \begin{pmatrix} m_{\tilde{Q}}^{2} + m_{d}^{2} + \frac{-g_{1}^{2} - 3g_{2}^{2}}{24}v^{2}\cos(2\beta) & m_{d}\left(A_{d}^{*} - \mu_{\text{eff}}e^{i\varphi_{u}}\tan\beta\right) \\ m_{d}\left(A_{d} - \mu_{\text{eff}}^{*}e^{-i\varphi_{u}}\tan\beta\right) & m_{\tilde{d}_{R}}^{2} + m_{d}^{2} - \frac{g_{1}^{2}}{12}v^{2}\cos(2\beta) \end{pmatrix}$$

$$\begin{split} \tilde{q}^m &= W^{\tilde{q}} \tilde{q} \,, \\ \begin{pmatrix} m_{\tilde{q}_1^2} & 0 \\ 0 & m_{\tilde{q}_2^2} \end{pmatrix} &= W^{\tilde{q}} \mathcal{M}_{\tilde{q}} W^{\tilde{q}\dagger} \end{split}$$

DESY. | Sparticle Decays and Intelligent Scans in the NMSSM | Felix Egle | 13.02.2025

2007; Margarete Mühlleitner et al. 2015]

Squark Mass Matrix Counterterms

$$\begin{split} W^{\tilde{q}\dagger}(\mathbbm{1} + \delta w^{\tilde{q}\dagger}) \begin{pmatrix} m_{\tilde{q}_1}^2 + \delta m_{\tilde{q}_1}^2 & 0 \\ 0 & m_{\tilde{q}_2}^2 + \delta m_{\tilde{q}_2}^2 \end{pmatrix} (\mathbbm{1} + \delta w^{\tilde{q}}) W^{\tilde{q}} = \\ W^{\tilde{q}\dagger} \begin{pmatrix} m_{\tilde{q}_1}^2 + \delta m_{\tilde{q}_1}^2 & \delta Y_{\tilde{q}} \\ \delta Y_{\tilde{q}}^* & m_{\tilde{q}_2}^2 + \delta m_{\tilde{q}_2}^2 \end{pmatrix} W^{\tilde{q}} \,, \end{split}$$

with $\delta Y_{\tilde{q}}$ defined as

$$\delta Y_{\tilde{q}} \equiv \delta w_{12}^{\tilde{q}} (m_{\tilde{q}_1}^2 - m_{\tilde{q}_2}^2) \,.$$

2007; Margarete Mühlleitner et al. 2015]

Squark Mass Matrix Counterterms

$$\begin{split} W^{\tilde{u}^{\dagger}} \begin{pmatrix} \delta m_{\tilde{u}_1}^2 & \delta Y_{\tilde{u}} \\ \delta Y_{\tilde{u}}^* & \delta m_{\tilde{u}_2}^2 \end{pmatrix} W^{\tilde{u}} = & \begin{pmatrix} \delta m_{\tilde{U}}^2 + \delta m_u^2 & \delta m_u \left(A_u^* e^{-i\varphi_u} - \mu_{\text{eff}} \cot \beta \right) + \delta A_u^* m_u e^{-i\varphi_u} \\ \delta m_u \left(A_u e^{i\varphi_u} - \mu_{\text{eff}}^* \cot \beta \right) + \delta A_u m_u e^{i\varphi_u} & \delta m_{\tilde{u}_R}^2 + \delta m_u^2 \end{pmatrix} \\ W^{\tilde{d}^{\dagger}} \begin{pmatrix} \delta m_{\tilde{d}_1}^2 & \delta Y_{\tilde{d}} \\ \delta Y_{\tilde{d}}^* & \delta m_{\tilde{d}_2}^2 \end{pmatrix} W^{\tilde{d}} = & \begin{pmatrix} \delta m_{\tilde{D}}^2 + \delta m_d^2 & \delta m_d \left(A_d^* - \mu_{\text{eff}} e^{i\varphi_u} \tan \beta \right) + \delta A_d^* m_d \\ \delta m_d \left(A_d - \mu_{\text{eff}}^* e^{-i\varphi_u} \tan \beta \right) + \delta A_d m_d & \delta m_{\tilde{d}_R}^2 + \delta m_d^2 \end{pmatrix} , \end{split}$$

Remark

> Considere up-type squarks \tilde{u} and down-type squarks \tilde{d} separately

> Introduce two counterterms $\delta m_{\tilde{U}}^2$, $\delta m_{\tilde{D}}^2$ for $m_{\tilde{Q}}^2$

2007; Margarete Mühlleitner et al. 2015]

Translation of Counterterms

$$\begin{split} \delta A_{u} &= \frac{e^{-i\varphi_{u}}}{m_{u}} \left(W_{11}^{\tilde{u}} W_{12}^{\tilde{u}} \delta m_{\tilde{u}_{1}}^{2} + W_{22}^{\tilde{u}} W_{21}^{\tilde{u}} \delta m_{\tilde{u}_{2}}^{2} + W_{12}^{\tilde{u}} W_{21}^{\tilde{u}} \delta Y_{u} + W_{22}^{\tilde{u}} W_{11}^{\tilde{u}} \delta Y_{u}^{*} \right. \\ & \left. - \delta m_{u} \left(A_{u} e^{i\varphi_{u}} - \mu_{\text{eff}}^{*} \cot \beta \right) \right) \,, \\ \delta A_{d} &= \frac{1}{m_{d}} \left(W_{11}^{\tilde{d}} W_{12}^{\tilde{d}} \delta m_{\tilde{d}_{1}}^{2} + W_{22}^{\tilde{d}} W_{21}^{\tilde{d}} \delta m_{\tilde{d}_{2}}^{2} + W_{12}^{\tilde{d}} W_{21}^{\tilde{d}} \delta Y_{d} + W_{22}^{\tilde{d}} W_{11}^{\tilde{d}} \delta Y_{d}^{*} \right. \\ & \left. - \delta m_{d} \left(A_{d} - \mu_{\text{eff}}^{*} e^{-i\varphi_{u}} \tan \beta \right) \right) \,, \\ \delta m_{\tilde{Q}}^{2} &= |W_{11}^{\tilde{q}}|^{2} \delta m_{\tilde{q}_{1}}^{2} + |W_{21}^{\tilde{q}}|^{2} \delta m_{\tilde{q}_{2}}^{2} + W_{11}^{\tilde{q}} W_{21}^{\tilde{q}} \delta Y_{\tilde{q}} + W_{21}^{\tilde{q}} W_{11}^{\tilde{q}} \delta Y_{\tilde{q}}^{*} - 2m_{q} \delta m_{q} \,, \\ \delta m_{q_{R}}^{2} &= |W_{12}^{\tilde{q}}|^{2} \delta m_{\tilde{q}_{1}}^{2} + |W_{22}^{\tilde{q}}|^{2} \delta M_{\tilde{q}}^{2} + W_{12}^{\tilde{q}} W_{22}^{\tilde{q}} \delta Y_{\tilde{q}} + W_{22}^{\tilde{q}} W_{12}^{\tilde{q}} \delta Y_{\tilde{q}}^{*} - 2m_{q} \delta m_{q} \,, \end{split}$$

$$\begin{split} A_q^{\text{OS}} &= A_q^{\overline{\text{DR}}} - \delta A_q^{\text{fin}} ,\\ m_{\tilde{U}}^{2,\text{OS}} &= m_{\tilde{Q}}^{2,\overline{\text{DR}}} - \delta m_{\tilde{U}}^{2,\text{fin}} ,\\ m_{\tilde{q}_{\text{R}}}^{2,\text{OS}} &= m_{\tilde{q}_{\text{R}}}^{2,\overline{\text{DR}}} - \delta m_{\tilde{q}_{\text{R}}}^{2,\text{fin}} , \end{split}$$

$$\begin{split} m^{2,\mathrm{OS}}_{\tilde{D}} &= m^{2,\overline{\mathrm{DR}}}_{\tilde{Q}} - \delta m^{2,\mathrm{fin}}_{\tilde{D}} \,, \\ m^{\mathrm{OS}}_{\tilde{g}} &= |M^{\overline{\mathrm{DR}}}_{3}| - \delta m^{\mathrm{fin}}_{\tilde{g}} \,. \end{split}$$

DESY. | Sparticle Decays and Intelligent Scans in the NMSSM | Felix Egle | 13.02.2025

NLO Vertex Corrections

Gluino Decays

Squark Decays to Vector Bosons

Absorptive Corrections

Remarks

- OS scheme: Only the real parts of the loop integrals are absorbed (Re)
- Imaginary parts may appear, play a role if couplings are complex
- Only squark self energies have to be considered (gluino does not mix, quarks are always lighter than squarks)

Feynman Diagrams

Code Implementation

Implementation

- Analytic results implemented into a new code and linked to NMSSMCALC
- > DR/OS parameter conversion is implemented iteratively
- 3-body decays are calculated if necessary
- Results are appended to output in SLHA format

Phenomenological Analysis

Setup

Use code BSMArt to link NMSSMCALC + decay code to HiggsTools, SModels and other tools

- Do intelligent parameter scan (i.e. active learning, MCMC, ...) to scan the vast parameter regions
- Do phenomenological analysis

NMSSMCALC [Ender et al. 2012; Graf et al. 2012; Nhung et al. 2013; Baglio et al. 2014; Mühlleitner et al. 2015; King et al. 2015;

Mühlleitner et al. 2015; Dao, Gröber, et al. 2019; Dao et al. 2021; Borschensky et al. 2023; Dao et al. 2022, 2023]

Program Summary

- Calculation of Higgs boson masses including loop corrections (up to $O(\alpha_t \alpha_s + (\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$) and Higgs decay widths and branching ratios
- > Calculation of trilinear Higgs couplings including loop corrections (up to $O(\alpha_t \alpha_s + \alpha_t^2)$)
- Additional precision predictions (W boson mass, muon anomalous magnetic moment, electric dipole moments)

Program Chain

Setup

- BSMArt [Goodsell and Joury 2024]: handling of scan procedure, generation of input parameters. Several options (MCMC, active learning,..) => dedicated search for benchmark points with interesting mass scenarios
- Calculation of electroweakino production with additional code
- Calculation of di-Higgs production with adapted version of HPAIR for the NMSSM [Nhung et al. 2013] and single-Higgs production with SusHi [Harlander, Liebler, and Mantler 2013, 2017]
- HiggsTools [Bahl et al. 2023]: limits from Higgs searches and measurements
- SModels [Sabine Kraml et al. 2014; Ambrogi et al. 2017, 2020; Alguero et al. 2022; Altakach et al. 2023]: limits from SUSY searches
- > Dark matter (DM) constraints (relic density, direct detection) \Rightarrow work in progress

Example Benchmark Points

Benchmark Point 1

>
$$m_{h_{1,2,3}} = 127, 305, 664 \,\text{GeV}, m_{A_{1,2}} = 660, 1309 \,\text{GeV} (2L)$$

- > $\sigma(gg \rightarrow h_1h_1) = 100 \text{ fb}$ (NLO HTL, SM: 32 fb)
- > $\lambda_{h_1h_1h_1} = 0.65(\text{LO}), 0.91(1\text{L}), 0.98(2\text{L})$ (normalized to $3m_{h_1}^2/v$)
- > $\Gamma_{\tilde{t}_1}^{\text{NLO}} = 26 \text{ GeV} (m_{\tilde{t}_1} = 1575 \text{ GeV}, \text{QCD corrections: -44 \%})$

Example Benchmark Points

Benchmark Point 1

>
$$m_{h_{1,2,3}} = 127, 305, 664 \,\text{GeV}, m_{A_{1,2}} = 660, 1309 \,\text{GeV} (2L)$$

- > $\sigma(gg \rightarrow h_1h_1) = 100 \text{ fb}$ (NLO HTL, SM: 32 fb)
- > $\lambda_{h_1h_1h_1} = 0.65(\text{LO}), 0.91(1\text{L}), 0.98(2\text{L})$ (normalized to $3m_{h_1}^2/v$)
- > $\Gamma_{\tilde{t}_1}^{\text{NLO}} = 26 \text{ GeV} (m_{\tilde{t}_1} = 1575 \text{ GeV}, \text{ QCD corrections: -44 \%})$

Benchmark Point 2

$$harphi_{h_{1,2,3}} = 124.7, 294, 625 \,\text{GeV}, m_{A_{1,2}} = 538, 615 \,\text{GeV} (2L)$$

>
$$\sigma(gg \rightarrow h_1h_1) = 158 \, \text{fb}$$
 (NLO HTL)

>
$$\lambda_{h_1h_1h_1} = 0.6(LO), 0.93(1L), 1.02(2L)$$
 (normalized to $3m_{h_1}^2/v$)

Conclusion

Summary

- Implementation of supersymmetric particle decays
- Setup of program chain to perform parameter scans, including current experimental limits
- First sample scans, discussion of benchmark points

Outlook

- Implementation of dark matter constraints and other tools (Prospino [Beenakker, Hopker, Spira, Plehn], Vacuum stability, ...)
- Setup and execution of intelligent scans with BSMArt

Literature I

- Mühlleitner, M., A. Djouadi, and Y. Mambrini (May 2005). "SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM". In: Computer Physics Communications 168.1, pp. 46-70. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2005.01.012. Baglio, J. et al. (Dec. 2014). "NMSSMCALC: A program package for the calculation of loop-corrected Higgs boson masses and decay widths in the (complex) NMSSM". In: Computer Physics Communications 185.12, pp. 3372–3391. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2014.08.005. Dawson, S. (1997). The MSSM and Why it Works. arXiv: hep-ph/9712464 [hep-ph]. Martin, Stephen P. (1998). "A Supersymmetry primer". In: Adv. Ser. Direct. High Energy Phys. 18. Ed. by Gordon L. Kane, pp. 1–98. DOI: 10.1142/9789812839657_0001. arXiv: hep-ph/9709356. DJOUADI, A (Apr. 2008). "The anatomy of electroweak symmetry breaking Tome II: The Higgs
 - bosons in the Minimal Supersymmetric Model". In: Physics Reports 459.1–6, pp. 1–241. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2007.10.005.

Literature II

- Maniatis, M. (2010). "The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed". In: International Journal of Modern Physics A 25.18n19, pp. 3505–3602. DOI: 10.1142/S0217751X10049827. arXiv: 0906.0777 [hep-ph].
- Ellwanger, Ulrich, Cyril Hugonie, and Ana M. Teixeira (Nov. 2010). "The Next-to-Minimal Supersymmetric Standard Model". In: Physics Reports 496.1–2, pp. 1–77. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2010.07.001.
- Denner, A. et al. (1992). "Compact Feynman rules for Majorana fermions". In: Physics Letters B 291.3, pp. 278–280. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(92)91045-B.
- Denner, Ansgar et al. (1992). "Feynman rules for fermion number violating interactions". In: Nucl. Phys. B 387, pp. 467–481. DOI: 10.1016/0550-3213(92)90169-C.
- Haber, Howard E. and Daniel Wyler (1989). "RADIATIVE NEUTRALINO DECAY". In: Nucl. Phys. B 323, pp. 267–310. DOI: 10.1016/0550-3213(89)90143-0.
- Kraml, S. et al. (Oct. 1996). "SUSY-QCD corrections to scalar quark decays into charginos and neutralinos". In: Physics Letters B 386.1–4, pp. 175–182. ISSN: 0370-2693. DOI: 10.1016/0370-2693(96)00944-6.

Literature III

- Beenakker, W., R. Höpker, and P.M. Zerwas (June 1996). "SUSY-QCD decays of squarks and gluinos". In: Physics Letters B 378.1–4, pp. 159–166. ISSN: 0370-2693. DOI: 10.1016/0370-2693(96)00379-6.
- Djouadi, A., W. Hollik, and C. Jünger (June 1997). "QCD corrections to scalar quark decays". In: Physical Review D 55.11, pp. 6975–6985. ISSN: 1089-4918. DOI: 10.1103/physrevd.55.6975.
- Beenakker, W., R. Höpker, T. Plehn, et al. (June 1997). "Stop decays in SUSY-QCD". In: Zeitschrift für Physik C Particles and Fields 75.2, pp. 349–356. ISSN: 1431-5858. DOI: 10.1007/s002880050478.
- Bartl, A., H. Eberl, K. Hidaka, T. Kon, et al. (June 1997). "QCD corrections to Higgs boson decays into squarks in the minimal supersymmetric standard model". In: Physics Letters B 402.3–4, pp. 303–313. ISSN: 0370-2693. DOI: 10.1016/s0370-2693(97)00457-7.
- Bartl, A., H. Eberl, K. Hidaka, S. Kraml, et al. (Feb. 1998). "SUSY-QCD corrections to stop and sbottom decays into W± and Z0 bosons". In: Physics Letters B 419.1–4, pp. 243–252. ISSN: 0370-2693. DOI: 10.1016/s0370-2693(97)01475-5.

Literature IV

Arhrib, A. et al. (May 1998). "Supersymmetric Higgs boson decays into scalar quarks: QCD corrections". In: Physical Review D 57.9, pp. 5860–5870. ISSN: 1089-4918. DOI: 10.1103/physrevd.57.5860.

- Hollik, W., J. M. Lindert, and D. Pagani (Mar. 2013). "NLO corrections to squark-squark production and decay at the LHC". In: Journal of High Energy Physics 2013.3. ISSN: 1029-8479. DOI: 10.1007/jhep03(2013)139.
- Gröber, R. et al. (Sept. 2015). "Light stop decays: implications for LHC searches". In: The European Physical Journal C 75.9. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-015-3626-z.

Gavin, R. et al. (Jan. 2015). "Squark production and decay matched with parton showers at NLO". In: The European Physical Journal C 75.1. ISSN: 1434-6052. DOI:

10.1140/epjc/s10052-014-3243-2.

Ellis, R. Keith and Giulia Zanderighi (Feb. 2008). "Scalar one-loop integrals for QCD". In: Journal of High Energy Physics 2008.02, pp. 002–002. ISSN: 1029-8479. DOI:

10.1088/1126-6708/2008/02/002.

Literature V

Martin, Stephen P. and Michael T. Vaughn (1993). "Regularization dependence of running couplings in softly broken supersymmetry". In: Physics Letters B 318.2, pp. 331–337. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(93)90136-6.

- Heinemeyer, S. et al. (Sept. 2007). "The Higgs sector of the complex MSSM at two-loop order: QCD contributions". In: Physics Letters B 652.5–6, pp. 300–309. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2007.07.030.
- Mühlleitner, Margarete et al. (2015). "Two-loop contributions of the order $\mathcal{O}(\alpha_t \alpha_s)$ to the masses of the Higgs bosons in the CP-violating NMSSM". In: JHEP 05, p. 128. DOI: 10.1007/JHEP05(2015)128. arXiv: 1412.0918 [hep-ph].
- Ender, K. et al. (Apr. 2012). "Analysis of the NMSSM Higgs boson masses at one-loop level". In: Physical Review D 85.7. ISSN: 1550-2368. DOI: 10.1103/physrevd.85.075024.
- Graf, T. et al. (Oct. 2012). "Higgs boson masses in the complex NMSSM at one-loop level". In: Journal of High Energy Physics 2012.10. ISSN: 1029-8479. DOI: 10.1007/jhep10(2012)122.
- Nhung, Dao Thi et al. (2013). "Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM". In: JHEP 11, p. 181. DOI: 10.1007/JHEP11(2013)181. arXiv: 1306.3926 [hep-ph].

Literature VI

- King, S.F. et al. (Dec. 2015). "Exploring the CP-violating NMSSM: EDM constraints and phenomenology". In: Nuclear Physics B 901, pp. 526–555. ISSN: 0550-3213. DOI: 10.1016/j.nuclphysb.2015.11.003.
- **Mühlleitner**, M., Dao Thi Nhung, and Hanna Ziesche (2015). "The order $\mathcal{O}(\alpha_t \alpha_s)$ corrections to the trilinear Higgs self-couplings in the complex NMSSM". In: JHEP 12, p. 034. DOI: 10.1007/UEP12(2015)024. arXiv: 1506.02221 [hep-ph]
 - 10.1007/JHEP12(2015)034. arXiv: 1506.03321 [hep-ph].
- Dao, Thi Nhung, Ramona Gröber, et al. (Aug. 2019). "Two-loop $\mathcal{O}(\alpha_t^2)$ corrections to the neutral Higgs boson masses in the CP-violating NMSSM". In: Journal of High Energy Physics 2019.8. ISSN: 1029-8479. DOI: 10.1007/jhep08(2019)114.
- Dao, Thi Nhung, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak (2021). "Two-loop $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ corrections to the Higgs boson masses in the CP-violating NMSSM". In: JHEP 09, p. 193. DOI: 10.1007/JHEP09(2021)193. arXiv: 2106.06990 [hep-ph].
- Borschensky, Christoph et al. (2023). "The trilinear Higgs self-couplings at $\mathcal{O}(\alpha_t^2)$ in the CP-violating NMSSM". In: Eur. Phys. J. C 83.2, p. 118. DOI: 10.1140/epjc/s10052-023-11215-5. arXiv: 2210.02104 [hep-ph].

Literature VII

- Dao, Thi Nhung, Duc Ninh Le, and Margarete Mühlleitner (2022). "Leptonic anomalous magnetic and electric dipole moments in the CP-violating NMSSM with and without inverse seesaw mechanism". In: Eur. Phys. J. C 82.10, p. 954. DOI: 10.1140/epjc/s10052-022-10928-3. arXiv: 2207.12618 [hep-ph].
- Dao, Thi Nhung, Martin Gabelmann, and Margarete Mühlleitner (2023). "The $O(\alpha_t + \alpha_\lambda + \alpha_\kappa)^2$ correction to the ρ parameter and its effect on the W boson mass calculation in the complex NMSSM". In: **Eur. Phys. J. C** 83.11, p. 1079. DOI: 10.1140/epjc/s10052-023-12236-w. arXiv: 2308.04059 [hep-ph].
- Goodsell, Mark D. and Ari Joury (2024). "BSMArt: Simple and fast parameter space scans". In: Comput. Phys. Commun. 297, p. 109057. DOI: 10.1016/j.cpc.2023.109057. arXiv: 2301.01154 [hep-ph].
- Harlander, Robert V., Stefan Liebler, and Hendrik Mantler (2013). "SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM". In: Comput. Phys. Commun. 184, pp. 1605–1617. DOI: 10.1016/j.cpc.2013.02.006. arXiv: 1212.3249 [hep-ph].

Literature VIII

- Harlander, Robert V., Stefan Liebler, and Hendrik Mantler (2017). "SusHi Bento: Beyond NNLO and the heavy-top limit". In: Comput. Phys. Commun. 212, pp. 239–257. DOI: 10.1016/j.cpc.2016.10.015. arXiv: 1605.03190 [hep-ph].
- Bahl, Henning et al. (Oct. 2023). "HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals". In: Computer Physics Communications 291, p. 108803. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2023.108803.
- Kraml, Sabine et al. (2014). "SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry". In: Eur.Phys.J. C74, p. 2868. DOI:

10.1140/epjc/s10052-014-2868-5. arXiv: 1312.4175 [hep-ph].

- Ambrogi, Federico et al. (2017). "SModelS v1.1 user manual". In: arXiv: 1701.06586 [hep-ph].
- Ambrogi, Federico et al. (2020). "SModelS v1.2: long-lived particles, combination of signal regions, and other novelties". In: Comput. Phys. Commun. 251, p. 106848. DOI: 10.1016/j.cpc.2019.07.013. arXiv: 1811.10624 [hep-ph].
- Alguero, Gaël et al. (2022). "Constraining new physics with SModelS version 2". In: JHEP 08, p. 068. DOI: 10.1007/JHEP08(2022)068. arXiv: 2112.00769 [hep-ph].

Altakach, Mohammad Mahdi et al. (2023). "SModelS v2.3: Enabling global likelihood analyses". In: SciPost Phys. 15.5, p. 185. DOI: 10.21468/SciPostPhys.15.5.185. arXiv: 2306.17676 [hep-ph].

