

Revisiting the Yukawa Type I for the 2HDMS With a 95 GeV Higgs Boson Including the Recent ATLAS Results

Bachelor-Colloquium

Dominik Heintz

First Supervisor: Prof. Dr. Gudrid Moortgat-Pick Second Supervisor: Prof. Dr. Sven Heinemeyer Collaborators: Daniel Schieber, Cheng Li

Hamburg 16.05.2024

Local significance and signal strength at 95.4 GeV [T. Biekötter et al., 2023]:

 $\begin{array}{cccc} 2.9\,\sigma & & 2.3\,\sigma & & 2.6\,\sigma \\ \mu_{\gamma\gamma}^{\rm CMS} = & 0.33^{+0.19}_{-0.12} & & \mu_{b\bar{b}}^{\rm LEP} = & 0.117\pm0.057 & & \mu_{\tau\tau}^{\rm CMS} = & 1.2\pm0.5 \end{array}$

• The "model-dependent" analysis of the full Run 2 data of ATLAS found an excess at: [ATLAS, 2023]

95.4 GeV with: 1.7σ

• This leads to a signal strength of [T. Biekötter et al., 2023]:

$$\mu_{\gamma\gamma}^{ ext{ATLAS}} = rac{\sigma^{ ext{exp}} \left(pp
ightarrow \phi
ightarrow \gamma\gamma
ight)}{\sigma^{ ext{SM}} \left(pp
ightarrow H_{ ext{SM}}^{0}
ightarrow \gamma\gamma
ight)} = 0.18 \pm 0.10$$

with $m_{H^0_{
m SM}}=95.4\,{
m GeV}.$

+ $\mu_{\gamma\gamma}^{
m ATLAS}$ and $\mu_{\gamma\gamma}^{
m CMS}$ can be combined [T. Biekötter et al., 2023]:

$$\mu^{ ext{exp}}_{\gamma\gamma} {=} \, \mu^{ ext{ATLAS+CMS}}_{\gamma\gamma} {=} \, 0.24^{+0.09}_{-0.08}$$

• This corresponds to an excess at:

95.4 GeV with:
$$3.1\sigma$$

• Two Higgs Doublet Model with a complex Singlet:

$$\Phi_1 = \begin{pmatrix} \chi_1^+ \\ \nu_1 + \frac{\rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \chi_2^+ \\ \nu_2 + \frac{\rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix} \qquad S = \nu_S + \frac{\rho_S + i\eta_S}{\sqrt{2}}$$

• We define:

$$\tan(\beta) = \frac{v_2}{v_1} \qquad \qquad \sqrt{v_1^2 + v_2^2} = v = \frac{246.22}{\sqrt{2}} \,\text{GeV}$$

• V_{2HDMS} obeys the symmetries \mathbb{Z}_2 and \mathbb{Z}_3 :

$$\begin{split} V_{\text{2HDMS}} = & m_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ & + m_s^2 \left(s^{\dagger} s \right) + \lambda_1' \left(s^{\dagger} s \right) \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_2' \left(s^{\dagger} s \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \frac{\lambda_3''}{4} \left(s^{\dagger} s \right)^2 + \left(-m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \frac{\mu_{s1}}{6} s^3 + \mu_{12} s \Phi_1^{\dagger} \Phi_2 + \mathbf{h.c.} \right) \end{split}$$

Interaction Basis:

 $\tan (\beta)$ $\lambda_{1,2,3,4}$ $\lambda'_{1,2}, \lambda''_{3}$ m^{2}_{12} μ_{S1}, μ_{12} V_{S}

Mass Basis:

- $\tan(\beta)$
- Scalar Higgs h_1, h_2, h_3 : $m_{h_1} < m_{h_2} < m_{h_3}$
- Pseudo scalar Higgs a_1, a_2 : $m_{a_1} < m_{a_2}$
- Charged Higgs H^{\pm} : $m_{H^{\pm}}$
- Mixing angles: $\alpha_{1,2,3,4}$
- Vacuum expectation value of S: v_s

\Rightarrow **12** degrees of freedom

 \Leftrightarrow

$$-\mathcal{L}_{\mathrm{Y}} = \sum_{\mathrm{up-type}} i Y_u ar{Q}_L \sigma_2 \Phi_i u_R + \sum_{\mathrm{down-type}} Y_d ar{Q}_L \Phi_j d_R + \sum_{\mathrm{leptons}} Y_l ar{L}_L \Phi_k l_R + \mathrm{h.c.}$$

To determine the couplings, the Yukawa Lagrangian is investigated. We differentiate **4** Yukawa Types:

	Type l	Type ll	Type III	Type IV
Up-type Φ_i	Φ_2	Φ_2	Φ_2	Φ_2
Down-type Φ_j	Φ_2	Φ_1	Φ_2	Φ_1
Lepton Φ_k	Φ_2	Φ_1	Φ_1	Φ_2

In Type I we have:

$$egin{aligned} c_{h_i\!f\!f} &= rac{g_{h_i\!f\!f}}{g_{H_{SM}\!f\!f}} = c_{h_itt} = c_{h_ibb} = c_{h_i au au} \ c_{h_i ext{VV}} &= rac{g_{h_i ext{VV}}}{g_{H_{SM} ext{VV}}} = c_{h_i ext{ZZ}} = c_{h_iWW} \end{aligned}$$

• In Type II we found the approximate correlation [Li, 2023]:

$$\mu_{\gamma\gamma}^{theo} \propto rac{|c_{h_1tt}|^2}{|c_{h_1bb}|^2}$$

- In Type I: $c_{h_1 t t} = c_{h_1 b b} = c_{h_1 f f}$
 - It is harder to achieve high $\mu_{\gamma\gamma}^{theo}$
 - **However:** We were able to find other possibilities to achieve high $\mu_{\gamma\gamma}^{theo}$

Figure: 2HDMS Type II [Li, 2023]: Red ellipse 1 σ range of old: $\mu_{\gamma\gamma}^{CMS} = 0.6 \pm 0.2$ [CMS, 2017], Green ellipse 1 σ range of new: $\mu_{\gamma\gamma}^{exp} = 0.24^{+0.09}_{-0.08}$ [T. Biekötter et al., 2023]

Alignment Limit

The Alignment Limit is when h_2 couples like the SM Higgs:

$$egin{aligned} c_{h_2f\!f} &
ightarrow 1 \ c_{h_2VV} &
ightarrow 1 \end{aligned}$$

For the 2HDMS this is for [Li, 2023]:

 $\sin^2(\alpha_2) \to 1$ $|\sin\left(\beta - \alpha_1 - \operatorname{sgn}(\alpha_2)\alpha_3\right)| \to 1$

Theoretical Constraints:

- Tree-Level perturbative unitarity
- Boundedness from below
- Vacuum stability
 - $\ m_{12}^2 > 0$ [Barroso et al., 2013]

Experimental Constraints:

- STU-Parameters
- Flavor constraints
- HiggsTools [Bahl et al., 2023]

HiggsTools:

HiggsBounds: [P. Bechtle et al., 2010]

• Compares the Model against a large number of experimental results, including the latest ATLAS results

HiggsSignals: [Philip Bechtle et al., 2014]

- Compares the Model against properties of the 125 GeV Higgs
- Returns χ^2_{125}
 - Allowed if χ^2_{125} is in 95% CL interval of SM

Overview Software Implementation

Implementation

SPheno: [Porod, 2003; Porod et al., 2012] SARAH: [F. Staub, 2012; Florian Staub, 2014]

Figure: [Haller et al., 2018]

 \Rightarrow Type I allows much smaller $m_{H^{\pm}}$ than Type II

- Implementation Type II:
 - HiggsSignals calculates SM branching ratios: $\Rightarrow \chi^2_{125} \stackrel{\text{SM}}{\rightarrow}$

 - HiggsSignals calculates 2HDMS BRs based on SPheno output: $\Rightarrow \chi^2_{125}$ Point is allowed by HiggsSignals, if χ^2_{125} is within the 95% C.L. interval of χ^2_{125} SM:

$$\Delta \chi^2_{125} = \chi^2_{125} - \chi^2_{125} \stackrel{\rm SM}{\sim} < 5.99$$

• Problem in Type I: Because of small $m_{H^{\pm}}$, H^{\pm} has influence on BR $(h_2 \rightarrow \gamma \gamma)$:

This is not considered by HiggsSignals, if only given the SPheno output

- Not possible: SPheno calculates 2HDMS and HiggsSignals calculates SM BRs
- Solution: Use SPheno to calculate SM and 2HDMS branching ratios:

- Upside: Good comparability between χ^2_{125} and χ^2_{125}
- Downside: HiggsSignals is more accurate in calculating the SM properties

Fitting the 95 GeV Excesses Implementation Theoretical signal strengths calculated using the narrow width approximation with $m_{H_{SM^0}} = m_{h_1}$ [Li, 2023]:

$$\begin{split} \mu_{\gamma\gamma}^{\text{theo}} &= |\boldsymbol{c}_{h_{1}f\!f}|^{2} \frac{\mathsf{BR}_{2\text{HDMS}}\left(\boldsymbol{h}_{1}\rightarrow\gamma\gamma\right)}{\mathsf{BR}_{\text{SM}}\left(\boldsymbol{H}_{\text{SM}}^{0}\rightarrow\gamma\gamma\right)} \\ \mu_{\tau\tau}^{\text{theo}} &= |\boldsymbol{c}_{h_{1}f\!f}|^{2} \frac{\mathsf{BR}_{2\text{HDMS}}\left(\boldsymbol{h}_{1}\rightarrow\tau\tau\right)}{\mathsf{BR}_{\text{SM}}\left(\boldsymbol{H}_{\text{SM}}^{0}\rightarrow\tau\tau\right)} \\ \mu_{b\bar{b}}^{\text{theo}} &= |\boldsymbol{c}_{h_{1}VV}|^{2} \frac{\mathsf{BR}_{2\text{HDMS}}\left(\boldsymbol{h}_{1}\rightarrow b\bar{b}\right)}{\mathsf{BR}_{\text{SM}}\left(\boldsymbol{H}_{\text{SM}}^{0}\rightarrow b\bar{b}\right)} \end{split}$$

• χ^2_{95} is given by:

$$\chi^2_{95} = \left(\frac{\mu^{\rm theo}_{\gamma\gamma} - \mu^{\rm exp}_{\gamma\gamma}}{\Delta_{\mu^{\rm exp}_{\gamma\gamma}}}\right)^2 + \left(\frac{\mu^{\rm theo}_{b\bar{b}} - \mu^{\rm LEP}_{b\bar{b}}}{\Delta_{\mu^{\rm LEP}_{b\bar{b}}}}\right)^2 + \left(\frac{\mu^{\rm theo}_{\tau\tau} - \mu^{\rm CMS}_{\tau\tau}}{\Delta_{\mu^{\rm CMS}_{\tau\tau}}}\right)^2$$

• "Best-Fit" Point has minimal $\chi^2_{\rm tot}$ [Li, 2023]:

$$\chi^2_{\rm tot} = \chi^2_{95} + \chi^2_{125}$$

With $m_{h_1} < m_{h_2} < m_{h_3}, m_{a_1}, m_{a_2}$ and $m_{a_1} < m_{a_2}$ the parameter space is:

 $\begin{array}{ccc} m_{h_1} \in (94,97) \, \text{GeV} & m_{h_2} = 125.09 \, \text{GeV} & m_{a_1}, m_{a_2}, m_{h_3} \in (130, 1700) \, \text{GeV} \\ \sin \left(\beta - \alpha_1 - \text{sgn}(\alpha_2)\alpha_3\right) \in \pm (0.95, 1) & \alpha_2 \in \pm (0.65, 2.52) & m_{H^\pm} \in (120, 1700) \, \text{GeV} \\ \alpha_1 \in (-\pi, \pi) & \alpha_4 \in \pm \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) & \nu_s \in (40, 2000) \, \text{GeV} \end{array}$

Table: $tan(\beta)$ intervals

 $an(eta) \in (1,3) \\ an(eta) \in (3,10) \\ an(eta) \in (10,20) \end{cases}$

 \Rightarrow In this talk, focus on: $\tan(\beta) \in (10, 20)$, because $\tan(\beta) \in (10, 20)$ has overall Best-Fit point

Singlet/Doublet Like h_1

Parameter Space

- Range of α_2 is chosen:
 - To make h₁ mostly singlet-like
 - Also allow h_1 weakly doublet-like

Green ellipse $1\,\sigma$ of new $\mu^{\rm exp}$

$$\begin{split} \mu_{\gamma\gamma}^{exp} = & \mu_{\gamma\gamma}^{\text{TLAS}+\text{CMS}} = 0.24^{+0.09}_{-0.08} \\ & \mu_{b\bar{b}}^{\text{LEP}} = & 0.117 \pm 0.057 \\ & \mu_{\tau\tau}^{\text{CMS}} = & 1.2 \pm 0.5 \end{split}$$

$$\mu_{\gamma\gamma}^{ ext{theo}} = |c_{h_{1}ff}|^{2} rac{\mathsf{BR}_{2\mathrm{HDMS}}\left(h_{1}
ightarrow \gamma\gamma
ight)}{\mathsf{BR}_{\mathrm{SM}}\left(H_{\mathrm{SM}}^{0}
ightarrow \gamma\gamma
ight)} \qquad ext{with: } m_{H_{\mathrm{SM}}^{0}} = m_{h_{1}}$$

Increasing $\mu_{\gamma\gamma}$ by increasing:

- $|c_{h_{1}ff}|^{2}$
- $\mathsf{BR}_{\mathrm{2HDMS}}\left(h_{1}
 ightarrow\gamma\gamma
 ight)$

But, $|c_{h_{1}\!f\!f}|^2$ and ${\sf BR}_{
m 2HDMS}\,(h_1 o\gamma\gamma)$ have a convoluted interdependency.

- To further investigate $\mu^{
m theo}_{\gamma\gamma}$ with:

$$|c_{h_1ff}|^2 = rac{\sin(lpha_1)\cos(lpha_2)}{\sin(eta)}$$

 \Rightarrow Vary α_1 and α_2

 \Rightarrow For Best-Fit point vary $lpha_1 \in [-\pi,\pi]$ (left) and $lpha_2 \in [-\pi,\pi]$ (right)

 $\Rightarrow \mu_{\gamma\gamma}^{\mathrm{theo}}(lpha_1, lpha_2)$ has maxima

- If $m_{H^\pm} < m_t, H^\pm$ can be produced directly: $t o H^+ b$ [Philip Bechtle et al., 2020]
- + $H^+
 ightarrow \tau^+
 u_{ au}$ has been found to be the dominant decay channel
 - HiggsBounds has limits on H^+ decays
- c_{H^+ff} is identical for 2HDM and 2HDMS
 - For the 2HDM there is [Gunion et al., 2000]:

 $c_{H^+\!f\!f} \propto \coteta$

• For small an(eta): m_{H^\pm} is constrained, due to direct H^\pm production

Modified Parameter Space

High $\mu_{\gamma\gamma}^{
m theo}$ Parameter Space

- $\tan(\beta) \in (10, 20)$
- Not possible to be close to maxima of $\mu_{\gamma\gamma}^{\text{theo}}(\alpha_1)$ and $\mu_{\gamma\gamma}^{\text{theo}}(\alpha_2)$ simultaneously:
 - singlet contribution of h_2 would be too big \Rightarrow excluded by HiggsSignals

• Comparable amount of points with high $\mu_{\gamma\gamma}^{\rm theo}$, but much smaller scan: **811** points in comparison to **4874** for previous scan

Comparison to old Parameter Scan High $\mu_{\gamma\gamma}^{\text{theo}}$ Parameter Space

- Yellow to light-blue points are missing in modified Parameter Space
- Modified Parameter Space behaves as expected
- Possibilities to increase $\mu_{\gamma\gamma}^{
 m theo}$ will be rated as successful

Summary & Outlook

Summary:

- It is possible to reach the necessary $\mu^{
 m theo}_{\gamma\gamma}$ and $\mu^{
 m theo}_{bar b}$ with a 2HDMS Type I
- The excesses in the $\gamma\gamma$, $b\bar{b}$ and $\tau^+\tau^-$ -Channel can not be fitted with a 2HDMS Type I simultaneously (similar to 2HDMS Type II)
- In contrast to our first assumptions, it is possible to reach high $\mu_{\gamma\gamma}^{\rm theo}$ with a 2HDMS Type I. The easiest ways to increase $\mu_{\gamma\gamma}^{\rm theo}$ are:
 - Small $m_{H^{\pm}}$
 - Find maximum of $|c_{h_{1}\!f\!f}|^2\cdot {\sf BR}_{2{
 m HDMS}}\left(h_1
 ightarrow \gamma\gamma
 ight)$
 - Large $tan(\beta)$

Outlook:

- Implement vacuum stability and flavor constraints more accurately
- Perform the same analysis for the 2HDMS Type III and N2HDM Type I/III (Next to Two Higgs Doublet Model: 2 Doublets, 1 real Singlet)
- Different HiggsSignals implementation: Let HiggsSignals calculate SM and 2HDMS branching ratios, explicitly pass underestimated BRs from SPheno

Contact

Dominik Heintz	II. Institut für Theoretische Physik, Universität Hamburg	dominik.heintz@desy.de
Sven Heinemeyer	Instituto de Física Teórica UAM-CSIC	Sven.Heinemeyer@cern.ch
Cheng Li	School of Science, Sun Yat-Sen University	cheng.li@desy.de
Gudrid Moortgat-Pick	II. Institut für Theoretische Physik, Universität Hamburg / DESY	gudrid.moortgat-pick@desy.de
Daniel Schieber	II. Institut für Theoretische Physik, Universität Hamburg	Daniel.Schieber@desy.de

Bibliography I

CMS (2023). Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at $\sqrt{s} = 13$ TeV. Tech. rep. Geneva: CERN. URL: http://cds.cern.ch/record/2852907.

- CMS (2022). Searches for additional Higgs bosons and vector leptoquarks in $\tau \tau$ final states in proton-proton collisions at $\sqrt{s} = 13$ TeV. Tech. rep. Geneva: CERN. URL: http://cds.cern.ch/record/2803739.
- Biekötter, T., S. Heinemeyer, and G. Weiglein (2023). The 95.4 GeV di-photon excess at ATLAS and CMS. arXiv: 2306.03889 [hep-ph].
 - Biekötter, Thomas (2023). "Mounting evidence for a 95 GeV Higgs boson." Higgs Days at Santander 2023. URL: http://hdays.csic.es/HDays23/talks/Tuesday/biekoetter.pdf.
- ATLAS (2023). Search for diphoton resonances in the 66 to 110 GeV mass range using 140 fb⁻¹ of 13 TeV pp collisions collected with the ATLAS detector. Tech. rep. Geneva: CERN. URL: http://cds.cern.ch/record/2862024.
 - Li, Cheng (2023). "Phenomenology of extended Two-Higgs-Doublets models." PhD thesis. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
 - CMS (2017). Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at $\sqrt{s} = 8$ and 13 TeV. Tech. rep. Geneva: CERN. URL: http://cds.cern.ch/record/2285326.
 - Barroso, A. et al. (june 2013). "Metastability bounds on the two Higgs doublet model." In: *Journal of High Energy Physics* 2013.6. ISSN: 1029-8479. DOI: 10.1007/jhep06(2013)045. URL: http://dx.doi.org/10.1007/JHEP06(2013)045.

Bibliography II

Bahl, H. et al. (Oct. 2023). "HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals." In: *Computer Physics Communications* 291, p. 108803. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2023.108803. URL: http://dx.doi.org/10.1016/j.cpc.2023.108803.

Bechtle, Philip et al. (Feb. 2014). "HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC." In: The European Physical Journal C 74.2. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-013-2711-4. URL: http://dx.doi.org/10.1140/epjc/s10052-013-2711-4.

Porod, W. (June 2003). "SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e- colliders." In: *Computer Physics Communications* 153.2, pp. 275–315. ISSN: 0010-4655. DOI: 10.1016/s0010-4655(03)00222-4. URL: http://dx.doi.org/10.1016/S0010-4655(03)00222-4.

Porod, W. and F. Staub (Nov. 2012). "SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM." In: *Computer Physics Communications* 183.11, pp. 2458–2469. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2012.05.021. URL: http://dx.doi.org/10.1016/j.cpc.2012.05.021.

Staub, F. (2012). Sarah. arXiv: 0806.0538 [hep-ph].

Staub,

Staub, Florian (June 2014). "SARAH 4: A tool for (not only SUSY) model builders." In: Computer Physics Communications 185.6, pp. 1773–1790. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2014.02.018. URL: http://dx.doi.org/10.1016/j.cpc.2014.02.018.

Haller, J. et al. (Aug. 2018). "Update of the global electroweak fit and constraints on two-Higgs-doublet models." In: *The European Physical Journal C* 78.8. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-018-6131-3. URL: http://dx.doi.org/10.1140/epjc/s10052-018-6131-3.

Bechtle, Philip et al. (Dec. 2020). "HiggsBounds-5: testing Higgs sectors in the LHC 13 TeV Era." In: *The European Physical Journal C* 80.12. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-08557-9. URL: http://dx.doi.org/10.1140/epjc/s10052-020-08557-9.

Gunion, John F. et al. (2000). The Higgs Hunter's Guide. Vol. 80.

Figure: [Haller et al., 2018]

Best-Fit point:

Parameter	m_{h_1}	m_{h_2}	m_{h_3}	m_{a_1}	m_{a_2}	$m_{H^{\pm}}$	vs
[GeV]	94.339	125.09	281.6	237.3	240.2	170.6	430.1
Parameter	$\tan(\beta)$	α_1	α_2	α_3	$lpha_4$	$\sin\left(\beta - \alpha_1 - \operatorname{sgn}(\alpha_2)\alpha_3\right)$	$\chi^2_{\rm tot}$
[a.u.]	10.491	-2.834	-2.155	-2.805	1.318	0.998	165.6

_

_

Best-Fit Point $\tan(\beta)) \in (10, 20)$

Appendi	Х							
Parameter	m _{h1}	m_{h_2}	m_{h_3}	m_{a_1}	m_{a_2}		$m_{H^{\pm}}$	vs
[GeV]	94.339	125.09	281.6	237.3	240.2		170.6	430.1
Parameter	$\tan(\beta)$	α_1	α_2	α_3	α_4	$\sin\left(\beta - \alpha_1 - \operatorname{sgn}(\alpha)\right)$	$(2)\alpha_3)$	$\chi^2_{\rm tot}$
[a.u.]	10.491	-2.834	-2.155	-2.805	1.318		0.998	165.6
h ₁ Channe	el	BR [%]	h ₂ Chanr	nel	BR [%]	h ₃ Channel	BR [%	5]
$\begin{array}{c} h_1 \rightarrow \\ h_1 \rightarrow \end{array}$	$bar{b}\ au^- au^+$ $gg\ car{c}\ \gamma\gamma\ W^-W^+$	78.88 8.73 7.02 3.74 1.33 0.24	$\begin{array}{c} h_2 \rightarrow \\ h_2 \rightarrow \end{array}$	$\begin{array}{c} b\bar{b} \\ W^-W^+ \\ gg \\ \tau^-\tau^+ \\ c\bar{c} \\ Z^0Z^0 \\ \gamma\gamma\end{array}$	58.01 20.88 9.08 6.73 2.74 2.26 0.25	$ \begin{array}{l} h_3 \rightarrow h_1 h_1 \\ h_3 \rightarrow h_2 h_1 \\ h_3 \rightarrow W^+ H^- \\ h_3 \rightarrow W^- H^+ \\ h_3 \rightarrow h_2 h_2 \end{array} $	87.8 4.4 3.8 3.8 0.0	4 0 5 5 5
a ₁ Channe	el	BR[%]	a ₂ Chanr	nel	BR [%]	${}^{H^{\pm}}$ Channel	BR [%	5]
$egin{array}{ccc} a_1 ightarrow \ a_1$	$ \begin{array}{c} Z^0 h_1 \\ Z^0 h_2 \\ gg \\ b\overline{b} \end{array} $	98.50 1.46 0.02 0.01	$egin{array}{ccc} a_2 & ightarrow \ a_2 & ightarrow \ a_2 & ightarrow \ a_2 & ightarrow \ a_2 & ightarrow \end{array}$	$Z^0 h_1$ $Z^0 h_2$ gg	98.33 1.63 0.02	$ \begin{array}{c} H^+ \rightarrow \bar{s}c \\ H^+ \rightarrow \tau^+ \nu_{\tau} \\ H^+ \rightarrow \bar{d}c \\ H^+ \rightarrow \bar{b}c \\ H^+ \rightarrow \mu^+ \nu_{\mu} \end{array} $	56.7 38.8 3.0 1.1 0.1	6 6 2 9 4

Best-Fit point:

.....

.....

Parameter	m_{h_1}	m_{h_2}	m_{h_3}	m_{a_1}	m_{a_2}	$m_{H^{\pm}}$	vs
[GeV]	96.418	125.09	573.5	361.6	550.1	499.1	195.8
Parameter	$\tan(\beta)$	α_1	α_2	α_3	$lpha_4$	$\sin\left(\beta - (\alpha_1 + \operatorname{sgn}(\alpha_2)\alpha_3)\right)$	$\chi^2_{\rm tot}$

Best-Fit point:

Parameter	m_{h_1}	m_{h_2}	m_{h_3}	m_{a_1}	m_{a_2}	$m_{H\pm}$	vs
[GeV]	96.891	125.09	288.7	207.5	286.1	218.8	600.0
Parameter	$\tan(\beta)$	α_1	α_2	α_3	α_4	$\sin\left(\beta - (\alpha_1 + \operatorname{sgn}(\alpha_2)\alpha_3)\right)$	$\chi^2_{\rm tot}$
[a.u.]	6.115	-1.236	-1.242	-4.150	-2.111	-0.998	166.6

