Midterm talk: CP-odd Higgs at 95 GeV in the 2HDMS

Ayla Tutuş

Supervisors: Prof. Gudrid Moortgat-Pick, Prof. Sven Heinemeyer

In collaboration with: Daniel Schieber, Cheng Li

University of Hamburg
II. Institute for Theoretical Physics

19.06.2025

Outline

- Motivation
 - The 2HDMS
 - The 95 GeV excess
- 2 Analysis Setup
- Analysis Strategy
- Results
 - Parameter Scans
 - $\tan \beta$ vs. α_4
- Summary and Outlook

Motivation

- The Standard Model (SM) Higgs sector is incomplete!
- Possible extensions: Two-Higgs-Doublet Models (2HDM), specifically Type-II
- In the singlet extension of the 2HDM, the 2HDMS, a CP-odd scalar A₉₅ can arise!
- \bullet Model can potentially acommodate the observed excess at ~95 GeV (ATLAS, CMS)
- Goal: Test if 2HDMS Type II can accommodate that excess and if so, study production channels of such an A_{95} in e^+e^- collisions at the ILC and future colliders

2HDMS (Singlet extension)

- Model: two Higgs doublets Φ_1 , Φ_2 and one **complex** singlet S
- Symmetries:
 - \mathbb{Z}_2 : $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$ (suppresses FCNCs)
 - \mathbb{Z}_3 : $\Phi_1 \to \Phi_1$, $\Phi_2 \to e^{2\pi i/3}\Phi_2$, $S \to e^{-2\pi i/3}S$

(restricts singlet interactions and allows trilinear terms)

- Physical Higgs states:
 - CP-even: h_1 , h_2 , h_3
 - \rightarrow One of these (typically $m \sim 125$ GeV) is SM-like
 - CP-odd: a_1 , a_2 (light = A_{95})
 - Charged: H^{\pm}
- Fields:

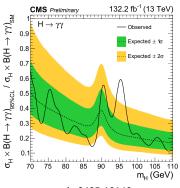
$$\bullet \ \Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (\nu_1 + \rho_1 + i\eta_1) \end{pmatrix}$$

•
$$\Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (v_2 + \rho_2 + i\eta_2) \end{pmatrix}$$

• Electroweak constraint:
$$v_1^2 + v_2^2 = v^2 = (246.22 \text{ GeV})^2$$

2HDMS (Singlet extension)

- Key parameters:
 - $\tan \beta = v_2/v_1$, v_S
 - **CP-even mixing angles:** α_1 , α_2 , α_3 (parametrize mixing matrix R); the CP-even mass eigenstates are related to the gauge eigenstates via:


$$(h_1, h_2, h_3)^T = R(\alpha_1, \alpha_2, \alpha_3) \cdot (\rho_1, \rho_2, s)^T$$

$$R = \begin{pmatrix} c_{\alpha_1} c_{\alpha_2} & s_{\alpha_1} c_{\alpha_2} & s_{\alpha_2} \\ -(c_{\alpha_1} s_{\alpha_2} s_{\alpha_3} + s_{\alpha_1} c_{\alpha_3}) & c_{\alpha_1} c_{\alpha_3} - s_{\alpha_1} s_{\alpha_2} s_{\alpha_3} & c_{\alpha_2} s_{\alpha_3} \\ -(c_{\alpha_1} s_{\alpha_2} c_{\alpha_3} - s_{\alpha_1} s_{\alpha_3}) & -(c_{\alpha_1} s_{\alpha_3} + s_{\alpha_1} s_{\alpha_2} c_{\alpha_3}) & c_{\alpha_2} c_{\alpha_3} \end{pmatrix}$$
where $c_{\alpha_i} = \cos \alpha_i$, $s_{\alpha_i} = \sin \alpha_i$

- **CP-odd mixing angle:** α_4 (controls doublet–singlet mixing of CP-odd states)
- physical Higgs masses:
 - fixed: $m_{h_2}=125$ GeV (SM-like), $m_{a_1}=95$ GeV (light $A_{95})$ m_{a_2} , m_{H_\pm}

The 95 GeV excess

- Experimental hints for an additional Higgs-like scalar around 95 GeV:
 - CMS/ATLAS (Run II): di-photon channel ($\gamma\gamma$), local excess near 95 GeV
 - LEP: excess in $b\bar{b}$ final state around 96 GeV
- Only the CMS/ATLAS $\gamma\gamma$ excess is considered in this analysis
 - CMS: $\mu_{\gamma\gamma}^{\rm CMS}=0.33^{+0.19}_{-0.12}$ (local significance: $\sim 3.1\sigma$)
 - ATLAS: $\mu_{\gamma\gamma}^{\text{ATLAS}} = 0.23^{+0.17}_{-0.16}$ (l.s.: $\sim 2.2\sigma$)
 - Combined: $\mu_{\gamma\gamma}^{\rm combined}=0.24^{+0.09}_{-0.08}$ (I.s.: $\sim 3.5\sigma$)
- Focus on light CP-odd Higgs that is singlet-like — CP-even also possible, but not considered here

arxiv:2405.18149

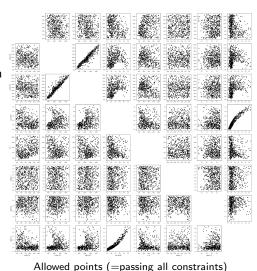
Analysis Setup

Tools used:

- HiggsTools: apply experimental constraints (HiggsBounds + HiggsSignals)
- Theoretical constraints (applied separately): unitarity, BFB, vacuum stability (EVADE)
- **3** MadGraph5: compute e^+e^- cross sections

Beam polarization setting (ILC parameters): $P_{e^-} = -80\%$, $P_{e^+} = +30\%$

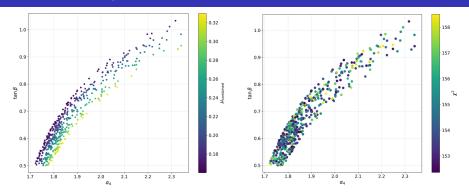
Analysis Strategy


- **1** Fix $m_{a_1} = 95.4 \text{ GeV}$
- Generate random 2HDMS parameter points
- Filter using HiggsTools, enforce constraints
- Generate SPheno spectrum files
- Use MadGraph5 to compute cross sections for selected processes at ILC with :
 - $e^+e^-
 ightarrow t ar{t} A_{95}$, $u ar{
 u} A_{95}$, ZA_{95} , etc.
- **1** Plot tan β vs. α_4 scans and compare channels

Constraint regions

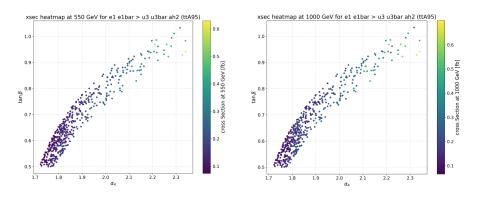
- Theoretical constraints: unitarity, boundedness from below (BfB), vacuum stability
- Experimental constraints: electroweak precision tests (STU),
 HiggsBounds, HiggsSignals, embed 95 GeV excess
- $\bullet \ \, \text{Use } \, \textbf{HiggsTools} \, \, \text{framework: combines HiggsBounds and HiggsSignals} \\$
- Only points in the final region (pass all constraints) are considered allowed for scans

Results – Parameter Scan


- Full 2HDMS parameter scan shown
- Observed strong correlations:
 - m_{a2} vs. m_{h3}
 - $\tan \beta$ vs. α_4
- Note: $m_{a_2} > m_{a_1}$ due to mass ordering
- Focus on $\tan \beta$ and α_4 because they control the A95 couplings to SM particles

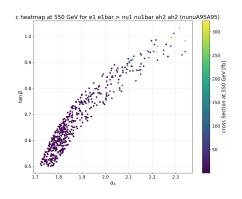
Allowed points (—passing all constraint

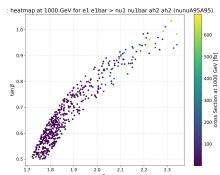
Results – $\tan \beta$ vs. α_4



- heatmaps for tan β vs. α_4 with their respective $\mu_{combined}$ (left) and χ^2 values (right)
- $\bullet~\mu_{\rm combined}$ is the combined Higgs diphoton signal strength given by

$$\mu_{\rm combined} = \frac{\sigma(\textit{pp} \rightarrow \textit{A}_{95}) \times \mathsf{BR}(\textit{A}_{95} \rightarrow \gamma \gamma)}{\sigma_{\mathsf{SM}} \times \mathsf{BR}_{\mathsf{SM}}}$$


• χ^2 is computed by HS, compares predicted and observed Higgs rates incl. the $\gamma\gamma$ excess


Results – tan β vs. α_4

- $\tan \beta$ vs. α_4 with cross sections for $t\bar{t}A_{95}$
- studied at energies $\sqrt{s}=550$ GeV and 1000 GeV (energy choices based on ILC staging scenarios¹)

Results – tan β vs. α_4

- $\tan \beta$ vs. α_4 with cross sections for $\nu \bar{\nu} A_{95} A_{95}$
- Observations:
 - High cross sections for ttA_{95} (strong top coupling)
 - ullet 0 for e.g. ZA_{95} (no coupling between CP-odd A and Z)

Summary and Outlook

Summary:

- A₉₅ is motivated by experimental excesses and can be regarded as a theoretically allowed scenario within extended Higgs sectors
- Performed parameter scan in 2HDMS after enforcing experimental and theoretical constraints
- Identified $\tan \beta$ and α_4 as key parameters
- Computed cross sections with MadGraph for A₉₅ production
- Visualized dependencies between key parameters
- Most promising production channel: $t\bar{t}A_{95}$

Outlook:

- More investigations in the parameter space and coupling properties of different channels
- Study possible decays of A₉₅
- Compare with CP-even h_{95} in the 2HDMS

Thank you for listening!