Top-quark spin correlations to distinguish $A \rightarrow HZ$ and $H \rightarrow AZ$

Prospects for the HL-LHC

Francisco Arco, Thomas Biekötter, Panagiotis Stylianou, Georg Weiglein Based on 2502.03443

DESY Hamburg, 27 February 2024 Working Group on Two Higgs Doublet Models

HELMHOLTZ

Motivation for extended Higgs sectors

The search of an EW phase transition

The SM has many shortcomings

- Example: the baryon asymmetry of the universe (BAU)
- Physics out of the equilibrium ⇒ strong first order EW phase transition (SFOEWPT)
 - The SM predicts a smooth crossover
- The Higgs sector is basically *unexplored* at present

BSM extended Higgs sectors ⇒ SFOEWPT possible!

- In the 2HDM \rightarrow 'smoking gun' signal
- Issue: no current experimental distinction between $A \rightarrow HZ$ vs $H \rightarrow AZ$

Our proposal: use top-quark spin correlations to distinguish them

Image by M. Breitbach

The Two Higgs Doublet Model (2HDM)

SM + a second Higgs doublet

• Potential:
$$V = m_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) - \left[m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right] + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \left[\frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right]$$

Ingredients for a Strong First Order EW Phase Transition

Large scalar couplings!

- In the 2HDM a SFOEWPT happens due to a large radiative and thermally induced barrier
- Generally, large scalar couplings are needed ⇒ Large mass splitting between heavy Higgs bosons (non-decoupling regime)

$$m_A = m_{H^{\pm}}$$
 $m_H = m_{H^{\pm}}$
 $m_H = M$ $m_A = M$
(Usually
stronger
EWPT) m_h m_h

Much literature on 2HDM and SFOEWPT: 1405.5537, 1612.04086, 1705.09186, 1711.04097, 2108.05356, 2208.14466 2309.17431, ...

DESY. | Top-quark spin correlations to distinguish A -> HZ and H -> AZ | Francisco Arco | 27 February 2025 | Working Group on 2HDMs | DESY Hamburg

The "smoking gun" signal

 $A \rightarrow HZ$ or $H \rightarrow AZ$ can be open

• This process is a 'smoking gun' of a SFOEWPT

Much literature on 2HDM and SFOEWPT: 1405.5537, 1612.04086, 1705.09186, 1711.04097, 2108.05356, 2208.14466 2309.17431, ...

DESY. | Top-quark spin correlations to distinguish A -> HZ and H -> AZ | Francisco Arco | 27 February 2025 | Working Group on 2HDMs | DESY Hamburg

Experimental situation at present

No possible distinction between $A \rightarrow HZ$ and $H \rightarrow AZ$

Nearly identical shape for both processes \Rightarrow Insensitive to the CP properties of the Higgs bosons

DESY. | Top-quark spin correlations to distinguish A \rightarrow HZ and H \rightarrow AZ | Francisco Arco | 27 February 2025 | Working Group on 2HDMs | DESY Hamburg

Our proposal: top-quark spin correlations

Relation with the angular variables c_{han} and c_{hel}

• Spin density matrix of the $t\bar{t}$ system:

 $R \propto A \, 1 \otimes 1 + B_i^+ \sigma^i \otimes 1 + B_i^- 1 \otimes \sigma^i + C_{ij} \sigma^i \otimes \sigma^j$

- Choice of basis: \hat{k} , $\hat{n} \propto \hat{p} \times \hat{k}$, $\hat{r} \propto \hat{k} \times \hat{n}$ Spin-correlation matrix
- Relation to the cross section:

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_{\hat{a}}^{+}d\cos\theta_{\hat{b}}^{+}} = \frac{1}{4}(1+B_{\hat{a}}^{+}\cos\theta_{\hat{a}}^{+}+B_{\hat{a}}^{-}\cos\theta_{\hat{a}}^{-}-C_{\hat{a}\hat{b}}\cos\theta_{\hat{a}}^{+}\cos\theta_{\hat{b}}^{-}) \quad \text{with} \quad a,b \in \{\hat{k},\hat{r},\hat{n}\}$$

- $\hat{\ell}^{\pm}$ is the direction of flight of the **leptons** in the top (or anti-top) rest frame and $\cos \theta_{\hat{a}}^{\pm} = \pm \hat{\ell}^{\pm} \cdot \hat{a}$
- Use the angular variables c_{hel} and $c_{han} \rightarrow$ Sensitive to the CP-nature of the state producing the $t\bar{t}$ pair!

$$c_{hel} = -\cos\theta_{\hat{k}}^{+}\cos\theta_{\hat{k}}^{-} - \cos\theta_{\hat{r}}^{+}\cos\theta_{\hat{r}}^{-} - \cos\theta_{\hat{n}}^{+}\cos\theta_{\hat{n}}^{-} = \hat{\ell}^{+} \cdot \hat{\ell}^{-}$$
$$c_{han} = \cos\theta_{\hat{k}}^{+}\cos\theta_{\hat{k}}^{-} - \cos\theta_{\hat{r}}^{+}\cos\theta_{\hat{r}}^{-} - \cos\theta_{\hat{n}}^{+}\cos\theta_{\hat{n}}^{-}$$

More on $t\bar{t}$ spin correlations: 1508.05271 2106.09690 CMS-PAS-HIG-22-013 Rübenach PhD Thesis

ô

Already used in $t\bar{t}$ searches!

- > 5 σ excess close to the $t\bar{t}$ threshold for a pseudoscalar boson
- Observed in the di-lepton channel by using the variables c_{han} and c_{hel}

Our proposal: use them in the $t\bar{t}Z$ channel!

Benchmark point scenarios with the same cross section

Potentially observable at the HL-LHC

DESY. | Top-quark spin correlations to distinguish $A \rightarrow HZ$ and $H \rightarrow AZ$ | Francisco Arco | 27 February 2025 | Working Group on 2HDMs | DESY Hamburg

Our proposal: top-quark spin correlations for the $Zt\bar{t}$ channel

The two signals become potentially distinguishable!

· Cross section normalized to the total cross section

$A \rightarrow HZ$ and $H \rightarrow AZ$ peak in different regions in the $c_{han}-c_{hel}$ plane!

Signal and background simulation

$g \xrightarrow{H/A}$

- $gg \rightarrow A/H$ at LO with MadGraph5 with an effective gg-Higgs vertex with p^2 -dependence + NNLO QCD K-factor from HiggsTools/SusHi
- Decay of the heavy Higgs at NLO QCD from HDECAY

Background $gg \to Z t\bar{t} \to \ell^+ \ell^- b\bar{b}\ell^+ \ell^- \nu_\ell \bar{\nu}_\ell$

- At LO with MadGraph5 + rescaled with the ATLAS result (with other subleading backgrounds) [2312.04450]
 Cuts based on [2312.04450]
- $p_T(\ell) > 20 \text{ GeV}, \quad |\eta(\ell)| < 2.5, \quad |m_Z m_{\ell\ell}| < 20 \text{ GeV}, \quad p_T(j) > 20 \text{ GeV}, \quad |\eta(j)| < 2.5$
- Two pairs of opposite-sign same-flavor leptons with $p_T(\ell_{\text{leading}}) > 27 \text{ GeV}$

 $gg \to \begin{pmatrix} A \\ H \end{pmatrix} \to \begin{pmatrix} ZH \\ ZA \end{pmatrix} \to Z t\bar{t} \to \ell^+ \ell^- b\bar{b}\ell^+ \ell^- \nu_\ell \bar{\nu}_\ell$

Efficiency factors

Numerical setup

Signal

- $(0.7)^2$ for *b*-tagging
- 0.9 for top quark reconstruction

• 10% smearing in the $t\overline{t}$ distributions to mimic detector resolution

Signal and background interference

Not very large, but it is included

Results: di-top invariant mass distributions

Bins in c_{hel}

 $A \rightarrow HZ$ more prominent!

 $H \rightarrow AZ$ more prominent!

Both signals become distinguishable!!

Results: di-top invariant mass distributions

Bins in *c*_{han}

 $A \rightarrow HZ$ more prominent!

 $H \rightarrow AZ$ more prominent!

Both signals become distinguishable!!

Results: significance Z at the HL-LHC

Binning only in c_{han} OR c_{hel}

• Significance values of ~6.5 in the optimal case

• The significance without c_{han}/c_{hel} is below 6

Results: significance Z at the HL-LHC

Binning in both c_{han} AND c_{hel}

• Significance values of ~6.5 after combining all bins

• The significance without c_{han}/c_{hel} is below 6

Summary & Conclusions

- One of the key collider probes of an SFOEWPT in the 2HDM is the "smoking gun" signature
- Experimentally, there is no sensitivity between

 $gg \to A \to ZH \to Zt\bar{t}$ vs. $gg \to H \to ZH \to Zt\bar{t}$

- Our proposal: use top-quark spin correlations to distinguish the CP nature of the Higgs bosons!
- We analyzed the m_{tt} distributions for two benchmark points with the same total cross section
 - We show that binning in c_{han} and c_{hel} can help differentiate between both signals in the fully leptonic channel
 - In addition, we find a moderate gain in the signal significance
- Message to experimentalists: we encourage you to use them in the $Zt\bar{t}$ searches!

Thank you!

-0.75

-1.00

-0.5

0.0 c_{han} 0.5

Back-up

Box Interference

Negligible ⇒ **Not** included

Significance estimation

Systematics between bins are not included

 B_i : SM background in the *i*th bin

 S_i : Signal + interference with background in the *i*th bin

$$Z_{i} = \sqrt{2\left[\left(S_{i} + B_{i}\right)\log\left(1 - \frac{S_{i}}{B_{i}}\right) - S_{i}\right]}$$

$$Z_{i} \simeq S_{i}/\sqrt{B_{i}}$$

when $B_i >> S_i$

Total significance:
$$Z = \sqrt{\sum_i Z_i^2}$$