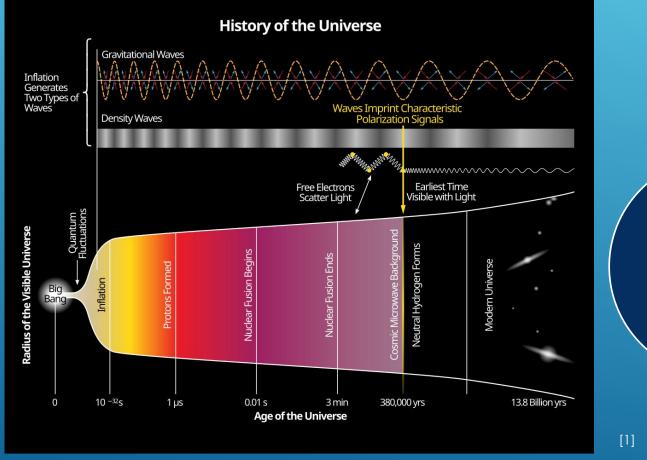
PROBING INFLATIONARY MODELS WITH GRAVITATIONAL WAVES

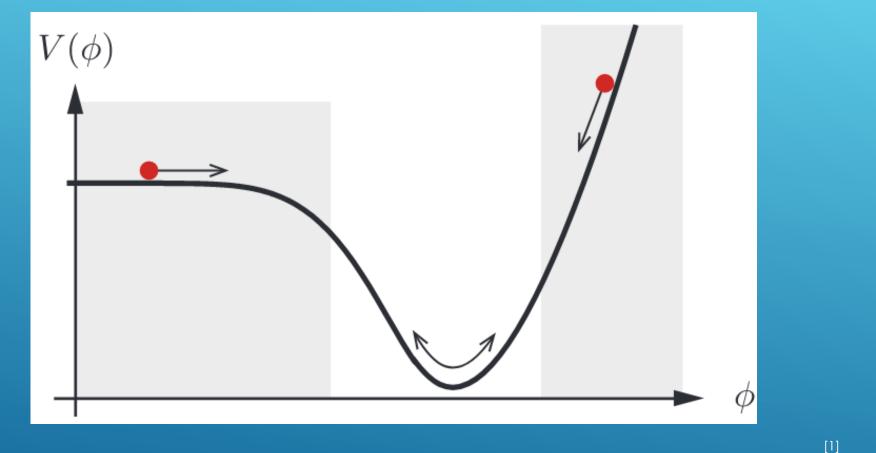
Alexander Schneider, Tom Krokotsch, Gudrid Moortgat-Pick, Andreas Ringwald, University of Hamburg


CONTENTS

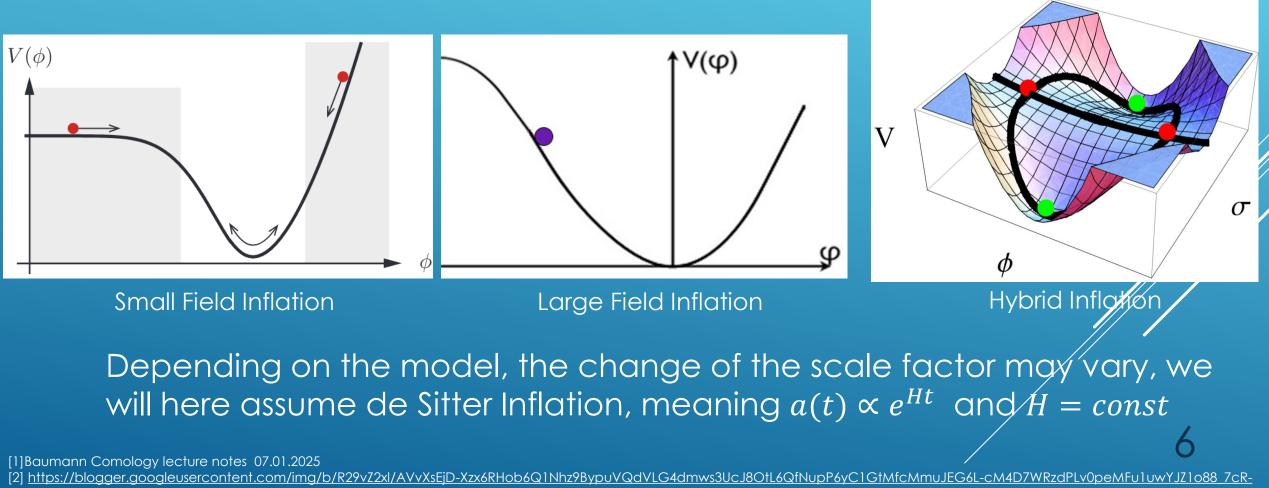
- ► What is Inflation
- How does the GW background from Inflation look like
- Can we differentiate between Inflation Models
- Conclusions & Outlook

Horizon Problem:

Points of the CMB are correlated, even if they are outside each others particle horizons


Solution: Rapid Inflation

The universe rapidly grew 26 order of Magnitude


Grain of Rice (1,5mm) 5 Mpc Distance Between Galaxies

[1] https://upload.wikimedia.org/wikipedia/commons/thumb/d/db/History_of_the_Universe.svg/1280px-History_of_the_Universe.svg.png

Inflation is driven by a scalar field, the Inflaton field Has to happen over an extended period of time \rightarrow slow roll Inflation

[1] Bauman Cosmology lecture notes 07.01.2025

zOeFLQM53GmjrfcbtU6KoWTyCs6DvDxhjCepb9beX9V/s1600/inflatonpotential.jpg

[3] Dufaux et al. Gravity Waves from Tachyonic Preheating after Hybrid Inflation (2009) http://arxiv.org/abs/0812.2917

The Equation that describes the propagation of gravitational waves in the T T gauge is defined as:

 $\ddot{h}_{\mu
u} - \Delta h_{\mu
u} = 16\pi G T_{\mu
u}$

In Friedman cosmology with $\frac{d}{ad\tau} = \frac{d}{dt}$ and $x_{cm} = ax$ the wave equation becomes:

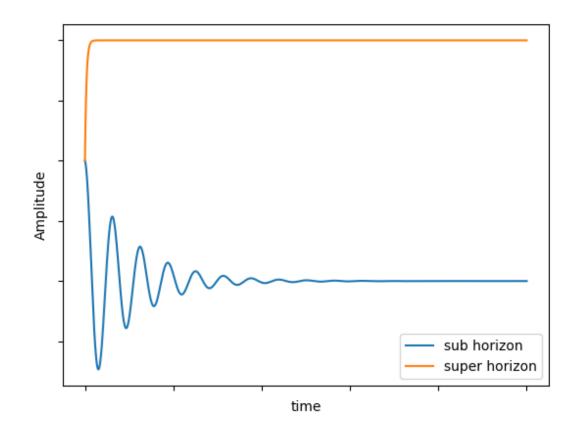
$$h^{\prime\prime}{}_{\mu\nu} + \frac{2a^{\prime}}{a}h_{\mu\nu}{}^{\prime} - \Delta h_{\mu\nu} = 16\pi G T_{\mu\nu}$$

Buchmüller et al. The Gravitational Wave Spectrum from Cosmological B–L Breaking 2013 http://arxiv.org/abs/1305.3392

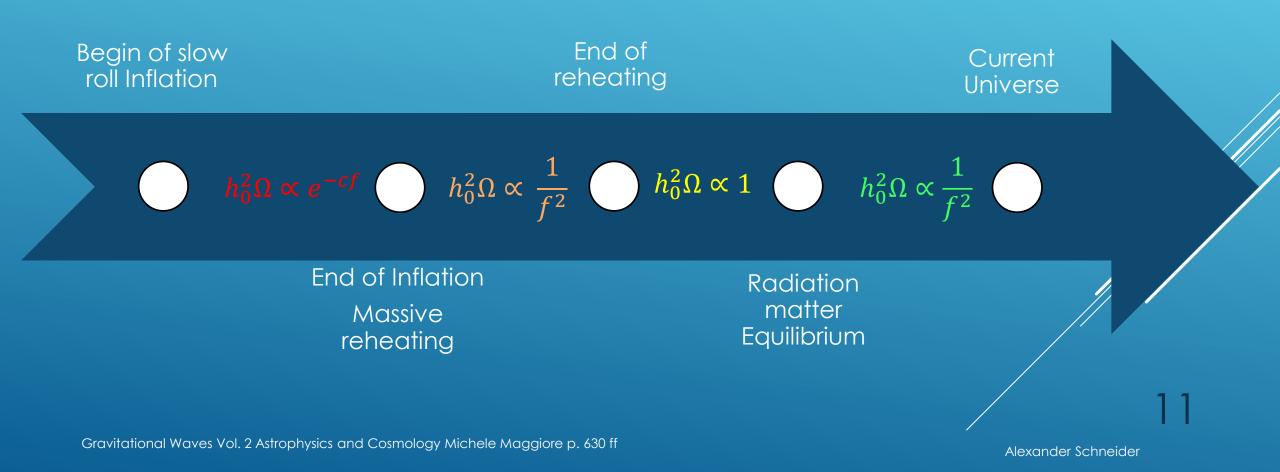
 $ah''_{\mu\nu} + 2a'h'_{\mu\nu} - a\Delta h_{\mu\nu} = 16\pi aGT_{\mu\nu}$

Fourier Transform, written in terms of $\tilde{h}_{\mu\nu} = ah_{\mu\nu}$:

$$\tilde{h}_{\mu\nu}^{\prime\prime} + \left(k^2 - \frac{a^{\prime\prime}}{a}\right)\tilde{h}_{\mu\nu} = 16\pi a G T_{\mu\nu}$$


Without sources:

$$\tilde{h}_{\mu\nu}^{\prime\prime} + \left(k^2 - \frac{a^{\prime\prime}}{a}\right)\tilde{h}_{\mu\nu} = 0$$

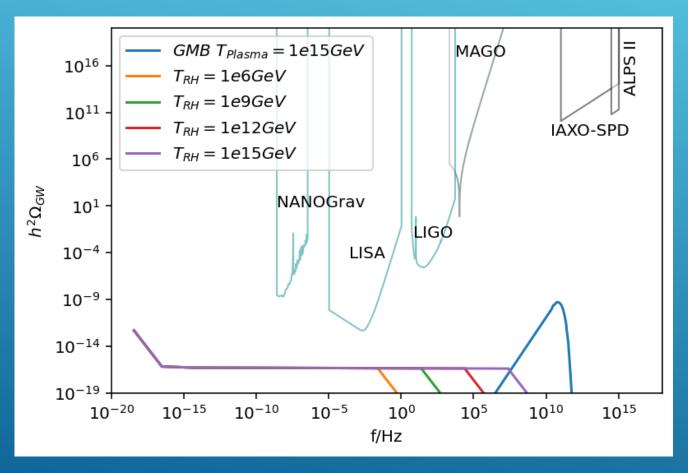

$$\tilde{h}^{\prime\prime}_{\mu\nu} + \left(k^2 - \frac{a^{\prime\prime}}{a}\right)\tilde{h}_{\mu\nu} = 0$$

Using $\dot{H} + H^2 = \frac{\ddot{a}}{a} = H^2 \rightarrow \frac{a''}{a} = (aH)^2$ in de Sitter:

 $\tilde{h}''_{\mu\nu} + (k^2 - (aH)^2)\tilde{h}_{\mu\nu} = 0$

 $\tilde{h}''_{\mu\nu} + (k^2 - (aH)^2)\tilde{h}_{\mu\nu} = 0$ For $k^2 \gg (aH)^2$: $\tilde{h}_{\mu\nu} \propto \cos(\omega t)$ $\rightarrow h_{\mu\nu} \propto \frac{1}{a} \cos(\omega t)$ (sub horizon) For $k^2 \ll (aH)^2$: $ah''_{\mu\nu} + 2a'h''_{\mu\nu}$ $\rightarrow h = A + B \int_{\tau_i}^{\tau_f} \frac{d\tau}{\sigma(\tau)}$ (super horizon

TRANSFER FUNCTION

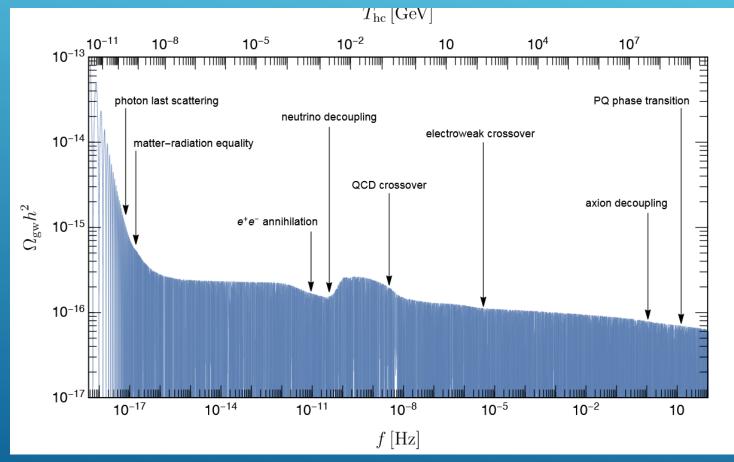

- ► The transfer function calculates how a mode changed throughout the history of the universe (expansion) → what we expect to see today
- It can be derived from Friedman equations & parameters from measurements of the CMB

This roughly could get us:

$$h_0^2 \Omega = 6.73 \cdot 10^{-18} \cdot \left(\frac{f_{eq}}{f}\right)^2 \quad \text{for } f \ll f_{eq}$$
$$= 5.12 \cdot 10^{-18} \qquad \text{for } f_{eq} \ll f \ll f_{end}$$
$$= 5.12 \cdot 10^{-18} \cdot \left(\frac{f_{RH}}{f}\right)^2 \quad \text{for } f_{RH} \ll f \ll f_{RHend}$$

Gravitational Waves Vol. 2 Astrophysics and Cosmology Michele Maggiore p. 630 ff

DIFFERENTIATING BETWEEN DIFFERENT MODELS



Ringwald et al. Gravitational Waves as a Big Bang Thermometer 2021 http://arxiv.org/abs/2011.04731

Alexander Schneider

13

A CLOSER LOOK

Ringwald et al. Primordial gravitational waves in a minimal model of particle physics and cosmology (2021) http://arxiv.org/abs/2009.02050

CONCLUSIONS

- If there was a period of Inflation, one way to prove it would be the relic GW background
- The expected Spectrum is created through expanded QF
- The defining Characteristic is the Cutoff frequency, it gives us the Hubble radius at the end of Inflation, though other backgrounds overshadow is
- A precise measurement could show the impact of events in RD on expansion

Outlook

In case of Hybrid Inflation the pre and reheating process gives rise to classical source terms. Further differences as such can be found in the reheating spectra

Alexander Schneider

5

THANK YOU FOR YOUR ATTENTION

The Amplitude of the Background can be estimated through measurements of the CMB

► For $f \ll f_{eq}$:

$$h_0^2 \Omega = 1.87 \cdot 10^{-16} \left(\frac{r}{0.1}\right) \left(\frac{A_R}{2.14 \cdot 10^{-9}}\right) \left(\frac{f_{eq}}{f}\right)^2 \left(\frac{f}{f_R}\right)^{n_T}$$

► For $f_{eq} \ll f \ll f_{RH}$:

$$h_0^2 \Omega = 1.44 \cdot 10^{-16} \left(\frac{r}{0.1}\right) \left(\frac{A_R}{2.14 \cdot 10^{-9}}\right) \left(\frac{f}{f_R}\right)^n$$

► For $f_{RH} < f$:

$$h_0^2 \Omega = 1.44 \cdot 10^{-16} \left(\frac{r}{0.1}\right) \left(\frac{A_R}{2.14 \cdot 10^{-9}}\right) \left(\frac{f_{RH}}{f}\right)^2 \left(\frac{f}{f_R}\right)^{n_T}$$

r = 0.036 $A_R = 2.14 \cdot 10^{-9}$ $n_T = -\frac{r}{8}$ $f_R = 7.73 \cdot 10^{-17} \text{ Hz}$ $f_{RH} = 0.027 \cdot \left(\frac{T_{RH}}{10^6 \text{ GeV}}\right) \text{Hz}$

Slow roll conditions: In inflation, the co-moving Hubble radius decreases

That means:

$$\frac{d}{dt}\left(\frac{1}{aH}\right) = -\left(\frac{\dot{a}H + a\dot{H}}{(aH)^2}\right) = -\frac{1}{a}\left(1 + \frac{\dot{H}}{H^2}\right) \rightarrow \epsilon = -\frac{\dot{H}}{H^2} < 1$$
(0 in de Sitter Phase)

With
$$H^2 = \frac{\rho}{3M_{pl}}$$
 and $\dot{\rho} = -3H(\rho + P)$:
 $\dot{H} + H^2 = -\frac{1}{6M_{pl}^2}(\rho + 3P) = -\frac{H^2}{2}(1 + \frac{3P}{\rho})$

Alexander Schneider

[1] Bauman Cosmologylecture notes 07.01.2025

$$\dot{H} + H^2 = -\frac{1}{6M_{pl}^2}(\rho + 3P) = -\frac{H^2}{2}(1 + \frac{3P}{\rho})$$

$$\frac{\dot{H}}{H^2} + 1 = -\frac{1}{2}\left(1 + \frac{3P}{\rho}\right)$$

 $\frac{\dot{H}}{H^2} = -\frac{3}{2}\left(1 + \frac{P}{\rho}\right) = -\epsilon \rightarrow \text{pressure has to be negative}$

Alexander Schneider

19

[1] Bauman Cosmology lecture notes 07.01.2025

$$\dot{H} + H^2 = -\frac{H^2}{2} \left(1 + \frac{3P}{\rho}\right) \text{ with } \dot{\rho} = -3H(\rho + P)$$

$$\rho \left(\frac{\dot{H}}{H^2} + 1\right) = -\frac{3}{2}(\rho + 3P)$$

$$\frac{\dot{H}}{H} = \frac{1}{2}\frac{\dot{\rho}}{\rho} = \frac{1}{2}\frac{d}{dt}\ln(\rho)$$

$$\text{With } H = \frac{\dot{a}}{a} = \frac{d}{dt}\ln(a)$$

$$\frac{\dot{H}}{H^2} = \frac{1}{2}\frac{d\ln(\rho)}{d\ln(a)} \rightarrow \left|\frac{1}{2}\frac{d\ln(\rho)}{d\ln(a)}\right| = \epsilon < 1 \rightarrow \text{density stays almost constant}$$

Alexander Schneider

[1] Bauman Cosmology lecture notes 07.01.2025

WAVE EQUATION

For linear perturbations $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$ Becomes $\Box \bar{h}_{\mu\nu}$ $+ \eta_{\mu\nu} \partial_{\rho}\partial_{\sigma} \bar{h}_{\rho\sigma} - \partial_{\rho}\partial_{\nu} \bar{h}_{\mu\sigma} - \partial_{\rho}\partial_{\mu} \bar{h}_{\nu\rho} = -16\pi G T_{\mu\nu}$ Which in Lorentz TT Gauge is $h_{\mu\nu} = 16\pi G T_{\mu\nu}$

Alexander Schneider

Gravitational Waves Vol. 1 Theory and Experiment Michele Maggiore p. 6f

- Given the fact that the source are expanded QF, the
- The Important question regarding a mode becomes when does it enter the horizon:
 - Before entering it's constant
 - After it is suppressed with $\frac{1}{a}$
- We can now differentiate between different Intervals:
 - ► $[k_0, k_{eq})$, $h_0^2 \Omega \propto \frac{1}{f^2}$
 - $\blacktriangleright (k_{eq}, k_{RHf}), (k_{RHf}, k_{RH}),$
 - ▶ $k > k_{PH}$ exponentially suppressed, cutoff rüberkopieren

We can now differentiate between super and sub horizon modes For sub horizon modes with $k^2 \gg (aH)^2$: $\tilde{h}_{\mu\nu} \propto \cos(\omega t) \rightarrow h_{\mu\nu} \propto \frac{1}{a}\cos(\omega t)$ \rightarrow exponentially suppressed

For super horizon modes with $k^2 \ll (aH)^2 : ah''_{\mu\nu} + 2a'^{h'_{\mu\nu}} = 0$ $\Rightarrow h = A + B \int_{\tau_i}^{\tau_f} \frac{d\tau}{a(\tau)^2} \Rightarrow$ has a constant component

