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CP violation of the Standard Model (SM) is insufficient to explain the baryon asymmetry in the
Universe and therefore an additional source of CP violation is needed. Here we consider the extension
of the SM by a neutral complex singlet and discuss the physical conditions for a spontaneous CP
violation in such model. In the model there are three neutral Higgs particles. Assuming the lightest
one to be the 125 GeV Higgs boson found at LHC we calculate masses of the additional Higgs scalars
and perform a numerical study of the allowed region of parameters. The scenario according to which
the SM-like Higgs particle comes mostly from the SM-like SU(2) doublet, with a small modification
coming from the singlet, is in agreement with the newest Rγγ and precise EW (parameters S, T)
data. We have found that the Jarlskog invariant, measuring the strength of the CP violation,
can be enhanced as compared to the one in the SM, at the same time there is no corresponding
enhancements expected for the Electric Dipole Moment (EDM).

I. INTRODUCTION

It is well known that in the Standard Model (SM),
where CP is explicitly broken at the Lagrangian level
through the complex Yukawa couplings, the single phase
in the Cabibbo-Kobayashi-Maskawa matrix (CKM) is a
unique source of CP violation. According to Sakharov
[1], there are three requirements that must be satisfied
in order to generate the baryon asymmetry of the Uni-
verse, namely the violation of the baryon number, viola-
tion of C and CP symmetries and the existence of non
equilibrium processes, see also reference [2]. In spite
of satisfying these demands, the amount of CP violation
within the SM is not sufficient to explain the observed
baryon asymmetry of the Universe [3–5]. In order to
have an extra source of CP violation, that could allow
to address this important issue, various extensions of the
SM are considered [6–11].

Here we shall assume that the additional sources of
CP violation are provided by a neutral complex scalar
singlet χ, which accompanies the SM-like Higgs doublet
Φ. This kind of extension of the SM was discussed in the
literature with various motivations, see e.g. [12–21]. We
consider the potential with a softly broken global U(1)
symmetry, which we call the Constrained SM+CS model
(cSMCS). Assuming nonzero vacuum expectation value
for the complex singlet we analyse the physical conditions
for spontaneously CP violation. In the model there are
three neutral Higgs particles with mixed CP properties.
Assuming the lightest one, predominately CP-even, to be
125 GeV Higgs boson found at LHC, we calculate masses
of the other Higgs scalars and perform a numerical study
of the allowed region of parameters. We calculate the
Jarlskog invariant [22–25], measuring the amount of the
CP violation in our model, and comment the prediction
of the model for the electric dipole moment EDM. The
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scenario realized in the mode,l according to which the
SM-like Higgs particle comes mostly from the SM-like
SU(2) doublet with a small modification coming from
the singlet, is in agreement with the newest LHC Higgs
data, in particular the strength signal Rγγ , as well as the
precise EW measurements. We propose the benchmarks
to test this model.

The model considered in this paper is a part of a larger
framework introduced in [26, 27], where the extension
of the SM by a complex singlet and the inert doublet
(with vev = 0) has been studied, with the focus on the
properties of dark matter. Here we focus on the issue
of a CP violation due to a complex singlet with a com-
plex expectation value. This model offers a possibility of
the strong first-order phase-transition, and if extended
by vector quarks leads to a proper description of baryo-
genesis, what is shown in [28].

The content of this paper is as follows. In section II
a general presentation of the SMCS model and its con-
strained version (cSMCS) investigated in the paper is
given. In particular, the subsection II C describes the
conditions for the spontaneous CP violation in the model.
Physical states in the Higgs sector are discussed in sec-
tion IX B. The numerical results of scans over parameters
of the model are collected in sec. IV. In the section V the
Jarlskog invariant for the scalars is discussed. In the
section VI the agreement of cSMCS model with exist-
ing LHC measurements of the properties of the SM-like
Higgs boson as well as comparison with data on S and
T parameters are shown. Here also we comment on pre-
dictions of the model on the EDM. The benchmarks are
presented here as well. Section VII contains the conclu-
sion. Detailed formulas are presented in the Appendix.

II. THE CSMCS: THE SM PLUS A COMPLEX
SINGLET

The full Lagrangian of the model is given by

L = LSMgf +Lscalar +LY (ψf ,Φ) , Lscalar = T −V, (1)
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where LSMgf describes the pure gauge bosons terms as well
the SM boson-fermion interaction, Lscalar describes the
scalar sector of the model with one SU(2) doublet Φ and
a neutral complex scalar (spinless) singlet χ. LY (ψf ,Φ)
represents the Yukawa interaction of Φ with the SM
fermions. The neutral complex scalar singlet χ does
not couple to the SM fermions and therefore the singlet-
fermion interaction is present only through the mixing
of the singlet χ with the doublet Φ, the same holds for
singlet interaction with the gauge bosons. This model al-
lows for the SM-like scenario observed at the LHC, with
the SM-like Higgs boson predominantly consisting of a
neutral CP-even component of the Φ doublet.

We assume Φ and χ fields have vacuum expectation
values (vev) v and weiξ, respectively, where v, w, ξ ∈ R.
We shall use the following field decomposition around the
vacuum state:

Φ =

(
φ+

1√
2

(v + φ1 + iφ4)

)
, χ =

1√
2

(weiξ + φ2 + iφ3).

(2)
Masses of the EW gauge bosons and the fermions are
given by the vev of the doublet, e.g. M2

W = g2v2/4 for
the W boson.

A. Potential

The scalar potential of the model can be written as
follows

V = VD + VS + VDS , (3)

with the pure doublet and the pure singlet parts (respec-
tively VD and VS) and their interaction term VDS . The
SM part of the potential, VD, is given by:

VD = −1

2
m2

11Φ†Φ +
1

2
λ1
(
Φ†Φ

)2
. (4)

The potential for a complex singlet is equal to:

VS =−1

2
m2
sχ
∗χ− 1

2
m2

4(χ∗2 + χ2)

+λs1(χ∗χ)2 + λs2(χ∗χ)(χ∗2 + χ2) + λs3(χ4 + χ∗4)

+κ1(χ+ χ∗) + κ2(χ3 + χ∗3) + κ3(χ∗χ)(χ+ χ∗).

(5)

The doublet-singlet interaction terms are:

VDS =Λ1(Φ†Φ)(χ∗χ) + Λ2(Φ†Φ)(χ∗2 + χ2)

+κ4(Φ†Φ)(χ+ χ∗). (6)

There are three quadratic (m2
a), six dimensionless quar-

tic (λa,Λa) and four dimensionful parameters κi, i =
1, 2, 3, 4, describing linear (κ1), cubic (κ2, κ3) and mixed
(κ4) terms, respectively. The linear term κ1 can be re-
moved by a translation of the singlet field, and therefore
can be neglected.

To simplify the model, we apply a global U(1) symme-
try

U(1) : Φ→ Φ, χ→ eiαχ (7)

to reduce the number of parameters in the potential [26].
However, a non-zero vev of χ would lead in such case
to a spontaneous breaking of this symmetry and an ap-
pearance of massless Nambu-Goldstone scalar particles,
what is not acceptable. Keeping some U(1) soft-breaking
terms in the potential would solve this problem and at the
same time would still lead to a reduction of the number of
parameters of V. In what follows, we shall consider a po-
tential with a soft-breaking of U(1) symmetry, where the
singlet cubic terms κ2,3 and the singlet quadratic term
m2

4 are kept. For simplicity the κ4 term is neglected in
the main part of analysis, see also discussion in [26]. We
assume it is negligible, being generated at one loop with
strength given by 1

16π2κ3Λ1 [29], where coupling Λ we
keep small to ensure perturbativity of our calculation.
We have checked that neglecting the κ4 term does not
change basic properties of the model. Some results for
the case with non-zero κ4 are presented in the Appendix
IX.

In the analysis of the model we include the U(1)-
symmetric terms (m2

11,m
2
s, λ1, λs1,Λ1) and the U(1)-soft-

breaking terms (m2
4, κ2,3). Simplifying slightly the nota-

tion by using: λs = λs1,Λ = Λ1, we get the potential in
the following form

V =−1

2
m2

11Φ†Φ +
1

2
λ1
(
Φ†Φ

)2
−1

2
m2
sχ
∗χ+ λs(χ

∗χ)2 + Λ(Φ†Φ)(χ∗χ)

−1

2
m2

4(χ∗2 + χ2) + κ2(χ3 + χ∗3) + κ3(χ∗χ)(χ+ χ∗).

(8)

With all parameter real the potential V is explicitly sym-
metric under the CP transformation Φ → Φ†, χ → χ∗.
We shall call the model with this choice of parameters,
cSMCS [27].

Note, that this potential (65) is similar to the potential
with two real singlets, with an additional Z2 symmetry
for the one singlet field, considered in paper [20]. In that
model, however, CP violation is not possible.

Useful form of potential is obtained if the complex
scalar χ is expressed in terms of its real and imaginary
parts, χ = (χ1 + iχ2)/

√
2, namely

V =−1

2
m2

11Φ†Φ +
1

2
λ1
(
Φ†Φ

)2
−µ

2
1

4
χ2
1 −

µ2
2

4
χ2
2 +

1

2
Λ(Φ†Φ)(χ2

1 + χ2
2)

+
1

4
λs(χ

2
1 + χ2

2)2 +
1√
2
κ2(χ3

1 − 3χ1χ
2
2)

+
1√
2
κ3(χ3

1 + χ1χ
2
2) +

√
2κ4(Φ†Φ)χ1. (9)
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B. Positivity conditions

In order to have a stable minimum, the parameters
of the potential need to satisfy the positivity conditions.
The potential should be bounded from below, i.e. should
not go to negative infinity for large field values. As this
behavior is dominated by the quartic terms, the cubic
terms will not play a role here. Thus the following posi-
tivity conditions will apply

λ1, λs > 0, Λ > −
√

2λ1λs. (10)

C. Extremum conditions

The extremum conditions lead to the following con-
straints:

−m2
11 + λ1v

2 + Λw2 = 0, (11)

w1(−µ2
1 + v2Λ + 2w2λs) +

√
2[3(w2

1 − w2
2)κ2

+(3w2
1 + w2

2)κ3] = 0, (12)

− µ2
2 + v2Λ + 2w2λs + 2

√
2w1(−3κ2 + κ3) = 0, (13)

where we use the vev for the singlet scalar field in the
form: weiξ = w cos ξ+iw sin ξ = w1+iw2 and parameters
µ2
1 and µ2

2 defined as

µ2
1 = m2

s + 2m2
4, µ2

2
= m2

s − 2m2
4.

Various spontaneous symmetry breaking extrema are
possible, among them with vanishing one or two of vac-
uum expectation parameters v, w1, w2. Here we concen-
trate on the case with v, w1 and w2 different from zero,
allowing for a vacuum violating CP.

D. The CP violating vacuum

When v and both w1, w2 are different from zero an im-
portant relation can be obtained by subtracting equation
(61) from the equation (60), namely [27]

− 4m2
4 cos ξ + 3R2(1 + 2 cos 2ξ) +R3 = 0, (14)

where R2 =
√

2wκ2 and R3 =
√

2wκ3, both with [mass]2

dimension.
For a particular case R2 = 0 equation (14) transforms

to:

− 4m2
4 cos ξ +R3 = 0, cos ξ =

R3

4m2
4

→ −4m2
4 < R3 < 4m2

4. (15)

The regions of the parameters R2, R3 and ξ allowed by
Eq. (14), for fixed m2

4, are shown in Fig. 1. Figure 2a
is a two-dimensional version of the Fig. 1. Another two-
dimensional plot showing the allowed regions of R3 and
4m2

4, for R2 equal zero (Eq. (15)), is presented in Figs.
2b.

III. PHYSICAL STATES IN THE HIGGS
SECTOR

Mass squared matrix Mmix in the basis of φ1, φ2, φ3
can be written as follows:

Mmix =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (16)

where the Mij(i, j = 1, 2, 3) are:

M11 = 1
2 (−m2

11 + 3v2λ1 + w2Λ)

M12 = vw1Λ

M13 = vw2Λ

M22 = −m2
4 − 1

2m
2
s + 1

2v
2Λ + (w2

2 + 3w2
1)λs

+3
√

2w1(κ2 + κ3)

M23 = w2(2w1λs +
√

2(−3κ2 + κ3))

M33 = m2
4 − 1

2m
2
s + 1

2v
2Λ + (w2

1 + 3w2
2)λs

+
√

2w1(−3κ2 + κ3).

(17)

The extremum condition have not been applied to get
Mij elements presented in Eq. (17). When the the ex-
tremum condition Eqs. (59-61) is applied the diagonal
elements change to

M11 = v2λ1,

M22 = w2
√
2w1

(
3κ2 + κ3(1 + 2(w2

1 − w2
2)/w2)

)
+ 2w2

1λs,

M33 = 2w2
2λs.

(18)
Diagonalization of M2

mix (17) gives the mass-
eigenstates h1, h2, h3: h1

h2
h3

 = R

 φ1
φ2
φ3

 , RM2
mixR

T = diag(M2
h1
,M2

h2
,M2

h3
).

(19)

We will consider the following mass hierarchy Mh1
<

Mh2
.Mh3

.
The rotation matrix R = R1R2R3 depends on three

mixing angles (α1, α2, α3). The individual rotation ma-
trices are given by (here and below ci = cosαi, si =
sinαi):

R1 =

 c1 s1 0
−s1 c1 0

0 0 1

 , R2 =

 c2 0 s2
0 1 0
−s2 0 c2

 ,

R3 =

 1 0 0
0 c3 s3
0 −s3 c3

 . (20)

All αi vary over an interval of length π. The full rotation
matrix R depends on the mixing angles in the following
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Figure 1. The regions of the parameters R2, R3 and ξ as follows from Eq. (14), for fixed m2
4, from different perspectives.

Figure 2. The correlation between the parameters R2, R3 and m2
4, for −1 < cos ξ < 1. The dashed lines corresponds to the

cos ξ = ±1 limits, not allowed for CP violation. (a) Shaded regions for R2 and R3 allowed by Eq. (14), at 4m2
4 = 500 GeV2;

(b) Shaded regions for 4m2
4 and R3 allowed by Eq. (15), for R2 = 0.

manner:

R =R1R2R3

=

 c1c2 c3s1 − c1s2s3 c1c3s2 + s1s3
−c2s1 c1c3 + s1s2s3 −c3s1s2 + c1s3
−s2 −c2s3 c2c3

 . (21)

The inverse of R can be used to obtain the reverse rela-
tion between hi and φi.

The element (11) of both rotation matrices R and R−1

are equal to

R(11) = R−1(11) = c1c2.
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Two important relations can be read from the above ro-
tation matrices, namely:

h1 = c1c2φ1 +(c3s1−c1s2s3)φ2 +(c1c3s2 +s1s3)φ3 (22)

and

φ1 = c1c2h1 − c2s1h2 − s2h3. (23)

These relations describe the composition of the SM-like
Higgs boson h1 in terms of the CP-even (φ1 and φ2) and
the CP-odd (φ3) components. It signals the CP mixing
in the model. In the Sec. IV we use these equations to
perform a scanning of the relevant regions of parameters.
We shall treat h1 as the 125 GeV Higgs boson.

IV. ALLOWED REGIONS OF PARAMETERS
FOR CP VIOLATING VACUUM

In what follows, we present results of a numerical anal-
ysis of the allowed regions of parameters of the cSMCS
model, with the CP violating vacuum, in agreement with
the positivity and extremum conditions as well as the
perturbativity conditions. We assume v being bounded
to the region 246 GeV < v < 247 GeV and that the
mass of the lightest Higgs particle h1 lies in range

Mh1
∈ [124.00, 127.00] GeV, (24)

in agreement with recent LHC results for the Higgs boson
[30]. We take masses of two additional, heavier Higgs
scalars to be [26]

Mh3 &Mh2 > 150 GeV. (25)

The parameters of the Higgs sector are varied in the fol-
lowing ranges:

− 1 < Λ < 1, 0 < λs < 1, −1 < ρ2,3 < 1, 0 < ξ < π,
(26)

where we used dimensionless parameters ρ2,3 = κ2,3/w.
From assumption that M2

h1
≈ m2

11 ≈ λ1v
2, and Mh1

≈ 125 GeV we estimate range of λ1 to be :

0.2 < λ1 < 0.3. (27)

In order to have an appropriate range for the parameter
v we set the ranges of remaining quadratic variables as
follows:

− 90000 GeV2 < µ2
1, µ

2
2, m

2
11 < 90000 GeV2. (28)

The range of values of vev for the singlet, w, was not
set in the analysis - it was derived from the scan. The ob-
tained allowed regions for quartic parameters and masses
are shown in Fig. 3. In Fig.3a, the allowed region of Λ
versus λs is shown. We got strong constraints on the
singlet self coupling λs, to be greater than 0.2, and on
the doublet-singlet coupling |Λ|, to be below 0.2. Note,
that the constraints of Λ and λs arise mainly from the

mass limits (24). The positivity condition can constrain
only the region of negative Λ, as follows from (10). This is
shown as a light shadowed region in the plot Fig.3a. Figs.
3b and 3c show the allowed regions of masses for h2 and
h3, respectively. For higher λs larger masses are possible,
respectively up to 650 and 800 GeV. Note, that larger val-
ues of quadratic parameters |µ2

1|, |µ2
2|, beyond the range

given in (28), would lead to larger allowed masses for
scalars h2, h3.

The allowed regions for the cubic parameters ρ2 and
ρ3 are important from point of view of CP violation (14),
they are shown in Fig. 4. Fig. 4a shows the allowed by
scan over parameters the (R2, R3) region. Note, that it
reproduces roughly results presented on Fig.2a, obtained
solely from the extremum conditions (14). In Figs. 4b,c
the allowed regions of the phase ξ versus ρ2,ρ3 are pre-
sented. In both panels there are two allowed regions,
symmetric with respect to ξ ∼ π/2, with a gap around
the central value ξ = π/2 (which corresponds to w1 ≈ 0).

The result of the scanning over other potential param-
eters are shown in Fig. 5. In the figure 5a the allowed
region of the (w, v) plane is presented. The vev of singlet
w reaches the highest value of 800 GeV, however the most
points are concentrated at low value of w (2 - 50 GeV).
This is related to the fact that we limit λ1 ≈ m2

11/v
2 (27),

what leads to the small w according to the equation (59).
Domination of small w is seen also in the Fig.5c, where
the allowed region of w as a function of Λ is shown as
well as in Fig.5d, where the w as a function of m2

11 is
presented. Here, the concentration of points is observed
for value of m2

11, close to the mass square of the SM
Higgs boson, as expected. The allowed regions of ξ ver-
sus Λ is shown in Fig. 5b, where a symmetry and a gap
for ξ ∼ π/2 is seen in the ξ distributions, as discussed
above.

The allowed regions of masses of the Higgs bosons h2
and h3 are shown in Fig. 6, once more showing the sym-
metry and the gap in the ξ distribution. The maximal
values of masses, around 650 GeV (h2) and 800 (h3) GeV,
can be reached for ξ around 1 and symmetrically around
2 radians (i.e. for ξ equal 1.5±0.5 radians).

V. J-INVARIANTS

In this section we estimate the amount of CP viola-
tion in the considered cSMCS model using the Jarlskog
invariant. C. Jarlskog has introduced such quantity orig-
inally for the quark sector [22]. It has been shown that
the Jarlskog invariants can be used for the scalars to flag
the existence of the CP-violation in the models with an
extended scalar sector [23–25]. For 2HDM the discussion
of these invariants was performed in e.g. [8, 10, 31]. If
the Jarlskog quantity J1 is different from zero then there
is a CP violation in the model.

The J1 can be defined by mixing elements of the
squared mass matrix [62] as follows:

J1 = M12M13(M22 −M33) +M23(M2
13 −M2

12), (29)
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Figure 3. The allowed region for quartic parameters and masses. a) Λ versus λs is presented. In the light shaded region only
positivity conditions were applied. b) Mh2 versus λs and c) Mh3 versus λs.

Figure 4. The allowed regions fo cubic parameters: a) ρ2 versus ρ3, b) ρ2 versus ξ, c) ρ3 versus ξ.

which for vacuum state with CP violation, described by
the equation (14), leads to

J1 = 2Λ2v2w2m2
4 sin ξ cos ξ = 2Λ2v2w1w2m

2
4, (30)

with m2
4 given by Eq. (14). So, in order to have J1 6= 0

the non-vanishing complex vev of a singlet is needed as
well as the U(1)-violating quadratic term -m2

4. As follows
from eq. (14), nonzero value of m2

4 means non vanishing
of at least one cubic term for the singlet. Further - a
interaction between a doublet and singlet is necessary. It
is well know that in the SM the ”true” J1 invariant is
of the order of 10−5 [3]. The Fig. 7 shows the range of
the dimensionful (GeV6) invariant J1 for the considered
model. By normalizing it by v6, as we choose v to rep-
resent temperature of the EW phase transition TEW , we
get the highest value for |J1/v6| around 10−3. It can be

larger for larger |m2
4|.

In the Appendix IX we calculate the Jarlskog invariant
for the case with κ4 6= 0.

VI. COMPARISON WITH DATA

In the considered cSMCS model we examine the SM-
like scenario with the lightest neutral Higgs particle being
the 125 GeV Higgs particle observed at LHC. Not only
mass, but also direct couplings to fundamental particles
should be close to the ones measured at the LHC. We
found that this is indeed a case for our model. Below
we collect main formulas and constraints from the model
as coming from the LHC data on 125 GeV Higgs bosons
and measurement of oblique corrections. Here we present
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Figure 5. The allowed regions: (a) the correlation between v and w (b) the correlation between Λ and ξ (c) the correlation
between w and Λ and (d) w versus m2

11.

also a short discussion on prediction of the model for the
EDM. We finish this section by presenting 7 benchmarks.

A. Properties of h1 Higgs boson in light of LHC
data

The couplings of the lightest Higgs particle (h1) to
the quarks and the gauge bosons in the cSMCS model,
as compared with the corresponding couplings of the
SM Higgs, are modified (suppressed) by a factor R11

(Eq.(21). In particular, for the Higgs boson decay into
vector bosons (V = Z,W ) we have

Γ(h1 → V V ∗) = R2
11Γ(HSM → V V ∗). (31)

Further constraints on the parameters of our model can
be obtained by comparing the decay of the light Higgs
boson h1 and of the SM Higgs boson into γγ. This is
done using the signal strength Rγγ :

Rγγ =
σ(gg → h1)

σ(gg → HSM )

BR(h1 → γγ)

BR(HSM → γγ)

=
Γ(h1 → gg)

Γ(HSM → gg)

BR(h1 → γγ)

BR(HSM → γγ)
, (32)

taking into account that the production of the Higgs
bosons in the LHC is dominated by the gluon fusion pro-
cesses and that the narrow width approximation can be
applied. The Higgs h1 decay width into gluons is given
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Figure 6. Allowed regions for Higgs masses: a) Mh2 versus ξ and b) Mh3 versus ξ.

Figure 7. J1 invariant (in GeV6) as a function of Λ in linear (a) and log (b) scale.

by:

Γ(h1 → gg) = R2
11Γ(HSM → gg). (33)

The main contribution in the one-loop coupling of h1
to photons is due to the W boson and top quark, and
therefore in our model the corresponding amplitude and
the decay rate are equal to:

A(h1 → γγ) = R11(ASMW +ASMt )

→ Γ(h1 → γγ) = R2
11Γ(HSM → γγ), (34)

see Appendix (VIII C). Since the total width of the light
Higgs boson h1 is given by

Γtot ≈ R2
11ΓSMtot , (35)

the signal strengths Eq.(32) is equal to

Rγγ ≈ R2
11. (36)

Both RV V and Rγγ are smaller than 1, by the same
amount, compatible with recent LHC measurements.

Note, that the total decay width for heavier Higgses
can be significantly modified with respect to the SM, if
hi (heavier) can decay into the lighter hj particles, since

Γtot ≈ R2
i1ΓSMtot +

∑
i=2,3;j=1,2,3;i>j

Γhi→hjhj
.

The partial decay width for such decay channels hi →
hjhj , where i > j, is given by

Γ(hi → hjhj) =
g2hihjhj

32πMhi

(
1−

4M2
hj

M2
hi

)1/2

, (37)

where ghihjhj
is the coupling between Higgs bosons, see

Appendix (VIII D) for corresponding expressions. In the
considered model the signal strength for γγ for h1 as well
as for h2, h3 can only be smaller than (or equal to) 1. Be-
low, we present our predictions for several benchmarks,
all for R2

11 ∼ 0.81− 0.98.
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B. Oblique parameters S, T, U

The additional particles introduce corrections to the
gauge boson propagators in the SM that can be
parametrized by the oblique parameters S, T and U .
The oblique parameters in cSMCS model, following the
method introduced in [33], are described in the Appendix
VIII B. Below, we show that chosen by us benchmarks are
in agreement with current data for S and T . The val-
ues that are determined from a fit with reference mass-
values of top and Higgs boson Mt,ref = 173 GeV and
Mh,ref = 125 GeV read [34]

S = 0.05± 0.11, T = 0.09± 0.13, U = 0.01± 0.11.
(38)

C. EDM

The radiative corrections coming from the contribu-
tions of the additional Higgs particles in the Barr-Zee
diagrams for EDM [32] turned out to be zero because in
our model the scalar singlet does not couple to the SM
fermions and pseudoscalar-like Yukawa coupling, that re-
sults in the EDM, is absent in our model.

D. Benchmarks

Here we present seven benchmarks for the considered
model showing agreement with the above mentioned con-
straints. Properties of benchmarks are presented in table
I and II. Table I shows mixing angle α1,2,3 and masses
for h1,h2 and h3. The highest mass of h3 is 760 GeV
while the lowest one is 179 GeV. The table contains as
well the prediction of the considered model for the S and
T parameters (being in agreement with the current data
within 3σ) and J1/v

6 invariant. The Jarlskog invariant
J1/v

6 can be positive or negative, with range of its (ab-
solute) value from 3.5× 10−5 to 9.5× 10−4.

In table II the calculated Rγγ for h1 as well as h2 and
h3 are presented together with their total widths. The
largest decay widths, from 7 to 17 GeV, are obtained
for benchmark A3, A4 and A5 for relatively heavy h3
(for masses around 600 GeV). Note, that only benchmark
points A6 and A7 corresponds to relatively light (mass
below 200 GeV) Higgs bosons h2 and h3 and only these
two benchmarks arise from negative Λ, as presented in
Fig. 8.

VII. CONCLUSION AND OUTLOOK

In this paper we present the cSMCS - an extension of
the Standard Model containing a complex singlet with a
non-zero complex vev, which allows for the spontaneous
CP violation. For simplicity, we have performed analysis
assuming that doublet-singlet interaction is given by Λ

term only. We have checked that inclusion of κ4 does
not change main properties of the model, allowing for
CP violation (Appendix IX) and strong first order phase
transition, see also [28].

Within our model different vacua can be realized, here
we have focused on the case with the CP violating vac-
uum. We have derived a simple condition for existence of
such vacuum, and found that at least one cubic term for
χ is needed in order to have spontaneous CP violation.
In the model there are three neutral Higgs particles with
indefinite CP properties. The model can easily accom-
modate the SM-like Higgs, with mass around 125 GeV,
in agreement with LHC data and measurements of the
oblique parameters. In this respect we confirm basic re-
sults obtained for the Higgs sector already in the paper
[26], within a larger framework with the additional inert
doublet. Note however, that in the present scan we keep
w parameter as a free parameter and perform more de-
tailed analysis of allowed parameters of the model and
their correlations. In general, this analysis shows that
CP violation arises in our model from the scalar inter-
actions between a doublet and a singlet (Λ) and cubic
terms κ2, κ3 and of course complex vev of the singlet.
The calculated Jarlskog invariant J1, normalized to v6,
can reach value 10−3. The singlet-fermion interactions
is realized only through mixing of singlet with the dou-
blet and therefore pseudoscalar-like Yukawa coupling is
absent in our model, and the prediction for EDM does
not exceed the corresponding SM one. We provide seven
benchmarks, in agreement with collider data, for future
tests of the model.
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VIII. APPENDIX A

A. Coupling of scalars with gauge bosons and
fermions

We can represent rotation of the fields φi, i = 1− 4

(
φ1 + iφ4
φ2 + iφ3

)
= P

 G0

h1
h2
h3

 , (39)
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Benchmark α1 α2 α3 Mh1 Mh2 Mh3 S T J1/v
6

A1 -0.047 -0.053 1.294 124.64 652.375 759.984 -0.072 -0.094 -2.2 ×10−4

A2 -0.048 0.084 0.084 124.26 512.511 712.407 -0.001 -0.039 7.2 ×10−4

A3 0.078 0.297 0.364 124.27 582.895 650.531 0.003 -0.046 4.5 ×10−4

A4 0.006 -0.276 0.188 125.86 466.439 568.059 -0.013 -0.169 -9.5 ×10−4

A5 0.062 -0.436 0.808 125.21 303.545 582.496 0.002 -0.409 5.0 ×10−6

A6 -0.210 0.358 0.056 124.92 181.032 188.82 0.003 -0.010 -4.0 ×10−5

A7 -0.205 0.403 0.057 125.01 175.45 178.52 0.002 -0.020 -3.5 ×10−5

Table I. Benchmark points A1−A7, masses are given in GeV.

Benchmark Rh1
γγ Rh2

γγ Rh3
γγ Γh1

tot Γh2
tot Γh3

tot

A1 0.98 0.0021 0.0028 0.0042 0.304 0.781
A2 0.98 0.0021 0.0070 0.0042 0.145 1.31
A3 0.98 0.0055 0.085 0.0042 0.566 12.24
A4 0.92 3.3 ×10−5 0.074 0.0043 0.001 7.08
A5 0.81 0.0029 0.17 0.0043 0.002 17.51
A6 0.82 0.19 0.11 0.0043 0.119 0.163
A7 0.81 0.18 0.15 0.0043 0.871 0.083

Table II. Values of Rγγ and Γtot for benchmark points A1−A7. The total widths are given in GeV.

where the 2× 4 matrix P is equal to

P =

(
i R11 R21 R31

0 R12 + iR13 R22 + iR23 R32 + iR33

)
. (40)

The kinetic term in Lscalar has the standard form:

Tk = (DµΦ)
†

(DµΦ) + ∂χ∂χ∗, (41)

with Dµ being a covariant derivative for an SU(2) dou-
blet and can be defined as

Dµ = ∂µ − igW a
µ t
a − ig′YφBµ. (42)

The covariant derivative of the neutral singlets is identi-
cal with their ordinary derivative:

Tk =
1

2
∂µh1∂

µh1 +
1

2
∂µh2∂

µh2 +
1

2
∂µh3∂

µh3

+M2
wW

+
µ W

−µ +
M2
z

2
ZµZ

µ

+ g(MwW
+
µ W

−µ +
M2
z

2cw
ZµZ

µ)[R11h1 +R21h2 +R31h3]

+ (
g2

4
W+
µ W

−µ +
g2

8c2w
ZµZ

µ)[R2
11h1h1 +R2

21h2h2

+R2
31h3h3 +R11R21h1h2 +R11R31h3h2 +R21R31h2h3]

+ gauge cubic/quartic terms, (43)

that quadratic terms give masses to the W and Z bosons:

MW = 1
2v|g|, MZ = 1

2v
√
g2 + g′2 . Since the neutral

singlet field carries no hypercharge, its vev does not con-
tribute to the masses of the gauge bosons. LY contains
the Y ukawa interactions between the fermions and the
Higgs fields that generates the fermion masses after the
Higgs acquires a vacuum expectation value. Notice that
only the doublet couples to the fermions.

LY = −
∑
f

mf

ν
ff(R11h1 +R21h2 +R31h3) (44)

The charged current part of the Lagrangian is given
by:

LC =− g√
2

[
uiγ

µ 1− γ5

2
MCKM
ij dj + νiγ

µ 1− γ5

2
ei

]
W+
µ

+h.c. (45)

B. Oblique parameters

To study the contributions to oblique parameters in
the cMSCS, we use the method presented in [33]. S and
T parameters in the cMSCS are given by:

T =
g2

64π2M2
Wαem

{
− (R12R23 −R13R22)2F (M2

h1
,M2

h2
)

−(R12R33 −R13R32)2F (M2
h1
,M2

h3
)

−(R22R33 −R32R32)2F (M2
h2
,M2

h3
)

+3(R11)2(F (M2
Z ,M

2
h1

)− F (M2
W ,M

2
h1

))

−3(F (M2
Z ,M

2
href

)− F (M2
W ,M

2
href

))

+3(R21)2(F (M2
Z ,M

2
h2

)− F (M2
W ,M

2
h2

))

+3(R31)2(F (M2
Z ,M

2
h3

)− F (M2
W ,M

2
h3

))

}
(46)
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Figure 8. J1 invariant (divided by v6) for the benchmarks points.

and

S =
g2

384π2C2
w

{
(R12R23 −R13R22)2G(M2

h1
,M2

h2
,M2

Z)

+(R12R13 −R13R32)2G(M2
h1
,M2

h3
,M2

Z)

+(R22R33 −R32R32)2G(M2
h2
,M2

h3
,M2

Z)

+(R11)2Ĝ(M2
h1
,M2

Z)− Ĝ(M2
href

,M2
Z)

+(R21)2Ĝ(M2
h2
,M2

Z) + (R31)2Ĝ(M2
h3
,M2

Z)

+log(Mh1
)2 − log(Mhref

)2 + log(Mh2
)2

+log(Mh3
)2
}
, (47)

where the following functions have been used

F (M2
1 ,M

2
2 ) =

1

2
(M2

1 +M2
2 )− M2

1M
2
2

M2
1 −M2

2

log(
M2

1

M2
2

), (48)

G(m1,m2,m3)=
−16

3
+

5(m1 +m2)

m3
− 2(m1 −m2)2

m2
3

+
3

m3

[
m2

1 +m2
2

m1 −m2
− m2

1 −m2
2

m3

+
(m1 −m2)3

3m2
3

]
log

m1

m2
+
rf(t, r)

m3
3

, (49)

The function f is given by

f(t, r) =


√
r ln | t−

√
r

t+
√
r
| r > 0,

0 r = 0,

2
√
−r arctan

√
−r
t r < 0,

(50)

with the arguments defined as

t ≡ m1+m2−m3 , r ≡ m2
3−2m3(m1+m2)+(m1−m2)2.

(51)

Finally, Ĝ(m1,m2) can be written as follows

Ĝ(m1,m2)=
−79

3
+ 9

m1

m2
− 2

m2
1

m2
2

+

(
−10 + 18

m1

m2

−6
m2

1

m2
2

+
m3

1

m3
2

− 9
m1 +m2

m1 −m2

)
log

m1

m2

+(12− 4
m1

m2
+
m2

1

m2
2

)
f(m1,m

2
1 − 4m1m2)

m2
.

(52)

C. Decays h→ γγ

The decay width, Γ(h→ γγ), is given by [35, 36],

Γ(h1 → γγ) = R2
11Γ(φSM → γγ). (53)

Then the ratio Rγγ turns out,

Rγγ = R2
11 (54)

where the form factors for this decay are

ASMt =
4

3
A1/2

(
4M2

t

M2
h1

)
, ASMW = A1

(
4M2

W

M2
h1

)
, (55)

where

A1/2(τ) = 2τ [1 + (1− τ)f(τ)] ,

A1(τ) = − [2 + 3τ + 3τ(2− τ)f(τ)] , (56)

A0(τ) = −τ [1− τf(τ)] ,

and

f(τ) =

{
arcsin2(1/

√
τ) for τ ≥ 1

− 1
4

(
log 1+

√
1−τ

1−
√
1−τ − iπ

)2
for τ < 1

(57)
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D. Higgs trilinear couplings

For coupling among Higgs bosons we have

gh2h1h1
=

1

2

[
R2

13(ΛR21v +R22(−3
√

2κ2 +
√

2κ3

+2λsw1) + 6λsR23w2) +R2
12(ΛR21v

+3R22(
√

2(κ2 + κ3) + 2λsw1) + 2λsR23w2)

+R2
11(3λ1R21v + Λ(R23w2 +R22w1))

+2ΛR11(R13(R23v +R21w2)

+R12(R22v +R21w1)) + 2R12R13(R23(−3
√

2κ2

+
√

2κ3 + 2λsw1) + 2λsR22w2)
]
. (58)

The gh3h1h1 coupling can be obtained from the above
expression by substitution R2j → R3j , and for gh3h2h2

by substitution R2j → R3j and then R1j → R2j .

IX. APPENDIX B: A CASE OF κ4 6= 0

Here we consider the case with κ4 6= 0.

A. The extremum conditions

The extremum conditions lead to the following con-
straints,

−m2
11 + v2λ1 + w2Λ + 2

√
2w1κ4 = 0, (59)

w1(−µ2
1 + v2Λ + 2w2λs) +

√
2[3(w2

1 − w2
2)κ2

+(3w2
1 + w2

2)κ3] + v2
√

2κ4 = 0, (60)

− µ2
2 + v2Λ + 2w2λs + 2

√
2w1(−3κ2 + κ3) = 0. (61)

B. Physical states in the Higgs sector

Mass squared matrix Mmix in the basis of φ1, φ2, φ3
can be written as follows:

Mmix =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (62)

where the Mij(i, j = 1, 2, 3) are:

M11 =v2λ1,

M12 =v(w1Λ +
√

2κ4),

M13 =vw2Λ,

M22 =
w2

√
2w1

(
3κ2 + κ3(1 + 2(w2

1 − w2
2)/w2)

−κ4v2/w2
)

+ 2w2
1λs,

M23 =w2(2w1λs +
√

2(−3κ2 + κ3)),

M33 =2w2
2λs. (63)

The equation for CP violating vacuum is modified as
compared to the condition (14) as follows

− 4m2
4 cos ξ + 3R2(1 + 2 cos 2ξ) +R3 +R4 = 0, (64)

where

R2 =
√

2wκ2, R3 =
√

2wκ3, R4 =

√
2v2κ4
w

,

all of which are of [mass]2 dimension. In addition we
have

R4 =
v2

2w2 cos ξ
(m2

11 − v2λ1 − w2Λ).

C. J-invariant

The J1 can be defined by mixing elements of the
squared mass matrix [62] and is equal to

J1 =v2w2 ×[
w2Λ2(1/

√
2)
(
κ3 + 3κ2(1 + 2(w2

1 − w2
2)/w2)− κ4v2/w2

)
−κ4Λ(w2/w1)

(√
2λsw1 + κ3 − 3κ2(3 + 2(w2

1 − w2
2)/w2)

+ κ4v
2/w2

)
+ 4κ24

(
λsw1 + (κ3 − 3κ2)/

√
2
)]
. (65)

Note, that even for Λ = κ2 = κ3 = 0 the J1 is not
vanishing: J1 = 4v2w2w1κ

2
4λs.
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