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Abstract

We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible
axion models. To frame our discussion we consider an extension of the Dine–Fischler–Srednicki–Zhitnitsky invisible
axion model with two additional Higgs doublets blind under the Peccei-Quinn symmetry. Due to mixing effects among
the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory.
In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and
solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also discussed.

1. Introduction

The strong CP problem remains a puzzle of the
SU(3)C⊗SU(2)L⊗U(1)Y Standard Model (SM) gauge the-
ory [1]. The resolution of the U(1)A problem by ’t Hooft
noticing that the QCD vacuum is non-trivial [2], led to
the conclusion that the SM contains an additional source of
CP violation besides the phase of the Cabibbo-Kobayashi–
Maskawa (CKM) matrix [3]. This additional source of CP
violation is strongly constrained by present bounds on the
neutron electric dipole moment [4, 5, 6].
One of the most compelling solutions to the strong CP

problem involves the addition of a spontaneously broken
Peccei-Quinn (PQ) U(1)PQ symmetry to the theory [7]. In
this way one provides a dynamical solution to the strong
CP problem while at the same time predicts the exis-
tence of a very light and long-lived pseudoscalar boson
known as the axion [8]. The original PQ model with two-
Higgs-doublets in which the PQ symmetry is broken at
the electroweak (EW) scale was excluded long ago ex-
perimentally [1]. By decoupling the breaking of the PQ
symmetry from the breaking of the EW gauge symme-
try one can build models with an invisible axion which
are still viable [9, 10, 11]. Invisible axion models avoid
current experimental limits since the axion mass and cou-
plings are suppressed by the PQ symmetry breaking scale,
assumed to be much higher than the EW scale. In the
Dine–Fischler–Srednicki–Zhitnitsky (DFSZ) invisible ax-
ion model, for example, one adds to the original PQ frame-
work a complex scalar gauge singlet which acquires a large
vacuum expectation value (vev) [10]. Besides solving the
strong CP problem, invisible axion models can provide also
a cure to other problems of the SM. The invisible axion,
for example, can be regarded as a well motivated cold dark
matter candidate [12].
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The recent discovery of a SM-like Higgs boson with mass
around 125 GeV by the ATLAS [13] and CMS [14] collab-
orations represents an enormous achievement in particle
physics and stands as a remarkable confirmation of the
SM. No fundamental principle of the SM forbids the pres-
ence of additional scalar fields related to the spontaneous
breaking of the EW gauge symmetry. Direct searches for
additional scalars will then constitute an important part
of the experimental program at the Large Hadron Collider
during the following years.

One of the simplest extensions of the SM scalar sector
is the two-Higgs-doublet model (2HDM), which can lead
to a very rich phenomenology [15]. However, such simple
extension gives rise to unwanted flavor-changing neutral
current (FCNC) interactions, which have to be suppressed
in order to avoid conflict with experimental data. One pos-
sible way out is to assume that the model is in a decoupling
regime, in this case a SM-like Higgs remains at the weak
scale while all the scalars with dangerous couplings become
very heavy. This is for example what usually happens in
invisible axion models, where the large PQ scale brings the
scalar sector to a decoupling limit. A more interesting sce-
nario from the phenomenological point of view is that an
underlying symmetry is forbidding the dangerous FCNCs,
leaving open the possibility of additional scalar fields at the
weak scale. This can be realized within the context of the
2HDM through the introduction of a discrete symmetry,
leading to natural flavor conservation (NFC) [16]. Another
possibility is requiring the alignment in flavor space of the
Yukawa matrices [17]. The so-called aligned two-Higgs-
doublet model (A2HDM) contains as particular cases the
different versions of 2HDMs with Z2 symmetries while at
the same time introduces new sources of CP violation be-
yond the CKM phase. The DFSZ invisible axion model is
actually built over a 2HDM for which NFC is imposed by
the PQ symmetry. In the A2HDM, the Yukawa alignment
condition is not imposed by any symmetry and is there-
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fore spoiled by quantum corrections [17, 18]. Embedding
the scalar sector of the A2HDM within a renormalizable
invisible axion model is therefore not obvious and has not
been achieved previously.

In this paper we discuss the possibility of having invisi-
ble axion models with a non-minimal scalar sector at the
EW scale. To frame our discussion, we consider in Sec. 2
a simple extension of the DFSZ model with two additional
Higgs doublets that are blind to the PQ symmetry. The
properties of the invisible axion are discussed in Sec. 3.
A study of the possible decoupling limits of this model
is given in Sec. 4. Due to mixing effects among the scalar
fields the decoupling structure of the theory becomes more
rich than in the DFSZ model. We will show that in certain
cases it is even possible to arrive to an effective 2HDM with
a Yukawa aligned structure. While the number of fields
that are blind to the PQ symmetry could be reduced to
just one for many of the issues discussed, by having two of
these fields we guarantee that the scalar potential of the
effective theory at the weak scale will be the most general
one. In Sec. 5 we present two ways of implementing small
neutrino masses. We conclude in Sec. 6.

2. Framework

We consider the DFSZ invisible axion model with two
additional complex Higgs doublets that are not charged
under the PQ symmetry. The scalar sector of the model
contains then four complex Higgs SU(2)L doublets with
hypercharge Y = 1/2 and a complex scalar gauge singlet
S. We denote by Φ1,2 the Higgs doublets that carry a PQ
charge, the doublets that are blind to the PQ symmetry
will be denoted by φ1,2. All the Higgs doublets take part in
the spontaneous breaking of the EW gauge symmetry by
acquiring vevs 〈Φ0

j〉 = uj/
√
2 and 〈φ0

j 〉 = vj/
√
2 (j = 1, 2),

with (u2
1 + · · ·+ v22)

1/2 ≡ v = (
√
2GF )

−1/2 being fixed by
the massive gauge boson masses. As in the DFSZ model we
assume that the global U(1)PQ symmetry is spontaneously

broken by a very large vev of the scalar field 〈S〉 = vPQ/
√
2

(vPQ ≫ v).

Our scalar content will transform under the PQ symme-
try as

S → eiXS θS , Φj → eiXj θΦj , φj → φj . (1)

The most relevant terms in the scalar potential, as will be
explained in Sec. 4, are the trilinear interactions

µ1,jΦ
†
1φjS and µ2,jΦ

†
2φjS

∗ , (2)

the implicit sum on j = 1, 2 is assumed. The parame-
ters µ1(2),j have mass dimension and determine the size
of the mixing between both types of doublets. The above
interactions lead to the following charge constraints

X1 = −X2 = XS . (3)

The full scalar potential, built with the above constraints,
is presented in the appendix. The PQ charge normaliza-
tion is unphysical and therefore we shall set XS = 1, as it
is usually done.
In the Yukawa interactions we shall only couple the dou-

blets Φj , we call them active fields. The doublets φj will
not couple to the fermions and thus we call them pas-
sive fields. For simplicity, we choose the left-handed quark
doublets to be blind under the chiral U(1)PQ. The charge
assignments for the fermions are

QLα → QLα, ℓLα → eiXℓ θℓLα,

uRα → eiXu θuRα, eRα → eiXe θeRα , (4)

dRα → eiXd θdRα .

Here α = {1, 2, 3} is a family index. The Yukawa La-
grangian reads

−LY = QL ΓΦ1dR+QL∆Φ̃2uR+ ℓLΠΦkeR+h.c. , (5)

where Φ̃2 ≡ iσ2Φ
∗
2 with σ2 the Pauli matrix. The mass

matrices for the fermions in the flavor basis are given by

Md =
Γu1√

2
, Mu =

∆u2√
2

, Me =
Πuk√

2
. (6)

The Yukawa interactions in Eq. (5) impose the charge con-
straints

Xd = −X1 , Xu = X2 , Xe = Xℓ −Xk . (7)

The charge Xℓ is seen as a free parameter. Depending on
the values of k, we will have different implementations of
the natural flavor conservation (NFC) condition [16, 15]:
k = 1 (Type-II); and k = 2 (Flipped).
These are just the usual implementations of NFC in the

DFSZ model. Other implementations of the NFC condi-
tion, i.e. Type-I and Lepton-specific [15], where both up
and down sectors couple to the same scalar doublet, would
not solve the strong CP problem and are not considered.

3. Axion properties

The low-energy effective interaction Lagrangian for the
axion (a) can be written as1

La ⊃ α

8πvPQ
CagC

eff
aγ aFµνF̃

µν +
1

2
Cae

∂µa

vPQ
eγµγ5e . (8)

The axion coupling to photons takes the form [19]

Ceff
aγ ≃ Caγ

Cag
− 2

3

4 + z

1 + z
, (9)

where the second term in Ceff
aγ is a model-independent

quantity which comes from the mixing of the axion with

1Here the substitution fa ≃ vPQ, with fa the axion decay constant
and where terms of order O(v2/vPQ) are neglected, is understood.
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Figure 1: Axion coupling to electrons, |Cae|, in the u2/v vs. u1/v
plane. The DFSZ model is represented by the solid black line, our
framework with red dashed line for k = 1 and blue dotted one for
k = 2. Very small values of u2/v would lead to a non-perturbative
top Yukawa and are not shown.

π0 and η. The quantity z is the quark mass ratio z =
mu/md ≃ 0.56, while Cag and Caγ are model-dependent
quantities associated to the axial anomaly. In our model
they read

Cag =(X1 −X2)Nf = 6,

Caγ =2Nf

(
X1

3
− 4X2

3
+Xk

)
=

{
16 , k = 1
4 , k = 2

.
(10)

Here Nf = 3 is the number of fermion families and Xi

represent the PQ charges of the active scalar doublets.
The axion mass is given by [8]

ma ≃ fπmπCag

vPQ

√
z

1 + z
≃ 36 meV×

(
109 GeV

vPQ

)
, (11)

with mπ ≃ 135 MeV and fπ ≃ 92 MeV the pion mass and
decay constant, respectively.
So far, the axion properties shown are exactly the same

than in the DFSZ model. However, in the computation
of the axion couplings to matter one has to modify the
axion current in order to take into account the spontaneous
breaking of the EW gauge symmetry. That is, one has to
define the axion so that it does not mix with the Goldstone
boson of the Z. Since the information on the passive fields
enter through the neutral Goldstone boson our model will
differ on the axion couplings to matter. As a result, the
PQ-charges are modified in the following way [19]

X ′
k = Xk −

1

v2

2∑

m=1

u2
mXm , (12)

with k = 1, 2. Therefore, the axion coupling to electrons
is given by

Cae = X ′
k =





2
u2
2

v2
+

v21 + v22
v2

for k = 1

−2
u2
1

v2
− v21 + v22

v2
for k = 2

, (13)

where Eq. (3) has been used. As expected, we recover the
DFSZ result for the axion properties in the limit v1,2 = 0,
when the passive fields do not take part in the breaking of
the EW symmetry. However, we can have significant devi-
ations when this is not the case. In Fig. 1 we plot the ab-
solute value of the axion-electron coupling, |Cae|, in terms
of the ratios uk/v. The black solid line corresponds to the
DFSZ scenario, while the dashed red and dotted blue lines
to our cases k = 1 and k = 2, respectively. Let us take the
k = 1 implementation as an example; the dashed red lines
are contours and their intersection with the solid black line
give the |Cae| value in the DFSZ model. Fixing, for ex-
ample, the top Yukawa to ytop = 1.5 (horizontal dashed
line) the DFSZ scenario gives |Cae| = 0.9. However, this
horizontal line crosses not only one dashed red contour
but many. In particular, for this specific ytop we have
|Cae| ∈ [0.9 , 1.44]. This allow us to increase the axion-
electron coupling up to 60%. For the scenario k = 2 the
inverse happens, i.e. we can decrease the axion-electron
coupling. The adimensional axion-electron coupling con-
stant is defined as

|gae| =
me|Cae|
vPQ

≃ 1.4× 10−14 ×
( ma

meV

)
× |Cae| . (14)

The axion emission from white dwarfs and stellar evolution
considerations introduce the strongest bound on axion-
electron interactions, requiring |gae| <

∼ 1.3×10−13 [20, 21].
This leads to the mass bound

ma|Cae| <
∼ 10meV . (15)

Taking the scenario k = 1 and fixing the value of the top
Yukawa, we see that the axion mass is more constrained
as we depart from the DFSZ limit. For the scenario k = 2
the inverse happens, as we depart from the DFSZ limit we
soften the bound on the axion mass (for a fixed value of
the top Yukawa). Therefore, the presence of the passive
fields can have important implications for the energy-loss
in stars by modifying the axion coupling to electrons.
Taking into account perturbativity of the top Yukawa,

the allowed range for |Cae| is roughly [0.2, 2] and [0, 1.8] for
k = 1 and k = 2, respectively. This implies the following
bound on the axion mass ma

<
∼ 5meV. Such bound is

well compatible with the region where the invisible axion
could constitute all of the dark matter in the Universe, see
Ref. [11] and references therein.
The presence of the passive fields would also give rise to

similar modifications of the axion coupling to hadrons [19],
relevant for interpreting the supernova SN 1987A lim-
its [20]. The passive fields, on the other hand, do not

3



change the axion coupling to photons. In our scenario
this implies that bounds relying on the axion coupling to
photons would be the same than in the DSFZ model. In
particular, constraints from the Solar age, helioseismology,
the Solar neutrino flux as well as direct axion searches via
axion-photon conversion are not sensitive to the passive
fields [20].

4. Mixing active/passive doublets and the decou-
pling limit

A distinctive feature of invisible axion models is that the
large PQ symmetry breaking scale usually brings the scalar
sector to a decoupling scenario. A SM-like Higgs remains
at the weak scale while the other scalar fields (with the
exception of the axion) get masses around vPQ. In the
DFSZ model for example, decoupling arises due to terms
in the scalar potential mixing the Higgs doublets with the
scalar singlet; these terms are crucial so that the axion
actually becomes invisible. Under specific circumstances
one can avoid decoupling in the DFSZ model and have the
two Higgs doublets at the weak scale, protection against
dangerous flavor changing scalar couplings is guaranteed
by the NFC condition. In order to illustrate the decoupling
limit, let us consider the DFSZ scalar potential which is
a particular case of our more general scalar sector, where
the passive fields are absent, i.e. VDFSZ = V |φj=0. Due
to the large hierarchy on the vevs, i.e. vPQ ≫ v, we can
extract

v2PQ = −2µ2
S/λS +O(v2) . (16)

Up to O(v2), we can deal with this mixing as being SU(2)L
preserving. The mass matrix for the doublets reads

V mass
DFSZ = Φ†

i (MA)ij Φj +O(v2) , (17)

with MA given in Eq. (A-2a). The decoupling condition
can be readily obtained by going to the Higgs basis in
which only one Higgs doublet takes a vev, the Higgs dou-
blet that does not acquire a vev will decouple if

|λΦS
12 | v2PQ

2 cosβ sinβ
≫ v2 . (18)

Here tanβ ≡ 〈Φ0
2〉/〈Φ0

1〉 and λΦS
12 is defined in Eq. (A-1).

In the decoupling limit the Higgs doublet that gets a vev
remains at the EW scale: three degrees of freedom of this
doublet correspond to the Goldstone bosons that give mass
to the massive gauge vector bosons while the remaining de-
gree of freedom is a SM-like Higgs boson. If |λΦS

12 | happens
to be small enough, both doublets remain at the weak scale
and a plethora of new physics phenomena associated with
the Higgs sector becomes accessible to experiments.
In the framework presented in Sec. 2, the breaking of

U(1)PQ by the large vev vPQ induces a non-negligible
mixing between the active and passive scalar doublets.
The decoupling structure of this framework will then be
richer than in the DFSZ model. Defining the scalar field

ϕ = (Φ1, Φ2, φ1, φ2)
T , we want to diagonalize the mass

terms for the doublets ϕ†
iMij ϕj , where

M =

( MA MB

M†
B MC

)
. (19)

Here M is a 4× 4 hermitian matrix and the specific form
of the 2 × 2 blocks MA,B,C is given in the appendix.
The block MB is responsible for the mixing of active
and passive fields, it comes solely from the interaction in
Eq. (2). Let us denote by Hj (j = 1, . . . , 4) the mass
eigenstates, ordered from the heaviest to the lightest one
(|MHm

| ≥ |MHn
| for m < n). We must find the unitary

transformation R, i.e. ϕi = Rij Hj , that makes M diago-
nal. The Yukawa interactions will contain, in general, the
four mass eigenstates Hj coupling to the fermions.
We are interested in the two following decoupling limits:

(1)H3,4 at the weak scale; (2)H4 at the weak scale. In case
(2) we will get a SM-like Higgs sector at the weak scale.
Therefore, we shall focus on case (1) (case (2) can be seen
as a limiting case). Working in the decoupling limit (1),
we do not need the full information on the entries of R in
order to check the low energy Yukawa interactions. The
relevant entries are the block that mixes the active fields
with the lightest mass eigenstates, that is

(
Φ1

Φ2

)
= R̂

(
H3

H4

)
, with R̂ =

(
R13 R14

R23 R24

)
. (20)

The matrix R̂ is in general not unitary. The effective
Yukawa interactions will be given by

−Leff
Y = QL Γ (R13H3 +R14H4)dR

+QL∆(R∗
23H̃3 +R∗

24H̃4)uR

+ ℓLΠ(Rk3H3 +Rk4H4)eR + h.c.

(21)

In the decoupling limit, the EW vev should reside com-
pletely in the light doublets 〈H0

3,4〉 = w3,4/
√
2, with

(w2
3 + w2

4)
1/2 = v. We describe below the Yukawa struc-

tures that can arise at the weak scale for different forms
of the matrix R̂. The entries denoted by × shall represent
not only nonzero entries, but also of O(1). The last re-
quirement guarantees perturbative Yukawa couplings. We
then have the following cases:

• R̂ =

(
× 0
× ×

)

A mixing matrix R̂ with this structure will give rise
to Yukawa alignment [17] in the effective theory. A
possible texture for the mass matrix is

MA

2b
∼
(
1 +

ǫ

2b
1

1 1

)
,

MB

b
∼
(
1 1
1 1

)
,

MC

b
∼
(

2 −1
−1 2

)
,

(22)
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with b and ǫ being parameters of O(b) ∼ O(v2PQ) ≫
O(ǫ). The mass spectrum is of the form, up to O(v2),

M2
H1

∼ 5b , M2
H2

∼ 3b , M2
H3

∼ ǫ , M2
H4

∼ 0 . (23)

Since one is free to perform a basis transformation
among the light Higgs doublets, other forms of the
mixing matrix R̂ leading to Yukawa alignment at the
weak scale are equivalent to the one presented pre-
viously. In this framework one can only obtain two
independent alignment parameters, contrary to the
most general hypothesis of Yukawa alignment formu-
lated in Ref. [17] with three independent alignment
parameters.

• R̂ =

(
× 0
× 0

)

Any UV implementation will always lead in this case
to an effective Type-I scenario, where all the fermions
couple to the same doublet at the weak scale. A pos-
sible texture for the mass matrix is

MA

b
∼


1 +

ǫ

b
1

1 1 +
ǫ

b


 ,

MB

c
∼ MC

b
∼
(
1 1
1 1

)
.

(24)
Here c is a parameter of O(c) ∼ O(b) ∼ O(v2PQ) ≫
O(ǫ). This leads to a spectrum of the form

M2
H1,2

≃ 2(b± c) , M2
3 ≃ ǫ , M2

4 ≃ 0 , (25)

with the same hierarchy as before.

In the previous cases, the original Yukawa structure of
the active fields is not manifest at the weak scale. A
large mixing µ1(2),j ∼ vPQ between the active and pas-
sive fields generates a decoupling scenario where the light
scalar states contain a significant admixture of both types
of fields. However, a large mixing between active and pas-
sive fields does not guarantee that the Yukawa structure
will be different in the effective theory.

• R̂ =

(
× 0
0 ×

)

The original UV implementation will remain at the
effective level. A possible texture for the mass matrix
is

MA

b
∼
(
1 +

ǫ

b
0

0 1

)
,

MB

b
∼
(
0 1
1 0

)
,

MC

b
∼
(
1 0
0 1

)
.

(26)

We get the mass spectrum

M2
H1,2

∼ 2b , M2
H3

∼ ǫ , M2
H4

∼ 0 . (27)

In general, the original Yukawa structure in Eq. (5)
will remain in the effective theory if the mixing matrix

R̂ can be brought into diagonal form by a basis trans-
formation of the light doublets. Finally, if the mixing
between the active and passive doublets is negligible
µ1(2),j ≪ vPQ, the only way to get the desired de-
coupling is that the light fields H3,4 are simply two
independent combinations of the active doublets. In
this case the Yukawa structure is not altered.

As noted in Sec. 2, only the Type-II or Flipped imple-
mentations can solve the strong CP problem. However, in
our scenario we are able to mimic the DFSZ axion and still
allow (at the effective level) for a Type-I, Type-II, flipped
or even aligned Yukawa structure. Also, recall that in con-
trast with the usual two-Higgs-doublet models with NFC,
our effective scalar potential has the most general form.
Finally, we are not able to reproduce (at the effective level)
the fepton-specific scenario since the active field coupling
to the charged leptons at the UV level is always one of the
active fields coupling to the up or down quarks.

5. Adding right-handed neutrinos

We shall work in the canonical extension with three
right-handed neutrinos NRα (α = 1, 2, 3). Since the Dirac
or Majorana nature of the light neutrinos is still unknown
we shall present an implementation for both scenarios.
The Majorana neutrinos can be implemented in the well

known Type-I seesaw mechanism [22]. In this framework
the fermionic interaction Lagrangian gets extended by

− Lν = ℓLY Φ̃rNR +N c
R ANR S + h.c. (28)

Here r = 1 or 2 depending on the implementation of the
NFC condition and A is a dimensionless 3 × 3 symmetric
complex matrix. We need to impose a non-trivial trans-
formation of NR under the U(1)PQ symmetry. With the
field transformation

NRα → eiXNθNRα , (29)

the above Lagrangian implies the charge constraints2

XN = −1

2
, Xℓ = XN −Xr . (30)

After the breaking of the PQ-symmetry, a mass term for
the right-handed fields is generated and the resulting low-
energy neutrino mass matrix will then be given by

mν ≃ − u∗2
r

2
√
2vPQ

Y A−1 Y T . (31)

If in Eq. (28) instead of Φr we had the passive doublets
coupling to neutrinos, Xℓ becomes −1/2 and in Eq. (31)
we must do the replacement u∗

rY →∑
j v

∗
jYj .

2Allowing instead for the term Nc

R
ANR S∗ in Eq. (28) would

imply XN = 1

2
.
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In general, the introduction of a Majorana mass term
for the right-handed neutrinos breaks lepton number. The
presence of a complex scalar singlet allows the definition
of a conserved lepton number U(1)L in Eq. (28), where all
leptons have associated a +1 charge (−1 for anti-leptons)
and the complex scalar S a −2 charge [23]. However, the
presence in the scalar potential of the interaction terms in
Eq. (2) explicitly violates lepton number. One could see
these type of interactions as a soft breaking, allowing lep-
ton number conservation in a natural limit. As explained
in Ref. [23], in that symmetric limit we get a majoron (the
Goldstone of the U(1)L). In these models the majoron can
transmute into the invisible axion as the soft symmetry
breaking term is turned on. Our scenario is a bit differ-
ent, since we cannot define a lepton number up to a soft
breaking. The trilinear terms in Eq. (2) must be close to
the PQ scale in order to obtain a Yukawa aligned structure
at the weak scale while avoiding non-perturbative Yukawa
couplings at the same time. Besides, the interaction terms
in Eq. (28), we also have the dimension four lepton num-

ber violating term Φ†
1Φ2S

2.3 In this way, lepton number
is not at all softly broken.
Summing up, in our scenario lepton number is explicitly

(and not softly) broken and the invisible axion will have
no remnant of a majoron. Therefore, the seesaw scale can
be related with the PQ scale, but the dynamical origin of
lepton number violation is not approached in this model.
Choosing the charge assignment Xℓ = XN 6= 0,±1/2,

we can avoid the Majorana mass term for the right-handed
neutrinos as well as their Yukawa coupling with the active
doublets. In this case the neutrinos obtain Dirac masses
from their Yukawa interaction with the passive fields,

− Lν = ℓLYj φ̃jNR + h.c. (32)

The neutrino mass matrix will be given by

mν =
v∗j√
2
Yj . (33)

This scenario is not as popular as the seesaw mecha-
nism for two main reasons: the requirement of very small
Yukawa couplings, without any dynamical origin; and the
need for a new imposed symmetry, a global B − L.
In our framework the very small Yukawa couplings can

be avoided if we are working near the DFSZ limit. In this
limiting case we have the strong hierarchy O(uj) ≫ O(vj),
allowing the neutrino Yukawas to be as tuned as the
charged lepton ones. Concerning the global B − L sym-
metry; due to the particular charge assignments under
U(1)PQ, the theory posses an accidental B−L global sym-
metry which remains unbroken. Note that, while the previ-
ous seesaw scenario can be implemented in the usual DFSZ
model, the Dirac case is only possible (without resorting to

3This term can be eliminated choosing a different PQ charge as-
signment, in that case the trilinear couplings are promoted to a di-
mension four term.

very small Yukawa couplings) if the scalar fields coupling
to neutrinos do not couple to other type of matter, i.e. are
passive fields.

6. Conclusions

In this work we have considered the DFSZ invisible ax-
ion model with an additional pair of Higgs doublets that
are blind to the PQ symmetry. Due to mixing effects
among the scalar fields it is possible to obtain a rich scalar
sector at the weak scale with an underlying natural fla-
vor conservation condition which guarantees the absence
of dangerous flavor changing scalar couplings. We have
shown that in a particular decoupling limit, two Higgs
doublets remain at the weak scale with a Yukawa aligned
structure [17], while all the other scalars (with the exemp-
tion of the axion) have masses close to the PQ symmetry
breaking scale. In this limit, the model can then be re-
garded as an ultraviolet (UV) completion of the so-called
aligned two-Higgs-doublet model (A2HDM) [17]. Com-
pared with the original formulation of the A2HDM, our
framework posses some important differences. In our sce-
nario a chiral global U(1)PQ symmetry provides a dy-
namical solution to the strong CP problem via the PQ
mechanism, with a DFSZ-like axion. On the other hand,
our model contains at most two independent complex
alignment parameters while the general A2HDM contains
three (with the same fermionic content than the SM). We
can also extend it to accommodate small active neutrino
masses with either Dirac or Majorana neutrinos.
Other models that can give rise to Yukawa alignment

at the weak scale have been formulated [24], none of these
however solve the strong CP problem. Having an UV com-
pletion of the A2HDM that solves the strong CP problem
is crucial for example when interpreting the stringent lim-
its from hadronic electric dipole moments [25].
Finally, it is worth stressing that invisible axion models

as the one proposed in this Letter have some drawbacks;
besides the fact that the PQ symmetry and the particle
content might seem ad-hoc. Being U(1)PQ a continuous
symmetry, gravitational effects can introduce large contri-
butions to the axion mass and spoil the solution to the
strong CP problem [26]. Fortunately, there are loopholes
which allow these kind of models to be protected against
such effects. One possible solution is to have discrete sym-
metries of the type ZN with large N protecting the model.
These discrete symmetries could come for instance from a
gauged U(1) symmetry, that is then broken down to a dis-
crete subgroup at a very high energy, see Ref. [11] and
references therein. The presence of these discrete sym-
metries can then induce in the scalar potential an acci-
dental U(1)PQ symmetry, making the PQ symmetry no
longer seem ad hoc while protecting the solution to the
strong CP problem [26]. While this is out of the scope
of our work, we call the attention that in order to make
this model more natural the previous mechanism, or an
equivalent one, should be implemented.
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Appendix: The Full Scalar Potential

The scalar potential for the Higgs doublets Φj , φj (j =
1, 2) and the complex scalar gauge singlet S can be written
as V = VS + VΦ + Vφ, with

VS =µ2
S |S|2 + λS |S|4 + λΦS

i (Φ†
iΦi)|S|2

+
[
λΦS
12 (Φ†

1Φ2)S
2 + h.c.

]

+ λφS
i (φ†

iφi)|S|2 +
[
λφS
12 (φ

†
1φ2)|S|2 + h.c.

]

+
[
µ1,iΦ

†
1φiS + µ2,iΦ

†
2φiS

∗ + h.c.
]
,

VΦ =M2
i Φ

†
iΦi + λΦ

ii,jj(Φ
†
iΦi)(Φ

†
jΦj)

+ λΦφ
ii,jj(Φ

†
iΦi)(φ

†
jφj) + λ′Φφ

ii,jj(Φ
†
iφj)(φ

†
jΦi)

+ λΦ
12,21(Φ

†
1Φ2)(Φ

†
2Φ1) +

[
λΦφ
ii,12(Φ

†
iΦi)(φ

†
1φ2)

+λ′Φφ
ii,12(Φ

†
iφ2)(φ

†
1Φi) + h.c.

]
,

Vφ =m2
ijφ

†
iφj +

1

2
λij,kl(φ

†
iφj)(φ

†
kφl) , (A-1)

with λij,kl = λkl,ij , m
2
ij = (m2

ji)
∗ and λij,kl = λ∗

ji,lk. The
blocks of the mass matrix for the Higgs doublets in Eq. (19)
are then given by

MA =

(
M2

1 +
λΦS
1

2 v2
PQ

λΦS
12

2 v2
PQ

(λΦS
12 )∗

2 v2
PQ

M2
2 +

λΦS
2

2 v2
PQ

)
, (A-2a)

MB =
1√
2
v2PQ

(
µ1,1 µ1,2

µ2,1 µ2,2

)
, (A-2b)

MC =


 m2

11 +
λφS
1

2 v2
PQ

m2
12 +

λφS
12

2 v2
PQ

(m2
12)

∗ +
(λφS

12 )∗

2 v2
PQ

m2
22 +

λφS
2

2 v2
PQ


 .

(A-2c)
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