
Instanton corrected HK metrics

Warning: rough notes, may be innacurate/incomplete at some points

1 Motivation

We consider a 4d N = 2 gauge theory. Given such a theory, one can perform dimensional reduction on
S1 and obtain a 3d N = 4 theory, which turns out to be a (SUSY) σ-model. In particular, the scalar
bosonic fields give a map of the form

ϕ : R2,1 → (M, g) (1.1)

where (M, g) is the moduli space of vacua of the 3d theory. When we restrict to the special case of
theories of class S, then M matches the moduli space of flat connections from previous talks.

N = 4 SUSY in 3d implies strong restrictions on the geometry of M, it implies that M is hyperkähler
(HK) (see Gaumé-Friedman 81, or Hitchin, Karlhede, Lindström, Roček 87). These turn out to be quite
special manifolds. If you are a physicist, then fully describing the resulting HK manifold is important
for fully describing the low energy EFT; while if you are mathematician, you can think of the previous
procedure as a factory for HK manifolds.

We will start by explaining what HK manifolds are, and then presenting the plan for the rest of the
talk.

Let us recall the corresponding definitions. Recall that a Kähler manifold is a tuple (M, g, I) such
that

• (M, g) is Riemannian.

• (M, I) is complex.

• I ∈ O(TM, g) and ∇I = 0.

For this class of manifolds, it automatically follows that ω(−,−) = g(I−,−) is a symplectic form,
usually called the Kähler form.

On the other hand, a HK manifold is a tuple (M, g, I1, I2, I3) such that

• Each (M, g, Ii) is Kähler.

• (I1, I2, I3) satisfy the imaginary quaternion relations.

We in particular have three associated Kähler forms ωi(−,−) = g(Ii−,−). In fact, for any a ∈ S2 ⊂
R3, we can form

Ia = aiIi , ωa = aiωi . (1.2)

Then (M, Ia, ωa) is again Kähler. Even more, parametrizing S2 ∼= CP 1 by a holomorphic linear coordi-
nate ζ, the combination

ϖ(ζ) = − i

2
ζ−1(ω1 + iω2) + ω3 −

i

2
ζ(ω1 − iω2) (1.3)

is such that (M, Iζ , ϖ(ζ)) is a holomorphic symplectic manifold. From the family ϖ(ζ) one can recover
ωi, i = 1, 2, 3, and from these, one can reconstruct the HK structure.
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HK manifolds are in particular Calabi-Yau. Some examples include Hn, (T 4)n, K3, T ∗M when M
is affine special Kähler, moduli of Higgs bundles/flat connections, etc.

The description of the HK structure obtained by the S1 dimensional reduction was done in (Gaiotto-
Moore-Neitzke 09). Their description is done via twistorial methods, in terms of a family ζ-family of
Darboux coordinates for ϖ(ζ) than can be thought as ”cluster-like” coordinates. In particular, the family
of coordinates is labeled by Xγ(−, ζ), ζ ∈ C×, and they give a family of Darboux coordinates for ϖ(ζ).
These coordinates in turn are found by solving TBA-like integral equations. Because of this, it is not
obvious that they match the cluster-like coordinates built for the theories of class S of the last talk, but
(under certain conditions), it is argued by Gaiotto-Moore-Neitzke that they do.

For the talk, we have the following goals:

• First, we would like to present the main ideas of the GMN construction. In particular, the appear-
ance of the cluster-like coordinates describing the HK structure are solving a system of TBA-like
equations.

• Finally, see what the construction reduces to when restricting to a theory of class S from the last
talk.

2 Setting and brief summary of GMN’s construction

In the following, we will give a rough idea of what goes into the GMN construction. We will first define
a tuple (B, D,Γ, Z,Ω) associated to the 4d N = 2 theory. We explain how from (B, D,Γ, Z) one can
construct a preliminary and explicit “semi-flat” HK structure. And then how to get the full HK structure
by “correcting” the semi-flat structure with the Ω data.

GMN’s construction uses a tuple of data that one obtains from the 4d N = 2 theory. This tuple, in
turn, can be formulated independently of giving a such a theory. This is a tuple (B, D,Γ, Z,Ω), where:

• (Coulomb Branch) B is a C-manifold. We denote dimC(B) = n.

• (Singular locus) D ⊂ B is a divisor. We denote B′ = B −D.

• (Charge lattice) Γ → B′ is local system of rank 2n, with a symplectic pairing ⟨−,−⟩ : Γ× Γ → Z.
We assume that ⟨−,−⟩ admits Darboux frames (γ̃i, γ

i). Sometimes, one needs to extend the charge
lattice by a “flavor lattice” Γf , such that Γ fits into

0 → Γf → Γ → Γg → 0 , (2.1)

Here Γf is a trivial local system, and Γg is the rank 2n lattice with the symplectic pairing from
before. In the following, we will assume that Γf = {0} for simplicity. If you are interested in the
details, see (Neitzke 13).

• (Central charge) Z is a holomorphic section of Γ∗ ⊗C → B′. If γ is a local section of Γ, then Zγ is
a holomorphic function.

• (BPS indices) Ω : Γ − {0} → Z is a function of sets. It satisfies the Kontsevich-Soibelman WCF
and Ω(γ) = Ω(−γ). In particular Ω(γ) is locally constant away from a real codim 1 “wall” W ⊂ B′.

Furthermore, the tuple (B′,Γ, Z) satisfies further conditions that guarantee that B′ carries an affine
special Kähler structure (ASK). Namely:

• We assume that given (γ̃i, γ
i), {Zγi} and {Zγ̃i

} define holomorphic coordinates on B′.

• The central charge satisfies

⟨dZ ∧ dZ⟩ = 0 . (2.2)

This implies that if dZγ̃i
= τijdZγj , then τij = τji.

2



• ω ∈ Ω2(B′) defined by

ω := ⟨dZ ∧ dZ⟩ = Im(τij)dZγi ∧ dZγj (2.3)

defines a Kähler structure on B′.

In particular, τij = τji implies that the holomorphic one form Zγ̃i
dZγi is closed, so there is a (local)

holomorphic function F(Zγi) such that dF = Zγ̃i
dZγi . I.e.

∂F

∂Zγi

= Zγ̃i
, τij =

∂2F

∂Zγi∂Zγj

. (2.4)

Hence, {Zγ̃i
, Zγi} form a conjugate system of special holomorphic coordinates for each choice of Darboux

frame of Γ. From just the tuple (B′,Γ, Z) and the associated ASK geometry, one can define a HK structure
over the torus fibration M′ → B′, defined by

M′|p := {θ : Γp → R/2πZ | θγ + θγ′ = θγ+γ′ + π⟨γ, γ′⟩} . (2.5)

The HK structure on M′ ⊂ M is given by the rigid c-map construction, and its sometimes called the
semi-flat metric. It is given by

gsf := RIm(τij)dZ
idZ

j
+

Im(τ)ij

4π2R
WiW j , Wi := dθγ̃i

− τijdθγj ,

ωsf
1 + iωsf

2 := − 1

2π
⟨dZ ∧ dθ⟩ ,

ωsf
3 :=

R

4
⟨dZ ∧ dZ⟩ − 1

8π2R
⟨dθ ∧ dθ⟩ .

(2.6)

It is called semi-flat because it restricts to a flat metric on the fibers M′|p ∼= (S1)2n of M′ → B′. The
parameter R above equals the radius of the compactification circle.

Furthermore, if ζ ∈ CP 1 parametrizes the complex structures of the HK structure, then a holomorphic
symplectic form in holomorphic structure Iζ is given for ζ ∈ C× by

ϖsf(ζ) := − i

2
(ωsf

1 + iωsf
2 ) + ωsf

3 − i

2
(ωsf

1 − iωsf
2 ) . (2.7)

This family can in turn be written as

ϖsf(ζ) :=
1

8π2R
⟨d log(X sf(ζ)) ∧ d log(X sf(ζ))⟩, X sf

γ (θ, ζ) := exp(πζ−1RZγ + iθγ + πζRZγ) , (2.8)

so that, given a local Darboux frame (γ̃i, γ
i) of Γ, (log(X sf

γ̃i
(ζ)), log(X sf

γi(ζ))) give holomorphic Darboux

coordinates for ϖsf(ζ).

So far, we have only dealt with the data (B, D,Γ, Z). The remaining data of the BPS indices are
used to construct the instanton corrections as follows. The idea is to define new coordinates

Xγ(θ, ζ) = X sf
γ (θ, ζ)X inst

γ (θ, ζ) (2.9)

such that

ϖ(ζ) :=
1

8π2R
⟨d log(X (ζ)) ∧ d log(X (ζ))⟩ (2.10)

defines a twistor family of holomorphic symplectic forms associated to a new HK structure on M′. Physi-
cally, this new HK structure captures non-perturbative quantum corrections of the 3d EFT, coming from
particles wrapping around the compactification circle S1.

In the following, we will present what the new coordinates are (without much motivation) and then do
some comments about them. The new Xγ are found by solving a system of TBA-like integral equations
given by
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Xγ(θ, ζ) = X sf
γ (θ, ζ) exp

[
− 1

4πi

∑
γ′∈Γπ(θ)

Ω(γ′)⟨γ, γ′⟩
∫
R−Zγ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1−Xγ′(θ, ζ ′))

]
. (2.11)

First, notice that the coordinates are actually discontinuous in the ζ variable along the rays R−Zγ

with γ ∈ Supp(Ω). These are the so called BPS rays. The discontinuity is computed via usual contour
integral methods, giving a jump for Xγ along R−Zγ′ of the form

Xγ → Xγ

∏
γ̃:Zγ̃∈R−Zγ′

(1−Xγ̃)
Ω(γ̃)⟨γ̃,γ⟩ . (2.12)

Furthermore, we note that ϖ(ζ) is actually invariant under these jumps, so in particular ϖ(ζ) is
continous (in fact holomorphic) in ζ ∈ C×, even though the coordinates are not.

On the other hand, for fixed θ ∈ M′, these coordinates are argued to be uniquely characterized by
such discontinuities, plus certain asymptotic conditions as ζ → 0,∞ or R → ∞.

However, there is another issue that must be solved. As we move over the base π(θ) = u, the num-
bers Ω(γ, u) jump along a real codimension 1-wall W. This might in principle lead you to think that
the resulting ϖ(ζ) is discontinuous along π−1(W). The wall-crossing formula implies that at u ∈ W, the
overall discontinuity of Xγ (in the ζ-variable) is independent on which side we approach the wall. By the
unique characterization of the coordinates Xγ by their jumps in the ζ-variable and their asymptotics, we
conclude that they are continuous over the wall W.

What about the solutions to the TBA-equations? In certain situations, for fixed (θ, ζ) ∈ M′ × C×

one can in principle find a solution to such equations by iteration. However, the mathematical details of
the resulting domain of definition and signature of the resulting metric have (as far as I know) in general
not been worked out. For physically realized BPS spectrums, the HK structure is expected to be positive
definite and not only exist on M′ but to also extend (with possibly mild singularities) over D ⊂ B to a
space M → B.

2.1 The case of theories of class S

We will now state what (B, D,Γ, Z,Ω) is for the theories of class S, where M is expected to match
MHiggs = M♭. For simplicity, we will restrict to the case where the group associated to the theory
is SU(2), which corresponds to considering SU(2)-harmonic bundles (or SL(2,C)-Higgs bundles, or
SL(2,C)-flat connections). We fix a Riemann surface Σ and a finite set of points P = {Pi} ⊂ Σ. We
furthermore set Σ = Σ− P and to each puncture Pi choose mi ∈ C, mR

i ∈ R/2πZ. Then:

• B is the set of quadratic differentials ϕ with double pole at Pi and residue m2
i .

• D ⊂ B is the locus of ϕ’s having at least one non-simple zero.

• Γϕ = H1(Σϕ,Z)odd, where Σϕ ⊂ T ∗Σ is the corresponding spectral curve of ϕ and odd denotes the
subgroup invariant under the obvious involution. The pairing is given by the intersection pairing.

• Z is given by

Zγ :=

∫
γ

λ (2.13)

where λ is the Lioville 1-form on T ∗Σ.

• The Ω(u, γ) are computed via the techniques of the previous talk + KSWCF.

Furthermore, if we denote by XTBA
γ (x, ζ) the coordinates describing the HK structure and by X θ

γ (x, ζ)
the coordinates from the previous talk, the GMN argue that (at least for R >> 0), we should have

XTBA
γ (x, ζ) = XArg(ζ)

γ (x, ζ) (2.14)
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