Vertex and Tracking detectors position and momentum measurement

Where do we stand

• What have we done so far:

Introduction to HEP detectors Interaction of Particles with Matter

Gaseous detectors

Scintillators detectors

Solid state detectors

Introduction to Synchrotron Radiation detectors

Readout Electronics

We know how to detect particles How do we build a detector for a specific meas.?

Physics of detection

Detection principles / materials

Vertex and Tracking

Calorimetry (electrons and photons)

Calorimetry (charged hadrons and neutrons)

Particle Identification

Detector systems

2

Measurements of specific

particle observables

Brief recap on particles

Jet (jet) n. a collimated spray of high energy hadrons

Quarks fragment into many particles to form a jet, depositing energy in both calorimeters.

Jet shapes narrower at high E_{T.}

Vertex and tracking detectors

typical accuracy of: ~ 100-150 microns/straw ~ 20-30 micron/silicon strip ~5-15 micron/pixel

Position sensitive detectors

Position sensitive detectors

Thus 80 electron-hole pairs per μ m;

300 μ m thickness \rightarrow 25000 pairs/MIP

ZEUS Silicon Micro-vertex Detector

- 3 layers (barrel) + 4 wheels (forward)
- silicon thickness: 330µm
- high resistivity n-type silicon with readout p+ strips, AC coupled to the readout electronics
- readout pitch: 120µm
- space resolution:

expected = $120/\sqrt{12} = 8.3\mu m$ measured = 7.5 μm

➔ improvement obtained adding five intermediate p+ strips between two readout strips by capacitive charge division

BaBar Silicon Vertex Tracker

- 5 layers
- two-sided silicon strip
- 300µm thick
- pitch: 50-200 µm
- space resolution: 10-30 μm

Pixel detectors

Pixel detectors:

Like micro-strips, but 2-dim. segmentation ...

Advantage:

As for micro-strips 2-dim. information, but higher occupancy allowed;

Lower noise due to lower capacitance ...

Disadvantage:

Huge number of readout channels; Complicated technology ("bump bonding") Requires sophisticated readout architecture ...

SEM Photograph of solder bumps

ATLAS Pixel Detectors

- 3 barrel layers + 3 disks
- pixels of 50µmx400µm
- \bullet 280 μm thick
- Total of 2.2M pixels
 → largest assembly so far
- space resolution:
 ~8-14 μm

The determination of the momentum of charged particles can be performed by measuring the bending of a particle trajectory (track) in a magnetic field

In practice:

 use layers of position sensitive detectors before and after (or inside) a magnetic field to measure a trajectory

determine the bending radius

$$\frac{mv^2}{r} = qvB$$

Lorentz force: is the force on a point charge due to electromagnetic fields

... for a particle in motion perpendicular to a constant B field

 $= L/p \cdot eB$

Momentum determination

p = eRB $\vartheta = L/R$

in fixed target experiments ...

 $p = eB \cdot L/\vartheta$

Momentum resolution:

Determination of σ_p/p : $\vartheta = \frac{x}{h}$ $\sigma_{\vartheta} = \frac{\sigma_x}{h}$ $\frac{\sigma_p}{p} = \frac{\sigma_{\vartheta}}{\vartheta} = \frac{\sigma_x}{h} \cdot \frac{p}{eBL}$

Long lever arm improves momentum resolution ...

Magnets for 4π detectors

<u>Solenoid</u>

- + Large homogeneous field inside
- Weak opposite field in return yoke
- Size limited by cost
- Relatively large material budget

Examples:

•Delphi: SC, 1.2 T, 5.2 m, L 7.4 m •L3: NC, 0.5 T, 11.9 m, L 11.9 m •CMS: SC, 4 T, 5.9 m, L 12.5 m

<u>Toroid</u>

- + Field always perpendicular to p
- + Rel. large fields over large volume
- + Rel. low material budget
- Non-uniform field
- Complex structural design

Example: •ATLAS: Barrel air toroid, SC, ~1 T, 9.4 m, L 24.3 m

Tracking inside a magnetic field

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Momentum determination in a cylindrical drift chamber ...

$$\frac{mv^2}{R} = evB \quad \twoheadrightarrow \quad p = eB \cdot R$$

$$p\left[\frac{GeV}{c}\right] = 0.3 \text{ B[T] R[m]}$$

momentum component perpendicular to the B-field transverse momentum $\ensuremath{\textbf{p}}_t$

For Sagitta s:

$$s = R - R \cos \frac{\phi}{2} \approx R \frac{\phi^2}{8} \qquad \text{w}$$
$$s = R \frac{L^2}{8R^2} = \frac{L^2}{8R} \quad \text{and} \quad R = \frac{L^2}{8s} \quad \overrightarrow{\text{circ}}$$

$$\rightarrow \ \frac{\Delta p}{p} = \frac{\Delta R}{R} = \frac{L^2}{8Rs} \cdot \frac{\Delta s}{s}$$

with
$$\phi = \frac{L}{R}$$

→ radius is obtained by a circle fit through measurement points along the track with point resolution $\sigma_{r\phi}$

Some example number

$$p\left[\frac{GeV}{c}\right] = 0.3 \text{ B[T] R[m]} \qquad s = \frac{L^2}{8R}$$

If we assume L=4m, B=1T and p=1TeV then: R = p/(0.3 B) = 1000 / 0.3 = 3300 m, and $s \approx 16/(8*3300) \approx 0.6 mm$

If we want to measure the momentum

with $\Delta p/p \approx \Delta s/s \approx 10\%$ (at p = 1 TeV) we need:

→ Δs/s ≈ 60 µm

Momentum resolution

Momentum resolution

Tracking at fixed target experiments: Multi-layer MWPC or drift chamber

Tracking at collider experiments: cylindrical drift chamber

Drift chamber – spatial resolution

Resolution determined by accuracy of drift time measurement ...

Influenced by:

Diffusion $[\sigma_{\text{Diff.}} \sim \sqrt{x}]$ see above: $\sigma^2 \sim 2\text{Dt} = 2\text{Dx/v}_D \sim x \dots$

δ-electrons [σ_δ = const.]

independent of drift length; yields constant term in spatial resolution ...

Electronics [$\sigma_{\text{electronics}} = \text{const.}$]

contribution also independent of drift length ...

Primary ionization statistics [$\sigma_{\text{prim}} = 1/x$]

Spatial fluctuations of charge-carrier production result in large drift-path differences for particle trajectories close to the anode [minor influence for tracks far away from anode]

Drift chamber – spatial resolution

Typical resolutions: σ_x =50-150 µm depends on the length of the drift path

- primary ionization statistics: how many ion pairs, ionization fluctuations dominates close to the wire

- diffusion: diff. constant, drift length dominates for large drift length
- electronics: noise, shaping characteristics

constant contribution, independent on drift length

Possible improvements: Increase N by increasing pressure ... Decrease D by increasing pressure ...

Drift chamber – z determination

Jet drift chamber

Large volume drift chamber made of multiple independent cells, with a single wire plane in a moderate drift volume, often using drift on both sides of the wire.

precision along the drift is typically 100 μ m, and can be better than 50 μ m with pressurized gas, and precision by charge division along the wire is a few centimetres

very good two-track resolution using multi-hit electronics → hence the name jet chamber

typical two-track resolution is 1-3 mm

Left right ambiguity

JADE - Jet drift chamber

1979: gluon discovery at PETRA (JADE, Mark-J, PLUTO) from 3-jets event

OPAL – Jet drift chamber

OPAL – Jet drift chamber

OPAL – Jet drift chamber

Alternative geometries for drift chambers

ATLAS: straw tubes (TRT)

Single point resolution: Points per track: Momentum resolution: 120-130 um

→

~30 over a long lever arm (extend silicon tracker)

ATLAS: Momentum resolution

34

CMS: fully silicon tracker

CMS: fully silicon tracker

- Inner pixel detector (1 m² active area)
- Outer strip detector (200 m²)
- Operated in a 4T magnetic field

multiple scattering due to the large amount of material (0.5 X_0 on average). Single hit resolution: 8 - 64 μ m. Transverse momentum resolution: 0.7 - 5 %

Large number of hits per track The error bars reflect the RMS of the distribution for many tracks with smeared primary vertices in the given η range.

Comparison

ATLAS / CMS barrel tracking

Charge sharing used to determine where charged particle passed through the detector. This way can get resolution much smaller than strip or pixel size

		ATLAS	CMS
Magne	tic field (T)	2	4
Pixels:			
#hits		3	3
resoluti	ion (μm)	≈10	≈10
radius i	inner/outer	5.1/12.3	4.4/10.2
pixel siz	ze (µm²)	50x400	100x150
channel	s	80 M	66 M
Silicon Microstrips:			
#hits		8	14
#hits strip pit	tch (μm)	8 80	14 80/120
#hits strip pit radius i	tch (µm) nner/outer (cm)	8 80 30/60	14 80/120 20/107
#hits strip pit radius i channel	tch (µm) nner/outer (cm) s	8 80 30/60 6.2 M	14 80/120 20/107 9.6 M
#hits strip pit radius i channel	tch (µm) nner/outer (cm) s Straw Tube Trac	8 80 30/60 6.2 M ker	14 80/120 20/107 9.6 M
#hits strip pit radius i channel #hits	tch (µm) nner/outer (cm) s Straw Tube Trac	8 80 30/60 6.2 M ker 35	14 80/120 20/107 9.6 M
#hits strip pit radius i channel #hits radius i	tch (µm) nner/outer (cm) s Straw Tube Trac nner/outer (cm)	8 80 30/60 6.2 M ker 35 60/107	14 80/120 20/107 9.6 M
#hits strip pit radius i channel #hits radius i cell size	tch (µm) nner/outer (cm) s Straw Tube Trac nner/outer (cm) e/strip pitch	8 80 30/60 6.2 M ker 35 60/107 4mm	14 80/120 20/107 9.6 M

Muon momentum resolution (expected)

Transverse momentum resolution degrades with particle momentum