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The Detector Challenge: 

1900                      1960       1980           2000 

PETRA-3 

Second generation 

First generation 

X-ray 

tubes 

ESRF (2000) 

ESRF (1994) 

1900 1920 1940 1960 1980 2000

ESRF (1994)

2ème generation

1ère génération

Tubes à
rayons X

Années

ESRF (futur)

Limite  de diffraction

ESRF (2000)
3ème

generation

Lasers à
électrons libres

Rayonnement
synchrotron

1020

1018

1016

1014

1012

1010

108

1021

1022

1023

1019

1017

1015

1013

1011

109

107

106

Brillance

(photons/s/mm2/mrad2/0.1%B.F.)

Synchrotron Sources 

b
ri

ll
ia

nc
e
 

Free-Electron Lasers 



3 

The Detector Challenge: 



XFEL Beamline Layout 
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The Detector Challenge: 

• Spectroscopy (determine energy of the X-rays): 
–  meV – 1 keV resolution 

– time resolved (100 psec) – static 

• Imaging (determine intensity distribution) 
– Micro-meter – millimeter resolution 

– Tomographic 

– Time resolved 

• Scattering (determine intensity as function 
momentum transfer = angle) 
– Small angel – protein crystallography 

– Diffuse – Bragg 

– Crystals - liquids 
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What are the basic principles ? 

1. In order to detect you have to transfer 
energy from the particle to the detector 

2. X-ray light is quantized (photons) 

3. A photon is either fully absorbed or not 
at all (no track like for MIPs) 

4. The energy absorbed is transferred 
into an electrical signal and then into a 
number (digitized). 
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Signal Generation  Needs transfer of Energy 

Any form of elementary excitation can be used to detect the 
radiation signal: 

 Ionization (gas, liquids, solids) 

 Excitation of optical states (scintillators) 

 Excitation of lattice vibrations (phonons) 

 Breakup of Cooper pairs in superconductors 

Typical excitation energies: 

  Ionization in semiconductors:  1 – 5 eV 

  Scintillation:    appr. 20 eV 

  Phonons:   meV 

  Breakup of Cooper pairs: meV 
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Ge Si GaAs 

Eg = 0.7 eV Eg = 1.1 eV Eg = 1.4 eV 

Indirect band gap Direct band gap 

Band structure (3) 
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What would you like to know about your X-rays? 

1. Intensity or flux (photons/sec) 

2. Energy (wavelength) 

3. Position (or mostly angles) 

4. Arrival time (time resolved 

experiments) 

5. Polarization 
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4 modes of detection 

1. Current (=flux) mode operation 

2. Integration mode operation 

3. Photon counting mode operation 

4. Energy dispersive mode operation 
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Current mode operation 

detector I 

X-ray 

Integrating mode operation 

X-ray 

detector C V(t) 
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Photon counting mode 

V(t) detector 

X-ray 

C R 

Lower threshold 

Upper threshold 
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Energy dispersive mode 

detector 

X-ray 

C V(t) R 

Height  total charge = energy of the photon 
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Some general detector parameters 

• QE = quantum efficiency = fraction of incoming photons 

detected (<1.0). You want this to be as high as possible. 

• DQE = detective quantum efficiency =  

 

 

 You can never increase signal, nor decrease noise! So 

signal to noise will always degrade in the detector. (NB: 

signal to noise is the most important parameter when 

you measure something!) 

• Gain = relation between your signal strength (V, A, ADU) 

and the number of photons. 

 
 

01.
in

out

noisesignal

noisesignal
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Some more parameters for 2D systems 

• Point Spread Function (PSF) (Line spread 
function (LSF) or spatial resolution): 

A very small beam (smaller than the pixel size) 
will produce a spot with a certain size and 
shape. Very important are the FWHM; and the 
tails of the PSF. 

This is experimentally difficult  use sharp 
edge and LSF 

Note: pixel size is not spatial resolution! (but 
should be close to it in an optimal design). 
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Some more parameters for 2D systems 

• Modulation Transfer Function (MTF): 

How is a spatially modulated signal (line pattern) 

recorded (transferred) by the detector? 

 

 

 

This depends on the frequency. 

Is directly related to the LSF and the DQE 

MinMax

MinMax
contrastModulation




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100 % 

0 % 
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Some more parameters for 2D systems 

• Modulation Transfer Function (MTF) Example 
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• Pulse length: 103 shorter (100 fsec vs 100 

psec)  

• Emmittance: 102 horizontal, 3 vertical 

lower 

• Intensity per pulse: 3x102 higher (1012 ph) 

• Monochromaticity: 10 better 

 

 Peak brilliance: 109 higher 

 

FEL Sources vs. Storage Rings 
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FEL Challenge: Different Science 

• Completely new 

science 

 

• Fast science 100 fsec 

 

• “Single shot” science 

x109 



1. Single shot-science: 1012 ph in 100 fsec 

 (complete) ionization of sample; 

followed by coulomb explosion.  

 

• Fortunately scattering is faster: “diffract-and-

destroy”. (<50 fsec) (Nature 406, 752, (2000)).  

• Crystal diffraction is “self-gating” (Nature Photonics, 6, 

35, (2012)). 

Consequences for the detector: 
(H.Graafsma; Jinst, 4, P12011, (2009)) 
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Single shot imaging… 

K. J. Gaffney and H. N. Chapman, 

Science 8 June 2007 



1. Single shot-science: 1012 ph in 100 fsec  

(complete) ionization of sample; followed by 

coulomb explosion.  

• Fortunately scattering is faster: “diffract-and-destroy”. 

(<50 fsec) (Nature 406, 752, (2000)).  

• Crystal diffraction is “self-gating” (Nature Photonics, 6, 35, 

(2012)). 

2. Central hole in detector & no beamstop: 1012 ph 

@ 12 keV  1K rise in mm3 Cu  3000 K per 

bunch train + huge background 

Consequences for the detector: 
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Radiation doses: worst case (?) 

> 5000 h User-operation per year 

> Undulator shared between 2 experiments  2500 hrs/exp./year 

> Date taking 50% (rest alignment etc.)  1250 hrs/year 

> Each branch can take ½ of the load: 15000 pulses/sec 

   6.75 1010 pulses/year 

> Certain experiments expect 5 x104 photons per pixel (200 mm) per 

pulse. Small angle and liquid scattering always same place on detector 

   3.4 1015 photons/year = 1016 ph/3 years 

(@ 12 keV  silicon surface dose of 1 Giga Gray!!!) 



Angular coverage / detector size: 

> 12 keV  = 0.1 nm in order to study  features (d) to atomic resolution. 

 

> Bragg’s law (2dsin(q) = l)  2q = 60 degrees  120 degrees total 

2q 

Liquid scattering: momentum transfer 10 A-1  200 degrees  back scattering 



Angular resolution 2 examples: 

Coherent Diffractive Imaging (CDI): 

> 0.1 nm spatial features: dmin  

> 100 nm samples (e.g. virus): D 

 Nyquist >2000 sampling points (pixels) 0.5 mrad 

  D2q = dmin x asin(l/2dmin) / 2D 

 

X-ray Photon Correlation Spectroscopy: 

 Speckle size: Qs = l/D, D is sample or beam size 

 Compromise between sample heating (large beam) and speckle size 

(small beam) 

 25 mm beam at l=0.1 nm  4 mrad speckles (80 mm at 20 m) 

  



E-XFEL Challenge: Time structure = difference with “others” 

600 ms 

99.4 ms 

100 ms 100 ms 

220 ns 

FEL 

process 

X-ray photons 

<100 fs 

Electron bunch trains; up to 2700 bunches in 600 msec, repeated 10 times per second. 

Producing 100 fsec X-ray pulses (up to 27 000 bunches per second). 

27 000 bunches/s 

But with 

4.5 MHz rep rate 



XFEL Detector requirements 

4.5 MHz 



The XFEL solutions: 

 Hybrid Pixel Array Detectors 



Hybrid Pixel Array Detector (HPAD) 

Diode Detection Layer 

• Fully depleted, high resistivity 

• Direct x-ray conversion 

• Silicon, GaAs, CdTe, etc. 

Connecting Bumps 

• Solder or indium 

• 1 per pixel 

CMOS Layer 

• Signal processing 

• Signal storage & output 

Gives enormous flexibility! 

 

X-rays 
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Hybrid Pixel Detectors 

Particle / X-ray    Signal Charge  Electr. Amplifier   Readout   Digital Data 

Pixelated 

Particle 

Sensor 

Amplifier & 

Readout Chip 

CMOS 

Indium Solder 

Bumpbonds 
Data Outputs 

Power 

Clock Inputs 

Connection 

wire pads 

  Power 

  Inputs 

  Outputs 

Particle / X-ray 

Qsignal 
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The new generation: Medipix et al. 

Au 
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Why are HPADs so popular ? 

• Custom design of functionality: you design 

your readout chip specific for your 

application (unlike CCDs). 

• Direct detection  good spatial resolution 

• Massive parallel detection  high flux 

• But: development takes long and is 

expensive. 



The Adaptive Gain Integrating Pixel Detector 
The AGIPD consortium: 

PSI/SLS -Villingen: chip design; interconnect and module assembly 

Universität Bonn: chip design 

Universität Hamburg: radiation damage tests, “charge explosion” studies; and sensor design 

DESY: chip design, interface and control electronics, mechanics, cooling; overall coordination 

 

Some Facts 

6 years development 

~ 20 people 

 

 Some Milestones 

First 16x16 pixels prototype   End 2010 

Definition of final design   Summer 2011 

Production, assembly and test  >2013 



The Adaptive Gain Integrating Pixel Detector 
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AGIPD – Analogue Memory & 

Radiation Hardness 
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>Droop (loss of signal) 

•Time 

•Radiation dose 



600 ms 

99.4 ms 

100 ms 100 ms 

Electron bunch trains; up to 2700 bunches in 600 msec, repeated 10 times per second. 

Producing 100 fsec X-ray pulses (up to 27 000 bunches per second). 

Store and read:  
for 100 msec 

Write:  
within 220 nsec 



AGIPD - Analogue Memory  

100 msec “loss free” Charge Storage in 
Analogue Pipeline  

• Switch design is the challenge 

• Thick oxide & MIM caps in IBM 
process are OK 

AGIPD analogue memory: 

• DGNCAP (thick oxide n-FET 
in n-well) caps 

• Minimise voltage drop 
across T1 

– Floating n-well 

– Special precautions for 
radiation hardness needed 



AGIPD03 Memory Leakage 
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AGIPD ASIC 
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Imaging with AGIPD 0.2 prototype 



The Adaptive Gain Integrating Pixel Detector 

Connector to interface 
HDI Base plate 

sensor chip wire bond bump bond 

~ 2mm 

  ~220 mm 

1k x 1k (2k x 2k) 

64 x 64 

pixels 

Basic parameters 

•1 Megapixel detector (1k  1k) 

•200mm  200mm pixels 

•Flat detector  

•Sensor: Silicon 128 x 512 pixel tiles 

•Single shot 2D-imaging  

•4.5 MHz frame rate 

•2  104 photons dynamic range 

•Adaptive gain switching  

•Single photon sensitivity at 12keV 

•Noise 300e 

•Storage depth 350 images 

•Analogue readout between bunch-trains 



Calibration challenges: 

> 106 x 3 gains; with > 10 points per gain curve: O(107) 

> 106 x 350 storage cells > 10 points per droop curve: O(109) 

> How to store the calibration data and how to correct data? 

> How often do we need to recalibrate 

> On-chip calibration sources 

> Cross calibration with physics (photons, alpha, …) 

> How long does this all take? 
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Some reflections on the future 

• Active Sensors (DSSC) 



DSSC - DEPMOS Sensor with Signal Compression 

> MPI-HLL, Munich 

> Universität Heidelberg 

> Universität Siegen 

> Politecnico di Milano 

> Università di Bergamo 

> DESY, Hamburg 

>Hexagonal pixels 
200mm pitch 

 

• combines DEPFET  

•  with small area 
drift detector 
(scaleable) 

> DEPFET per pixel 

>  Very low noise (good for soft X-rays) 

>  non linear gain (good for dynamic range) 

>  per pixel ADC 

>  digital storage pipeline 
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Output voltage as function of charge 

 

 

 

 

injected charge 

DEPMOS Sensor with Signal Compression  

DEPFET:    Electrons are collected in a storage well 

  ⇒Influence current from source to drain 

source drain 

gate 

Fully depleted silicon 
e- 

Storage well 

injected charge 

DSSC 
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Some reflections on the future 

• Active Sensors (DSSC) 

• Built-in intelligence per pixel (AGIPD) 
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Some reflections on the future 

• Active Sensors (DSSC) 

• Built-in intelligence per pixel (AGIPD) 

• Communication pixels (Medipix-3) 
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55m 

The winner takes 

all 

• Charge processed is 

summed in every 4 

pixel cluster on an 

event-by-event basis  

• The incoming 

quantum is assigned as 

a single hit    

Medipix3 – charge summing concept 



51 

Some reflections on the future 

• Active Sensors (DSSC) 

• Built-in intelligence per pixel (AGIPD) 

• Communication pixels (Medipix-3) 

• More functionality per area/pixel: 3D-ASIC 

technology (Helmholtz Cube) 
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Hybridization 

 Cut the sensor as close as possible 

 

 Use thinned readout chips 

 

 Stay within the exact n-fold pixel pitch   
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XFS Module Specification: PSI/SLS 

Operate 2x4 (8) Chips per Module. ~78 x 39 mm2 
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PILATUS @ SLS 

Courtesy: Ch. Brönnimann, PSI SLS Detector Group 

Sensor 

Read-out chips 

Wire bonds 

Base plate 

Al support 

Module Control Board MCB 
Cable 



55 



Current State-of-the-art 



The “Helmholtz-Cube” 
Vertically Integrated Detector Technology 

Replace standard sensor with: 

3D and edgeless sensors, as well 

as High-Z 

Replace standard bump-

bonds with new 

interconnect techniques 

Replace standard ASIC and wire 

bonds with thinned ASICs and 

TSV as well as ball-grid arrays 

Replace standard 

ASIC with 3D-ASICs  

Develop new high speed IO’s 
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3D-ASIC technology 
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The “Helmholtz-Cube” 
Vertically Integrated Detector Technology 

S 

Electrical + Cooling + Support  

Power-in 
Optical I/O 

Sensor 
Analogue ASIC 
Digital ASIC 
I/O ASIC 
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Summary Detectors 

• Signal-to-noise ratio most fundamental 
parameter in measurements. 

• A detector is always a compromise (ex. 
speed vs. noise). Application determines 
what you compromise. 

• Never take a detector as a “perfect black 
box”, be aware of limitations. 

• Understanding your detector is part of 
understanding your science. 


