Calorimeters

Energy measurement

Calorimeter

- In nuclear and particle physics calorimetry refers to the detection of particles, and measurements of their properties, through total absorption in a block of matter, the calorimeter
- Common feature of all calorimeters
 is that the measurement process is destructive

- Unlike, for example, wire chambers that measure particles by tracking in a magnetic field, the particles are no longer available for inspection once the calorimeter is done with them.
- The only exception concerns muons. The fact that muons can penetrate a substantial amount of matter is an important mean for muon identification.
- In the absorption, almost all particle's energy is eventually converted to heat, hence the term calorimeter

Calorimetry in particle physics

- Calorimetry is a widespread technique in particle physics:
 - instrumented targets
 - neutrino experiments
 - proton decay / cosmics ray detectors
 - shower counters
 - -4π detectors for collider experiments
- Calorimetry makes use of various detection mechanisms:
 - Scintillation
 - Cherenkov radiation
 - Ionization
 - Cryogenic phenomena

Why calorimetry?

Obtain information *fast* (<100ns feasible)

 \rightarrow recognize and select interesting events in real time (*trigge*)

Electromagnetic Calorimeters

Electromagnetic shower

Dominant processes at high energies (E > few MeV) : Photons : Pair production Electrons : Bren

$$\sigma_{\text{pair}} \approx \frac{7}{9} \left(4 \, \alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$

$$= \frac{7}{9} \frac{A}{N_A X_0} \qquad \text{[X_0: radiation length]}$$
[In cm or g/cm²]

Absorption coefficient:

$$\mu = n\sigma = \rho \, \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

$$X_0$$
 = radiation length in [g/cm²]

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

Electrons : Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln\frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\bigstar E = E_0 e^{-x/X_0}$$

After passage of one X₀ electron has only (1/e)th of its primary energy ... [i.e. 37%]

Analytic shower model

Simplified model [Heitler]: shower development governed by X_0 e⁻ loses [1 - 1/e] = 63% of energy in 1 Xo (Brems.) the *mean free path* of a γ is 9/7 Xo (pair prod.)

Lead absorbers in cloud chamber

Assume:

- $E > E_c$: no energy loss by ionization/excitation
- $E < E_c$: energy loss only via ionization/excitation

Simple shower model:

- 2^t particles after t [X₀]
- each with energy E/2^t
- Stops if E < critical energy ϵ_{C}
- Number of particles N = E/ϵ_C
- Maximum at $t_{
 m max} \propto \ln(E_0/E_c)$

Analytic shower mode

Simple shower model quite powerful \rightarrow characterized shower by:

- Number of particles in shower
- Location of shower maximum
- Transverse shower distribution
- Longitudinal shower distribution

$$N_{\max} = 2^{t_{\max}} = \frac{E_0}{E_c}$$
$$t_{\max} \propto \ln(E_0/E_c)$$
$$L \sim \ln \frac{E}{E_c}$$

Longitudinal shower distribution increases only logarithmically with the primary energy of the incident particle, i.e. calorimeters can be compact

Some numbers: $E_c \approx 10 \text{ MeV}$, $E_0 = 1 \text{ GeV} \rightarrow t_{max} = \ln 100 \approx 4.5$; $N_{max} = 100$ $E_0 = 100 \text{ GeV} \rightarrow t_{max} = \ln 10000 \approx 9.2$; $N_{max} = 10000$

	Szint.	LAr	Fe	Pb	w
X ₀ (cm)	34	14	1.76	0.56	0.35

→ 100 GeV electron contained in 16 cm Fe or 5 cm Pb

Longitudinal development of EM shower

Longitudinal profile

Parametrization: [Longo 1975]

$$\frac{dE}{dt} = E_0 \ t^{\alpha} e^{-\beta t}$$

- α,β : free parameters
- t^α : at small depth number of secondaries increases ...
- e^{-βt} : at larger depth absorption dominates ...

Numbers for E = 2 GeV (approximate): $\alpha = 2$, $\beta = 0.5$, $t_{max} = \alpha/\beta$

important *differences between* showers induced by e, γ

$$t_{\rm max} = \frac{\alpha - 1}{\beta} = \ln \left(\frac{E_0}{E_c}\right) + C_{e\gamma} \qquad \begin{array}{c} \text{with:} \\ C_{e\gamma} = -0.5 \quad \text{[γ-induced]} \\ C_{e\gamma} = -1.0 \quad \text{[θ-induced]} \end{array}$$

Longitudinal development of EM shower

10

Longitudinal development of EM shower

Shower decay:

after the shower maximum the shower decays slowly through ionization and Compton scattering \rightarrow NOT proportional to X₀

Lateral development of EM shower

Opening angle:

1) bremsstrahlung and pair production

$$\langle \theta^2 \rangle \approx \left(\frac{m}{E} \right)^2 = \frac{1}{\gamma^2}$$

Small contribution as m_e/E_c = 0.05

2) multiple coulomb scattering [Mollier theory]

Lateral extension: $R = x \cdot tan \theta \approx x \cdot \theta$, if θ small ...

 $\langle \theta \rangle = \frac{21.2 \text{ MeV}}{E_e} \sqrt{\frac{x}{X_0}} \sum_{[\beta = 1, c = 1, z = 1]} E_s = \sqrt{\frac{4\pi}{\alpha}} (m_e c^2) = 21.2 \text{ MeV}$ [Scale Energy]

Lateral spread:

Main contribution from low energy electrons as $<\theta> \sim 1/E_e$, i.e. for electrons with E = E_c

Assuming the approximate range of electrons to be X_0 yields $\langle \theta \rangle \approx 21 \text{ MeV/E}_e \rightarrow \text{lateral extension: } R = \langle \theta \rangle X_0$

Mollier radius:
$$R_M = \frac{E_s}{E_c} X_0 \approx \frac{21 MeV}{E_c} X_0$$
 12

Lateral development of EM shower

Transverse profile

Parametrization:

$$\frac{dE}{dr} = \alpha e^{-r/R_M} + \beta e^{-r/\lambda_{\min}}$$

- α,β : free parameters
- R_M : Molière radius
- λ_{min} : range of low energetic photons ...

Inner part: coulomb scattering ...

Electrons and positrons move away from shower axis due to multiple scattering ...

Outer part: low energy photons ...

Photons (and electrons) produced in isotropic

processes (Compton scattering, photo-electric effect) move away from

shower axis; predominant beyond shower maximum, particularly in high-Z absorber media...

The shower gets wider at larger depth

3D shower development

Useful back of the envelop calculations

Radiation length:

Critical energy: [Attention: Definition of Rossi used]

Shower maximum:

 $X_0 = \frac{180A}{Z^2} \frac{\mathrm{g}}{\mathrm{cm}^2}$ $550 \,\mathrm{MeV}$

 $E_c = \frac{550 \text{ MeV}}{Z}$

Problem: Calculate how much Pb, Fe or Cu is needed to stop a 10 GeV electron.

Pb : Z=82 , A=207, ρ =11.34 g/cm³ Fe : Z=26 , A=56, ρ =7.87 g/cm³ Cu : Z=29 , A=63, ρ =8.92 g/cm³

$$t_{\rm max} = \ln \frac{E}{E_c} - \begin{cases} 1.0 & \text{e-induced shower} \\ 0.5 & \text{y induced shower} \end{cases}$$

Longitudinal energy containment:

Transverse Energy containment: $L(95\%) = t_{\max} + 0.08Z + 9.6 [X_0]$ $R(90\%) = R_M$ $R(95\%) = 2R_M$

Material dependence

Interpretation / comments

Energy scale:

even though calorimeters are intended to measure GeV, TeV energy deposits, their performance is determined by what happens at the MeV - keV - eV level

Electrons

Photons

What about the muons?

dE/dx: some typical values

```
Typically dE/dx = 1-2 MeV /g cm² x \rho [g/cm³]Iron \rho=7.87 g/cm³: dE/dx = 11 MeV / cm = 1.1 GeV / mSilicon 300 \mum : dE/dx = 115 keV (MPV = 82keV) (~ 4 MeV / cm)Gas:dE/dx = few keV / cm
```

Ionization energy: ~ Z x 10 eV 300 μm Silicon: 30' 000 e/h pairs (~10⁶ e/h pairs /cm) Small band gap, 3.6 eV/pair Still a small charge: depletion Gas: few 10 electron ion pairs/cm Need gas amplification

To be compared to typical pre-amplifier electronic noise equivalent: 1000 e

dE/dx fluctuations

Distance between interactions: exponential distribution

• P(d) ~ exp (-d / λ) with $\lambda = A / N_A \sigma \rho$

Number of collisions in given thickness: Poisson distribution

Can fluctuate to zero → inefficiencies

Energy loss distribution in each collision \rightarrow

Large values possible (δ electrons)

P(dE/dx) is a Landau distribution

- Asymmetric (tail to high dE/dx)
- Mean ≠ most probable value
- Approaches Gaussian for thick layers

Muons are not MIP

The effects of radiation are clearly visible in calorimeters, especially for high-energy muons in high-Z absorber material

like Pb (Z=82)

 $E_{c}(e) = 6 \text{ MeV}$

 $E_c(\mu) = 250 \text{ GeV}$

FIG. 2.19. Signal distributions for muons of 10, 20, 80 and 225 GeV traversing the $9.5\lambda_{int}$ deep SPACAL detector at $\theta_z = 3^\circ$. From [Aco 92c].

Measurement of showers

- To make a statement about the energy of a particle:
- 1. relationship between measured signal and deposited energy
- Detector response → Linearity
 - The average calorimeter signal vs. the energy of the particle
 - Homogenous and sampling calorimeters
 - Compensation (for hadronic showers)
- 2. precision with which the unknown energy can be measured
- - Event to event variations of the signal
 - Resolution
 - What limits the accuracy at different energies?

Response and linearity

"response = average signal per unit of deposited energy"
e.g. # photoelectrons/GeV, picoCoulombs/MeV, etc

A linear calorimeter has a constant response

In general

Electromagnetic calorimeters are linear

→ All energy deposited through ionization/excitation of absorber Hadronic calorimeters are not ... (later)

Sources of non-linearity

- Instrumental effects
 - Saturation of gas detectors, scintillators, photo-detectors, electronics
- Response varies with something that varies with energy
- Examples:
 - Deposited energy "counts" differently, depending on depth
 - And depth increases with energy
- Leakage (increases with energy)

Example of non-linearity

Signal linearity for electromagnetic showers

FIG. 3.1. The em calorimeter response as a function of energy, measured with the QFCAL calorimeter, before (a) and after (b) precautions were taken against PMT saturation effects. Data from [Akc 97].

Calorimeter types

There are two general classes of calorimeter:

Sampling calorimeters:

Layers of passive absorber (such as Pb, or Cu) alternate with active detector layers such as Si, scintillator or liquid argon

Homogeneous calorimeters:

A single medium serves as both absorber and detector, eg: liquified Xe or Kr, dense crystal scintillators (BGO, $PbWO_4$ ), lead loaded glass.

Homogenous calorimeters

One block of material serves as absorber and active medium at the same time Scintillating crystals with high density and high Z

Advantages:

see <u>all</u> charged particles in the shower \rightarrow best statistical precision same response from everywhere \rightarrow good linearity

Disadvantages:

cost and limited segmentation

Examples:

B factories: small photon energies CMS ECAL:

optimized for $H \rightarrow \gamma \gamma$

CMS ECAL CMS PbWO₄ Bar crystal 1.290 m calorimeter Preshower (SE η=3.0 Barrel: 62k crystals 2.2 × 2.2 × 23 cm • End-caps: 15k crystals 3 × 3 × 22 cm 95% ≠ 0.9 cm lead

Sampling calorimeters

- Use different media
 - High density absorber
 - Interleaved with active readout devices
 - Most commonly used: sandwich structures ->
 - But also: embedded fibres,
- Sampling fraction
 - $f_{sampl} = E_{visible} / E_{total deposited}$
- Advantages:
 - Cost, transverse and longitudinal segmentation
- Disadvantages:
 - Only part of shower seen, less precise
- Examples:
 - ATLAS ECAL
 - All HCALs (I know of)

Sampling calorimeters

Possible setups Absorber Scintillator Scintillator (blue light) Scintillators as active Light guide layer; wave length shifter to convert light Photo detector Wavelength shifter Charge amplifier Absorber as Ionization chambers electrodes between absorber Electrodes HV plates Argon Analogue Active medium: LAr; absorber signal embedded in liquid serve as electrods

Scintillators as active layer; signal readout via photo multipliers

ATLAS LAr ECAL

Cu electrodes at +HV

Spacers define LAr gap $2 \times 2 \text{ mm}$

2 mm Pb absorber clad in stainless steel.

Fluctuations

Different effects have different energy dependence

- quantum, sampling fluctuations
- shower leakage
- electronic noise
- structural non-uniformities

 $\sigma/E \sim E^{-1/2}$

$$\sigma/E \sim E^{-1}$$

 σ/E = constant

$$\sigma_{\text{tot}}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 + \dots$$

← example: ATLAS EM calorimeter

Energy resolution

Ideally, if all shower particles counted: In practice:

absolute $\sigma = a \sqrt{E \oplus b E \oplus c}$

$$E \sim N$$
, $\sigma \sim \sqrt{N} \sim \sqrt{E}$

relative $\sigma / E = a / \sqrt{E \oplus b \oplus c / E}$

a: stochastic term

intrinsic statistical shower fluctuations

sampling fluctuations

signal quantum fluctuations (e.g. photo-electron statistics)

b: constant term

inhomogeneities (hardware or calibration)

imperfections in calorimeter construction (dimensional variations, etc.)

non-linearity of readout electronics

fluctuations in longitudinal energy containment (leakage can also be ~ $E^{-1/4}$)

fluctuations in energy lost in dead material before or within the calorimeter

c: noise term

readout electronic noise

Radio-activity, pile-up fluctuations

Intrinsic Energy Resolution of EM calorimeters

Homogeneous calorimeters:

signal = sum of all E deposited by charged particles with $E>E_{threshold}$

If *W* is the mean energy required to produce a 'signal quantum' (eg an electron-ion pair in a noble liquid or a 'visible' photon in a crystal) \rightarrow mean number of 'quanta' produced is $\langle n \rangle = E / W$

The intrinsic energy resolution is given by the fluctuations on n.

 $\sigma_E / E = 1 / \sqrt{n} = 1 / \sqrt{(E/W)}$

i.e. in a semiconductor crystals (Ge, Ge(Li), Si(Li))

✓ = 2.9 eV (to produce e-hole pair)

→ 1 MeV γ = 350000 electrons → 1/ \sqrt{n} = 0.17% stochastic term

In addition, fluctuations on n are reduced by correlation in the production of consecutive e-hole pairs: the Fano factor F

$$\sigma_{\rm E}/E = \sqrt{(FW/E)}$$

For GeLi γ detector $F \sim 0.1$ \rightarrow stochastic term $\sim 1.7\%/\sqrt{E[GeV]}$

Silicon detectors : $W \approx 3.6 \text{ eV}$ Gas detectors : $W \approx 30 \text{ eV}$ Plastic scintillator : $W \approx 100 \text{ eV}$

35

Resolution of crystal EM calorimeters

Study the example of CMS: PbWO₄ crystals r/o via APD:

Fano factor $F \sim 2$ for the crystal/APD combination in crystals $F \sim 1$ + fluctuations in the avalanche multiplication process of APD ('excess noise factor')

PbWO₄ is a relatively weak scintillator. In CMS, ~ 4500 photo-electrons/1 GeV (with QE ~80% for APD)

Thus, expected stochastic term:

 $a_{pe} = \sqrt{(F/N_{pe})} = \sqrt{(2/4500)} = 2.1\%$

Including effect of lateral leakage from limited clusters of crystals (to minimise electronic noise and pile up) one has to add

 $a_{leak} = 1.5\% (\Sigma(5x5))$ and $a_{leak} = 2\% (\Sigma(3x3))$

Thus for the $\Sigma(3x3)$ case one expects $a = a_{pe} \oplus a_{leak} = 2.9\%$ \rightarrow compared with the measured value: $a_{meas} = 3.4\%$
Example: CMS ECAL resolution

Resolution of sampling calorimeters

Main contribution: sampling fluctuations, from variations in the number of charged particles crossing the active layers.

Increas linearly with incident energy and with the fineness of the sampling. Thus:

 $n_{ch} \propto E/t$ (*t* is the thickness of each absorber layer)

For statistically independent sampling the sampling contribution to the stochastic term is:

$\sigma_{samp}/E \propto 1/\sqrt{n_{ch}} \propto \sqrt{(t/E)}$

Thus the resolution improves as *t* is decreased.

For EM order 100 samplings required to approach the resolution of typical homogeneous devices \rightarrow impractical.

Typically:

$$\sigma_{samp}/E \sim 10\%/\sqrt{E}$$

Dependence on sampling

Measure energy resolution of a sampling calorimeter for different absorber thicknesses

 t_{abs} : absorber thickness in X_0

D : absorber thickness in mm

Sampling contribution:

$$\frac{\sigma_E}{E} = 3.2\% \sqrt{\frac{E_c \, [\text{MeV}] \cdot t_{\text{abs}}}{F \cdot E \, [\text{GeV}]}}$$

Choose: E_c small (large Z) t_{abs} small (fine sampling)

EM calorimeters: energy resolution

Homogeneous calorimeters: all the energy is deposited in an active medium. Absorber ≡ active medium → All e+e- over threshold produce a signal Excellent energy resolution

Compare processes with different energy threshold

Scintillating crystals

Cherenkov radiators

$$E_{s} \cong \beta E_{gap} \sim eV$$
$$\approx 10^{2} \div 10^{4} \gamma / MeV$$
$$5/E \sim (1 \div 3)\% / \sqrt{E(GeV)}$$

 $\approx 10 \div 30 \ \gamma / \text{MeV}$ $\sigma / E \sim (10 \div 5) \% / \sqrt{E(\text{GeV})}$

 $\beta > \frac{1}{n} \rightarrow E_s \sim 0.7 \text{MeV}$

Lowest possible limit

Homogeneous vs Sampling

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5~{\rm GeV}$	1998
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_{0}$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	20–30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_{0}$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

* E in GeV

Hadronic calorimeters

Hadron showers

- Extra complication: *The strong interaction* with detector material
- Importance of calorimetric measurement
 - Charged hadrons: complementary to track measurement
 - Neutral hadrons: the only way to measure their energy
- In nuclear collisions numbers of secondary particles are produced
 - Partially undergo secondary, tertiary *nuclear reactions* → formation of hadronic cascade
 - Electromagnetically decaying particles (π , η) initiate EM showers
 - Part of the energy is absorbed as nuclear binding energy or target recoil (*Invisible energy*)
- Similar to EM showers, but much more complex
 - → need simulation tools (MC)
- Different scale: hadronic interaction length

Hadronic interactions

- Multiplicity scales with E and particle type
- ~ 1/3 π⁰ → γγ produced in charge exchange processes: $\pi^+p \rightarrow \pi^0n$ / $\pi^-n \rightarrow \pi^0p$
- Leading particle effect: depends on incident hadron type e.g fewer π^0 from protons, barion number conservation

Hadronic interactions

2nd stage: spallation

Intra-nuclear cascade

Fast hadron traversing the nucleus frees protons and neutrons in number proportional to their numerical presence in the nucleus.

Some of these n and p can escape the nucleus

For $^{208}_{82}$ Pb ~1.5 more cascade n than p

dominating momentum component along incoming particle direction

- The nucleons involved in the cascade transfer energy to the nucleus which is left in an excited state
- Nuclear de-excitation
 - Evaporation of soft (~10 MeV) nucleons and α
 - + fission for some materials

The number of nucleons released depends on the binding E (7.9 MeV in Pb, 8.8 MeV in Fe) Mainly neutrons released by evaporation → protons are trapped isotropic process by the Coulomb barrier (12 MeV in Pb, only 5 MeV in Fe)

"naïve" model (simulation programs)

Interaction of hadrons with E > 10 GeV described by string models

- projectile interacts with single nucleon (p,n)
- a string is formed between quarks from interacting nucleons
- the string fragmentation generates hadrons

"naïve" model (simulation programs)

Interaction of hadrons with 10 MeV < E < 10 GeV via intra-nuclear cascades

- $\lambda_{deBroglie} \leq d$ nucleon
- nucleus = Fermi gas (all nucleons included)
- Pauli exclusion: allow only secondaries above Fermi energy

For E < 10 MeV only relevant are fission, photon emission, evaporation, ...

Hadronic shower

Hadronic interaction:

Cross Section:

 $\sigma_{\rm tot} = \sigma_{\rm el} + \sigma_{\rm inel}$

For substantial energies σinel dominates:

> $\sigma_{\rm el} \approx 10 \; {\rm mb}$ $\sigma_{
> m inel} \propto A^{2/3}$ [geometrical cross section]

at high energies

also diffractive contribution

$$\therefore \ \sigma_{\text{tot}} = \sigma_{\text{tot}}(pA) \approx \sigma_{\text{tot}}(pp) \cdot A^{2/3}$$

$$[\sigma_{\text{tot}} \text{ slightly grows with } \sqrt{s}]$$

Hadronic interaction length:

$$\begin{split} \lambda_{\rm int} &= \frac{1}{\sigma_{\rm tot} \cdot n} = \frac{A}{\sigma_{pp} A^{2/3} \cdot N_A |\rho} \sim A^{1/3} \quad \text{[for Js $\approx $1-100$ GeV} \\ &\approx 35 \text{ g/cm}^2 \cdot A^{1/3} \quad \text{Interaction} \end{split}$$

which yields:

$$N(x) = N_0 \exp(-x/\lambda_{\rm int})$$

Total proton-proton cross section [similar for p+n in 1-100 GeV range]

n length characterizes both, longitudinal and transverse profile of hadronic showers ...

Comparison hadronic vs EM showers

Comparison hadronic vs EM showers

Hadronic vs. electromagnetic interaction length:

Some numerical values for materials typical used in hadron calorimeters

$X_0 \sim \frac{A}{Z^2}$ $\rightarrow \frac{\lambda_{\text{int}}}{Z} \sim A^{4/3}$		λ _{int} [cm]	X ₀ [cm]
$\lambda_{\rm int} \sim A^{1/3}$ X_0	Szint.	79.4	42.2
$\lambda_{ m int} \gg X_0$ [$\lambda_{ m int}/X_0$ > 30 possible; see below]		83.7	14.0
		16.8	1.76
Longitudinal size: 6 9 λ _{int} [EM: 15-20 X ₀]	Pb	17.1	0.56
Transverse size: One λ_{int} [EM: 2 R _M ; compact]	U	10.5	0.32
Hadronic calorimeter need more depth		38.1	18.8

Had than electromagnetic calorimeter ...

Material dependence

 λ_{int} : mean free path between nuclear collisions λ_{int} (g cm⁻²) $\propto A^{1/3}$

Hadron showers are much longer than EM ones – how much, depends on Z

Longitudinal development

Hadronic showers

Electromagnetic \rightarrow ionization, excitation (e±)

 \rightarrow photo effect, scattering (γ)

Hadronic

- \rightarrow ionization (π ±, p)
- \rightarrow invisible energy (binding, recoil)

Electromagnetic fraction

EM fraction in hadron showers

The origin of the non-compensation problems

Charge conversion of $\pi^{+/-}$ produces electromagnetic component of hadronic shower (π^0) e = response to the EM shower component

h = response to the non-EM component

Response to a pion initiated shower:

$$\pi = f_{em} + (1 - f_{em}) h$$

Comparing pion and electron showers:

$$\frac{e}{\pi} = \frac{e}{f_{em}e + (1 - f_{em})h} = \frac{e}{h} \frac{1}{1 + f_{em}(e/h-1)}$$

Calorimeters can be:

- Overcompensating e/h < 1
- Undercompensating e/h > 1
- Compensating

e/h = 1

e/h and e/π

e/h: not directly measurable \rightarrow give the degree of non-compensation e/ π : ratio of response between electron-induced and pion-induced shower

$$\frac{e}{\pi} = \frac{e}{f_{em}e + (1-f_{em})h} = \frac{e}{h} \cdot \frac{1}{1 + f_{em}(e/h-1)}$$

e/h is energy independent e/ π depends on E via f_{em}(E) \rightarrow non-linearity

Approaches to achieve compensation: $e/h \rightarrow 1$ right choice of materials or $f_{em} \rightarrow 1$ (high energy limit)

Hadron non-linearity and e/h

Non-linearity determined by e/h value of the calorimeter Measurement of non-linearity is one of the methods to determine e/h Assuming linearity for EM showers, $e(E_1)=e(E_2)$:

$$\frac{\pi(E_1)}{\pi(E_2)} = \frac{f_{em}(E_1) + [1 - f_{em}(E_1)] \cdot e/h}{f_{em}(E_2) + [1 - f_{em}(E_2)] \cdot e/h}$$
For e/h=1 \rightarrow

$$\frac{\pi(E_1)}{\pi(E_2)} = 1$$
For e/h=1 \rightarrow

$$\frac{\pi(E_1)}{\pi(E_2)} = 1$$
For e/h=1 \rightarrow

$$\frac{\pi(E_1)}{\pi(E_2)} = 1$$
Fig. 3.14. The response to pions as a function of energy for three calorimeters with different e/h values: the WA1 calorimeter (e/h > 1, [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 81]), the HELIOS calorimeter (e/h ≈ 1 , [Abr 87]) and the WA78 calorimeter (e/h < 1 , [Dev 86, Cat 87]). All data are normalized to the results for 10 GeV.

e/h ratio

Hadronic response (I)

- Energy deposition mechanisms relevant for the absorption of the non-EM shower energy:
- Ionization by charged pions f_{rel} (Relativistic shower component).
- spallation protons f_p (non-relativistic shower component).
- Kinetic energy carried by evaporation neutrons f_n
- The energy used to release protons and neutrons from calorimeter nuclei, and the kinetic energy carried by recoil nuclei do not lead to a calorimeter signal. This is the invisible fraction f_{inv} of the non-em shower energy

The total hadron response can be expressed as:

$$\begin{aligned} h &= f_{rel} \cdot rel + f_{p} \cdot p + f_{n} \cdot n + f_{inv} \cdot inv & \text{Normalizing to mip and ignoring (for now)} \\ f_{rel} + f_{p} + f_{n} + f_{inv} = 1 & \\ \hline \frac{e}{h} &= \frac{e/mip}{f_{rel} \cdot rel/mip + f_{p} \cdot p/mip + f_{n} \cdot n/mip} \end{aligned}$$

The e/h value can be determined once we know the calorimeter response to the three components of the non-em shower 60

Hadronic shower: energy fractions

Compensation by tuning neutron response

Compensation with hydrogenous active detector Elastic scattering of soft neurons on protons

High energy transfer

Outgoing soft protons have high specific energy loss

Compensation by tuning neutron response

Compensation adjusting the sampling frequency

Works best with Pb and U

In principle also possible with Fe, but only few n generated

in Fe/Scint need ratio > 10:1 \rightarrow deterioration of longitudinal segmentation

Energy released by slow neutrons

Large fraction of neutron energy captured and released after >100ns

Long integration time:

- collect more hadron E
- → closer to compensation
- integrate additional noise
- ➔ worse resolution

Sampling fluctuations in EM and hadronic showers

FIG. 4.15. The energy resolution and the contribution from sampling fluctuations to this resolution measured for electrons and hadrons, in a calorimeter consisting of 1.5 mm thick iron plates separated by 2 mm gaps filled with liquid argon. From [Fab 77].

Fluctuations in hadronic showers

- Some types of fluctuations as in EM showers, plus:
- 1) Fluctuations in visible energy (ultimate limit of hadronic energy resolution)
- 2) Fluctuations in the EM shower fraction, f_{em}
 - Dominating effect in most hadron calorimeters (e/h >1)
 - Fluctuations are asymmetric in pion showers (one-way street)
 - Differences between p, π induced showers

No leading π^0 in proton showers (barion # conservation)

$$E_{p} = f_{em}e + (1 - f_{em})h$$

$$h = f_{rel} \cdot rel + f_{p} \cdot p + f_{n} \cdot n + f_{inv} \cdot inv$$

1) Fluctuations in visible energy

FIG, 4.43. The nuclear binding energy lost in spallation reactions induced by 1 GeV protons on ²³⁸U nuclei (*a*), and the number of neutrons produced in such reactions (*b*). From [Wig 87].

- Estimate of the fluctuations of nuclear binding energy loss in high-Z materials ~15%
 Note the strong correlation between the distribution of the binding energy loss and the distribution of the number of neutrons produced in the spallation reactions
- There may be also a strong correlation between the kinetic energy carried by these neutrons and the nuclear binding energy loss 67

2) Fluctuations in the EM shower fraction

FIG. 4.44. The distribution of the fraction of the energy of 150 GeV π^- showers contained in the em shower core, as measured with the SPACAL detector (a) [Aco 92b] and the signal distribution for 300 GeV π^- showers in the CMS Quartz-Fiber calorimeter (b) [Akc 98].

Pion showers: Due to the irreversibility of the production of π_0 s and because of the leading particle effect, there is an asymmetry in the probability that an anomalously large fraction of the energy goes into the EM shower component

Differences in p / π induced showers

FIG. 4.49. Signal distributions for 300 GeV pions (*a*) and protons (*b*) detected with a quartz-fiber calorimeter. The curve represents the result of a Gaussian fit to the proton distribution [Akc 98].

<fem> is smaller in proton-induced showers than in pion induced ones: barion number conservation prohibits the production of leading π_0 s and thus reduces the EM component respect to pion-induced showers

Energy resolution of hadron showers

Hadronic energy resolution of non-compensating calorimeters does not scale with $1/\sqrt{E}$

→ $\sigma / E = a / \sqrt{E \oplus b}$ does not describe the data

Effects of non-compensation on σ/E is are better described by an energy dependent term:

$$\sigma / E = a / \sqrt{E} \oplus b (E/E_0)^{L-1}$$

In practice a good approximation is:

$$\sigma / E = a / \sqrt{E + b}$$

Examples: HCAL E resolution

HCAL only

 $\sigma/E = (93.8 \pm 0.9)\%/\sqrt{E} \oplus (4.4 \pm 0.1)\%$ ECAL+HCAL $\sigma/E = (82.6 \pm 0.6)\%/\sqrt{E} \oplus (4.5 \pm 0.1)\%$

ATLAS LAR + Tile for pions: $\frac{\sigma(E)}{E} = \frac{42\%}{\sqrt{E}} \oplus 2\%$

A realistic calorimetric system

Typical Calorimeter: two components ...

Schematic of a typical HEP calorimeter

What is really needed in terms of E res.?

- 1) Hadron energy resolution can be improved with weighting algorithms
 - what is the limit?
- 2) HEP experiments measure jets, not single hadrons (?)
 - How does the jet energy resolution relate to the hadron res.?
- Jet energy resolution depends on whole detector and only partially on HCAL performance (→ Particle Flow Algorithms)
 - What is the true hadron energy resolution required?
- 4) What is the ultimate jet energy resolution achievable?
 - Dual readout (DREAM) vs Particle Flow

Importance of jet energy resolution

UA2 (CERN SPS) Discovery of W and Z from their leptonic decay

Search for $W^{\pm} \rightarrow qq$ and $Z \rightarrow qq \Rightarrow 2$ jets

Calorimeter performance:

ECAL: $\sigma_{\rm E}/{\rm E} = 15\%/\sqrt{\rm E}$ HCAL: $\sigma_{\rm E}/{\rm E} = 80\%/\sqrt{\rm E}$

1981

What is the best W/Z separation? $W/Z sep = (m_Z - m_W) / \sigma_m$

 $\Delta m = 10.8 \text{ GeV} / 2.5 \text{ GeV} \sim 4.3\sigma$ in practice reduced due to Brei-Wigner ta

Required for 2-Gaussians identification \rightarrow separation of means > 2σ

LC physics = Jet physics

→ Require jet energy resolution improvement by a factor of 2

→Worse jet energy resolution (60%/ \sqrt{E}) is equivalent to a loss of ~40% lumi

Jets at CDF

Jet energy performance in calorimeter worse than hadron performance !!

Examples: jet energy resoltuion

FUTURE CALORIMETRY

Energy resolution: the next generation

Concentrate on improvement of jet energy resolution to match the requirement of the new physics expected in the next 30-50 years: → Attack fluctuations

Hadronic calorimeter largest fluctuations (if not compensating)

Two approaches:

- minimize the influence of the calorimeter

- measure jets using the combination of all detectors Particle Flow
- measure the shower hadronic shower components in each event & weight
 - ➔ directly access the source of fluctuations Dual (Triple) Readout

Dual Readout Calorimetry

the DREAM Collaboration

- Measure f_{EM} cell-by-cell by comparing Cherenkov and dE/dx signals
- Densely packed SPACAL calorimeter with interleaved Quartz (Cherenkov) and Scintillating Fibers
- Production of Cerenkov light only by em particles (f_{EM})

from CMS-HF (e/h=5) ~80% of non-em energy deposited by non-relativistic particles

- 2 m long rods (10 $\lambda_{\text{int}})$ with no longitudinal segmentation

What is the dream? Measure jets as accurately as electrons, i.e. $\sigma_{\rm F}/{\rm E} \sim 15\%/{\rm \sqrt{E}}$

Determination of f_{EM}

Q/S<1 \rightarrow ~25% of the scintillator signal from pion showers is caused by nonrelativistic particles, typically protons from spallation or elastic neutron scattering

 \rightarrow Extract f_{EM} from the Q/S ratio

Energy resolution

Next challenges:

1) re-gain partial longitudinal segmentation (ECAL/HCAL) → Dual readout of BGO crystals exploiting the fast Cherenkov response

2) add Triple readout \rightarrow measure the neutron component with hydrogenous materials

Particle Flow

• Particle flow is a concept to improve the jet energy resolution of a HEP detector based on:

proper detector design (high granular calorimeter!!!)

+ sophisticated reconstruction software

• PFlow techniques have been shown to improve jet E resolution in existing detectors, but the full benefit can only be seen on the future generation of PFlow designed detectors

Requires the design of

- a highly granular calorimeter, O(1cm²) cells
- dedicated electronics, O(20M channels)
- high level of integration

Doesn't it remind you of much more common pictures?

Full event reconstruction with a particle flow algorithm

Particle Flow paradigm

- → reconstruct every particle in the event
 up to ~100 GeV Tracker is superior to calorimeter →
 use tracker to reconstruct e[±],µ[±],h[±] (<65%> of E_{jet})
 - use ECAL for γ reconstruction (<25%>)
 - (ECAL+) HCAL for h⁰ reconstruction (<10%>)
 - ➔ HCAL E resolution still dominates E_{jet} resolution
- ➔ But much improved resolution (only 10% of E_{jet} in HCAL)

PFLOW calorimetry = Highly granular detectors (CALICE) + Sophisticated reconstruction software

Particle Flow

Component	Detector	Fraction	Part. resolution	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _x	negligible
Photons (y)	ECAL	30%	0.1/√E _Y	.06/√E _{jet}
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/√E _{jet}

Particle Flow (PFA):

Choose detector best suited for particular particle type ...

i.e.: use tracks and distinguish 'charged' from 'neutral' energy to avoid double counting

> distinguish electromagnetic and hadronic energy deposits for software compensation

Particle flow

Component	Detector	Fraction	Part. resolution	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _x	negligible
Photons (y)	ECAL	30%	0.1/√E _Y	.06/√E _{jet}
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/√E _{jet}

Granularity more important than energy resolution !?