Computed Tomography CT

F. Grüner; many slides from Dr. C. Hoeschen and C. Braun from HMGU; Cheong et al., Phys Med Biol 55, 647

Vor der CT: Radiographie Problem der Superposition

Gewöhnliche Radiographie

←→ CT Schicht

CT examples

CT Gerätetechnologie 1985 bis 2008

Faster – Further – Finer

CT heute und seine Detektoren

Example: again X-ray fluorescence technique

Basics

Figure 4. Definition of phantom (x, y) and laboratory (r, s) coordinate systems.

Sinogram

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix}$$

 $\rho(x, y)$ represents the Au concentration

F is measured fluorescence yield

$$F(r,\theta) = \alpha I_0 \left[\int_s \rho(x,y) \, ds \right] = \alpha I_0 \left[\int_s \rho\left(r\cos\theta + s\sin\theta, -r\sin\theta + s\cos\theta\right) \, ds \right]$$
Radon transform (R)

the sinogram $p(r, \theta)$ in polar coordinates (r, θ) is defined by

$$p(r,\theta) = R[\rho(x,y)] = \frac{F(r,\theta)}{\alpha I_0}$$

Image reconstruction

reconstructed image $\hat{\rho}(x, y)$

$$\hat{\rho}(x, y) = R^{-1}[p(r, \theta)] = \int_0^{2\pi} p(r, \theta) d\theta$$

Radon transformation

Function in grey area == 1, else == 0

Radon inverse either by filter backprojection or via Fourier transform

Axial Scanning > Helical Scanning

Conventional CT ←→ Spiral-CT

* Delay between slicescans

Development of Multislice - CTs

16 slice-CT (2002)

2-slice-CT (1998)

Spiral-CT (1990)

Today:

64 to 320 slices

Dual source CT

spectral CT

dose: detective quantum efficiency radiation dose efficiency

A method for describing the doses delivered by transmission x-ray computed tomography^{a)}

Thomas B. Shope, Robert M. Gagne, and Gordon C. Johnson

Bureau of Radiological Health, Food and Drug Administration, 5600 Fishers Lane, Rockville, Maryland 20857 (Received 23 September 1980; accepted for publication 3 October 1980)

FIG. 1. Illustration of CT system geometry, coordinate system used, and typical dose distribution resulting from a single scan of CT system.

II. SUGGESTED DOSE DESCRIPTOR FOR COMPUTED TOMOGRAPHY

The dose descriptor we propose is the computed tomography dose index (CTDI) denoted as C and defined by

$$C = (1/T) \int_{-\infty}^{\infty} D_1(z) dz, \qquad (1)$$

where $D_1(z)$ is the dose as a function of position along the z axis coordinate for a single scan dose profile at a given point (x,y). T is the slice thickness as stated by the manufacturer or selected by the CT system operator. The CTDI will be shown below to be equal to the average dose along the z direction at the point (x,y) over the central scan of a series of scans when the series consists of a large number of scans separated by the slice thickness.

dose

mamma screening: 3 mGy (absorbed in organ), 0.4 mSv (in whole body)

Chest: 13 mGy, 5-7 mSv

Head: 56 mGy, 1-2 mSv

Efficient dose reduction: CT D 'OR = (CT with Double Optimal Reading)

additional detector mask:

X-rays not shielded are detected by mask detectors

Then both image data (from CT detector and mask detectors) are combined and

Dual source / dual energy

CT summary

- CT gives 3D information
- can be operated with dual energy
- resolution as low as 0.3 mm but then dose is issue
- relation between spatial resolution and dose
- new methodes for dose reduction