
 Describing Compton scattering and two-quanta positron annihilation based on Compton

profiles: two models suited for the Monte Carlo method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 JINST 7 P07018

(http://iopscience.iop.org/1748-0221/7/07/P07018)

Download details:

IP Address: 131.169.205.81

The article was downloaded on 17/10/2012 at 15:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-0221/7/07
http://iopscience.iop.org/1748-0221
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
7
0
1
8

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: April 11, 2012
REVISED: May 23, 2012

ACCEPTED: June 18, 2012
PUBLISHED: July 18, 2012

Describing Compton scattering and two-quanta
positron annihilation based on Compton profiles:
two models suited for the Monte Carlo method

T.T. Böhlen, a,b,1 A. Ferrari, a V. Patera c,d and P.R. Sala e

aEuropean Organization for Nuclear Research CERN,
CH-1211, Geneva 23, Switzerland

bMedical Radiation Physics, Karolinska Institutet and Stockholm University,
Box 260 S-171 76 Stockholm, Sweden

cDipartimento di Scienze di Base e Applicate per l’Ingegneria, La Sapienza Università di Roma,
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ABSTRACT: An accurate description of the basic physics processes of Compton scattering and
positron annihilation in matter requires the consideration of atomic shell structure effects and, in
specific, the momentum distributions of the atomic electrons. Two algorithms which model Comp-
ton scattering and two-quanta positron annihilationat restaccounting for shell structure effects are
proposed. Two-quanta positron annihilation is a physics process which is of particular importance
for applications such as positron emission tomography (PET). Both models use a detailed descrip-
tion of the processes which incorporate consistently Doppler broadening and binding effects. This
together with the relatively low level of complexity of the models makes them particularly suited
to be employed by fast sampling methods for Monte Carlo particle transport. Momentum dis-
tributions of shell electrons are obtained from parametrized one-electron Compton profiles. For
conduction electrons, momentum distributions are derivedin the framework of a Fermi gas. The
Compton scattering model uses an approach which does not employ any free parameter. In con-
trast, a few semi-empirical approximations are included for the description of the complex physics
of electron-positron annihilation resulting in acollinear photons. Comparisons of the Compton
scattering model with simpler approaches illustrate the detailed accounting for shell structure ef-
fects. A satisfactory agreement is found for comparisons ofboth newly-developed models with
experimental data.

KEYWORDS: Interaction of radiation with matter; Detector modellingand simulations I (interac-
tion of radiation with matter, interaction of photons with matter, interaction of hadrons with matter,
etc); Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA)
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1 Introduction

The atomic orbital structure and in specific the momentum distributions of the atomic electrons
are well known to become apparent in Compton scattering [1] and positron annihilation in mat-
ter [2]. Compton scattering cross sections for a free target electron at rest are described by the Klein
Nishina (KN) cross section [3]. Compared to the KN cross section, measured Compton scattering
cross sections in matter exhibit prominent features which can be attributed to the shell structure:
electron binding energies lead to a reaction suppression incase of low momentum transfers and
the motion of the bound electrons causes a Doppler broadening of the scattered photon energy dis-
tribution. When positrons annihilate in matter with the atomic shell electrons, they decay mostly
into two 511 eV photons (e+ + e− → 2γ). Due to momentum conservation these photons have
opposite directions in the centre-of-mass (cms) frame. However, in the laboratory frame the two
annihilation photons are not exactly collinear and also their energies are slightly dissimilar. These
slight dissimilarities are due to the momentum of the annihilating positron-electron (e+e−) system.
While most of the positrons reach thermal energies before they annihilate, shell electrons may have
significantly higher momentum and lead to measurable photonacollinearity and dissimilarity of
photon energies. Physics models aiming at an accurate description of both positron annihilation in
matter and Compton scattering require therefore a consideration of atomic shell structure effects.
In case of Compton scattering, this is particularly true at low photon energies and for heavy nuclei
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(with tightly bound electrons). A detailed description of Compton scattering profits to all those
applications where photon transport is important, including notably dosimetry, source shielding,
photon detectors, medical linacs, positron emission tomography (PET) and dose monitoring with
prompt photons [4]. To the contrary, angular correlation effects and Dopplerbroadening of two-
quanta annihilation have a small impact on transport and energy depositions, therefore they are
relevant only for applications that aim to observe the annihilation process itself. Most prominently
this is the case for PET. The two-quanta positron annihilation is the underlying physical process
which is made use of by PET to obtain information about the location of positron emitters. In the
field of molecular imaging, PET is widely used to determinein vivo distributions of biologically
active molecules, such as proteins, labelled with a positron emitter [5, 6]. In recent years there
is also an increased interest in employing the PET techniquefor dose monitoring during cancer
treatment with hadron therapy ([7, 8] and references therein). Positron annihilation spectroscopy
is a further technique which makes use of two-quanta positron annihilation [2, 9–11].

This work proposes two models describing Compton scattering and acollinearity of two-quanta
positron annihilation which account for atomic shell structure effects in media. The models are re-
ferred to in the following asCompton scattering modelandAcollinearity model. Both models are
based on the atomic shell binding energies and electron momentum distributions. Momentum dis-
tributions of shell electrons are obtained from parametrized quantum mechanical calculations. For
conduction electrons, momentum distributions are obtained from the free electron gas model. The
Compton scattering model uses an approach which does not employ any free parameter. In con-
trast, a few semi-empirical approximations are included for the description of the complex physics
of electron-positron annihilation resulting in acollinear photons. The presented models were de-
signed and developed for the use as native models of the MonteCarlo (MC) particle transport code
FLUKA [ 12, 13]. They are well suited for MC calculations, as they allow thefast sampling from
the required probability density functions (PDF). FLUKA isa multi-purpose code which is capable
of handling about 60 different elementary particles, including photons, leptons, hadrons and also
ions, at energy ranges from a few keV to thousands of TeV in complex geometries and compound
media. Neutrons are transported down to thermal energies. In specific, FLUKA simulates photons,
electrons and positrons including models for all significant interaction processes at the given en-
ergy range. For photons this includes: pair production, Compton scattering, Photoelectric effect,
Rayleigh scattering, photomuon and photohadron production. Photons are transported taking into
account photon polarization for the Compton, the Rayleigh and the photoelectric effect. For elec-
trons and positrons this includes: Coulomb scattering (single and condensed multiple scattering),
continuous energy loss, including energy loss straggling and, above a given threshold, discrete
energy losses and explicit delta-ray production via Bhabhaand Møller scattering, Bremsstrahlung,
positron annihilationin flight andat rest. For both stopping power and Bremsstrahlung, differences
between electrons and positrons are taken into account. Atomic electron excitations or vacan-
cies are treated by modelling de-excitation cascades leading to the subsequent emission of x-rays,
and Auger electrons. Also the production of unstable nucleiand the time evolution and tracking
of radiation emitted by these residual nuclei can be performed. More details about FLUKA can
be found at [14].

The article is structured as follows. Section2 presents the Compton scattering model. Sec-
tion 3 is dedicated to the description ofe+e− annihilation and the Acollinearity model. Each of
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the sections contain an outline of the physics of the respective process with the focus set on the
description of effects due to the binding and motion of the atomic electrons (section2.1 and3.1).
It is followed by the model descriptions (section2.2 and3.2) and validations in comparison with
other modelling approaches and experimental data (section2.4and3.3). The procedure for obtain-
ing the PDF of the electron momentum distributions which arerequired by the models is described
in section2.3.

2 Modelling of Compton scattering

2.1 Outline of the physics background

The incoherent scattering process, also called Compton scattering, is the dominant interaction type
for photons in the energy range between some keV up to about 5 MeV. If the momentum transfer of
a photon is large compared to the electron binding energies of the target atoms, Compton scattering
can be described with good accuracy in the free electron approximation. For a free electron at rest,
the scattering cross section is given by the well-known KN formula [3, 15]

(

dσ
dΩ

)

KN
=

r2
0

4
k′2

k2

(

k
k′

+
k′

k
−2+4

(

ε ′
µε µ)2

)

. (2.1)

Herek andk′ are the initial and final photon momenta,Ω is the direction of the scattered photon
relative to the initial photon, andr0 = α h̄/mec = 2.82·10−13 cm is the classical electron radius.
For a given initial photon momentumk, the photon scattering angleθ and its final momentumk′

are related due to energy and momentum conservation by

k′ =
kmec

mec+k(1−cosθ)
, (2.2)

the so-called Compton relation, whereme is the electron rest mass. Again due to momentum con-
servation, the direction of the emitted electron is given bythe direction of the momentum transfer
q = k−k′. Consequently, the polar angleθe is given by

cosθe =
k′ +mec

k′

√

k−k′

2mec+k−k′
(2.3)

and the polar angle of the electronφe is opposite to the polar angle of the scattered photonφ , i.e.
φe = φ + π.

ε µ andε ′
µ are respectively the contravariant initial and covariant final polarization four-vectors.

A gauge can be chosen such that the polarization vectors haveonly spatial components (see ap-
pendixA) and one can obtain [15]

(

ε ′
µε µ)2 =

∣

∣ε ′∗ · ε
∣

∣

2
= cos2Θ , (2.4)

whereΘ is the angle between the polarization directions of the initial photonε and the final photon
ε ′. The scattered radiation can be conveniently expressed in terms of two linearly polarized com-
ponents being parallel (‖) and perpendicular (⊥) to ε [16]. For⊥, cosΘ = ε ′ · ε = 0. For‖, Θ can
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be expressed in terms of the scattering angleθ and the angleϕ between the scattering plane(k,k′)
and the plane(k′,ε)

cos2 Θ = 1−sin2 θ cos2ϕ . (2.5)

From this partition it can be seen that the‖-component is always more intense than the
⊥-component.

For momentum transfersq which are not large compared to the electron binding energies of
the target atoms, binding energies and velocity distributions of the bound target electrons have to
be taken into account for an accurate description of the Compton scattering process. The Doppler
broadening, which is caused by the motion of the target electrons, leads to a broadening of the
peaked energy distribution (the so-called Compton line) for a given scattering angle and the Comp-
ton cross section becomes a two-variate quantity dependingon the scattering angleθ and the final
photon momentumk′. There are different approaches to provide a more accurate description of
Compton scattering for these low momentum transfers. An approximate approach is to absorb
differences with respect of the KN cross section in a multiplicative incoherent scattering function
S(q,Z), whereq is the scalar momentum transfer andZ is the atomic number of the scatterer, so
that the Compton scattering is given by

(

dσ
dΩ

)

S(q,Z)

= S(q,Z) ·
(

dσ
dΩ

)

KN
. (2.6)

A successful historical model for light systems is the calculation of S(q,Z) according to Waller
and Hartree [17], and similar systematic tabulations ofS(q,Z), as found for instance in [18], are
used nowadays by MC transport codes. The relativistic impulse approximation (IA), described by
Ribberfors et al. [19, 20], accounts for binding effects and the target electron motion and gives an
accurate description of Compton scattering also for lower photon energies (down to some tens of
keV). The IA assumes that the final electron states can be represented by plane waves. In the IA, the
electron motion enters in the cross section in form of atomicshell Compton profiles (for definition
see (2.9)). The adaption of the relativistic IA approach for a MC transport code is described by
Brusa et al. [21].

2.2 Compton scattering model

A newly-developed modelling approach for Compton scattering, alternative to the ones priorly
mentioned, is presented in the following. The model transforms the Compton interaction of a pho-
ton with a bound electron in motion to the simpler case of an interaction with an electron at rest.
This allows to describe the scattering process itself basedon the KN cross section (2.1). The treat-
ment of the scattering process in the rest frame of the electron allows a significant reduction of the
mathematical complexity of the problem and the related necessary computation time. Furthermore,
it also allows to account for the photon polarizations accurately in a simple manner. Effects due
to the motion and binding of the atomic shell electrons emerge naturally and result in scattering
suppression for low momentum transfers due to energy conservation and Doppler broadening as
explained in the following description of the sampling algorithm.

For a given photon in a medium with momentum four-vector(klab)µ and polarization(ε lab)µ ,
the Compton scattering interaction probability is sampledfrom the total KN cross section. The
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total Compton cross section is calculated using the electron density of the medium and assuming
free electrons at rest. If a photon interacts, the target shell electron participating in the interaction
is sampled from all the electrons of the medium, weighted with their relative occupation numbers
(‘additivity rule’). Next, the four-momentum(plab)µ = (mec+ T lab

e /c,plab) of the target electron
and a corresponding kinetic energy of the target electronT lab

e before the interaction is obtained.
This is done by sampling the modulus of the electron momentumfrom the momentum distribution
of the orbital (2.11), with J given by (2.14), and assigning a uniformly distributed random direction.
The photon four-momentum and its polarization(kµ ,ε µ) is then transformed by a Lorentz boost
into the rest frame of the electron (for details see appendixA). In the rest frame of the electron the
KN cross section is employed to sample the polarizationε ′µ and momentumk′µ of the scattered
photon and the related four-momentum(plab′)µ = (mec+ T lab

e
′
/c,plab′) of the recoiling electron.

In the model the electron is considered to reside in a potential well with a depth given by

V = EB +EH , (2.7)

whereEB is the binding energy of the electron shell andEH = T lab
e is the hole energy. FLUKA

uses tabulations of atomic binding energies from [18]. In case that the kinetic energy of the re-
coiling electronT lab

e
′
in the laboratory frame is lower thanV, the reaction is suppressed. Instead,

if T lab
e

′ ≥ V the interaction occurs and the energyklab′ and the direction of the scattered photon
and the electron in the laboratory frame are obtained while subtractingV from T lab

e
′
for the escap-

ing electron without modifying its direction. This is reasonable for a central potential and a good
approximation ifT lab

e
′
significantly larger thanV.

2.3 Sampling of electron momentum distributions

Both presented models require sampling from momentum distributions of atomic electrons. Elec-
tron momentum distributions are sampled using Compton profiles. This is done since detailed data
and calculations of electronic Compton profiles are found inliterature as they are an experimentally
measurable quantity. The momentum densityIm

n,l (p) of an atomic electron is given by [22]

Im
n,l (p) = p2 |ψp(p)|2 , (2.8)

whereψp(p) is the electron wavefunction in momentum space andn, l ,m are the principal, az-
imuthal and magnetic quantum number of the respective sub-shell. The electronic Compton profile
Jm

n,l (Q) is related to the momentum densityIm
n,l (p) of an electron in a given atomic orbital with

momentump by [22]

Jm
n,l (Q) =

1
2

∫ ∞

Q

Im
n,l (p)

p
dp , (2.9)

whereQ is given by the projection of the electron momentump before collision on the negative
momentum transferq

Q = −p ·q
q

=
kk′ (1−cosθ)−

√

m2
ec2 + p2(k−k′)

q
. (2.10)

Herek andk′ are the initial and final photon momenta.
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Hence, from (2.9) follows that the momentum density distribution can be expressed in terms
of the Compton profile by

Im
n,l (p) = −2p

dJm
n,l (p)

dp
. (2.11)

Jm
n,l (Q) is an even function and generally normalized per electron, so that

∫ ∞

0
2Jm

n,l (Q)dQ = 1 . (2.12)

The overall Compton profile of an atomJatom(Q) can be obtained by summing over all occupied
shells while weighting them with the electron occupation numberNm

n,l for a given sub-shell [21]

Jatom(Q) = ∑
n,l ,m

Nm
n,l J

m
n,l (Q) . (2.13)

In the following, we sample the orbital electron momentum distribution from (2.11). Comp-
ton profiles of atomic electron orbitals (2.9) were parametrized from accurate quantum mechanical
calculations in order to allow for fast sampling procedures. Tabulated Compton profiles of atomic
orbitals obtained from Hartree-Fock wave functions by Biggs et al. [22] in the approximation of
closed-shell configurations were used for the fits. The tabulations include Compton profiles of
all electronic orbitals of free atoms with 1≤ Z ≤ 102, using relativistic wave functions for ele-
ments withZ > 35 and non-relativistic wave functions for smallerZ where there is only a marginal
difference between the two methods [22].

For a given sub-shelln, l ,m, the fits to the Compton profilesJm
n,l (Q)≡ J(Q) are obtained using

a combination of five terms: a Fermi-Dirac (FD) distribution, two Gaussians (G1 and G2) and two
exponentials (E1 and E2)

J(Q) =PFD ·
1

exp[β (Q−α)]+1
(2.14)

+PG1·exp

[

−1
2

(

Q−µ1

σ1

)2
]

+PG2 ·exp

[

−1
2

(

Q−µ2

σ2

)2
]

+PE1·exp[−λ1Q] +PE2·exp[−λ2Q] ,

with the free parameters beingα , β , µ1, σ1, µ2, σ2, λ1, λ2, and the relative normalization factors
PFD, PG1, PG2, PE1 andPE2, where due to normalization

∫ ∞
0 2|J(Q)|dQ = 1 for one electron. The

procedure that chooses the combination of terms for the profile fit is crucial to obtain an accurate
shape for all the momentum profiles with a reduced number of parameters. For a given sub-shell,
the chosen approach uses at maximum three of the five terms of (2.14) to precisely fit all profiles
for all atomic numbersZ, with the number of knots of the profiles ranging from zero to two. The
number of terms used for a given profile is driven by the shell symmetry, i.e. the number of knots
of the profile distribution, while the actual choice of the analytical functions which are used in the
combination (mixture of exponentials and/or Gaussians and/or Fermi-Dirac) is simply made on the
basis of the bestχ2 fit among all the different possible combinations.

Figures1 and 2 show some examples of Compton profiles as derived from the quantum
mechanical calculations by Biggs et al. [22] in comparisons with MC samples of the parametrized
profiles.
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Figure 1. Examples of Compton profiles as derived from quantum mechanical calculations by Biggs et
al. [22] in comparisons with parametrized MC samples. Compton profiles of the 1s orbitals of hydrogen,
helium, lithium and beryllium are shown. Values in parenthesis give the shell occupation number.
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Figure 2. Examples of Compton profiles as derived from quantum mechanical calculations by Biggs et
al. [22] in comparisons with parametrized MC samples. Compton profiles of the orbitals 1s, 2s, 2p, 3s, 3p,
4s, 4p, 3d of krypton are shown. Values in parenthesis give the shell occupation number.
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The momentum distribution of electrons which reside in the conduction band of a metal or
semi-conductor can approximately be described in the framework of a free-electron gas with con-
duction band electron densityρCB

e .1 The momentum distribution of a Fermi gas in zero-temperature
approximation is given by:

I(p) =







3p2

p3
F
, if p2 ≤ p2

F

0, if p2 > p2
F

(2.15)

where the Fermi momentum is given bypF = h 3
√

3ρCB
e /8π with h being the Planck constant. The

number of conduction band electrons was chosen as found in literature.
In molecular and also in polycrystalline materials the momentum distributions of the electrons

are on average isotropic. For such situations an electron momentump = (p1, p2, p3) is obtained for
a given shell by sampling the modulusp for the corresponding momentum distribution from (2.11)
and assigning a uniformly distributed random direction.

2.4 Evaluation of the Compton scattering model

Figure 3 shows the total Compton scattering cross sections as a function of the initial photon
energy E computed with the present Compton model in comparison with the KN cross sec-
tion and using tabulated cross sections from the Livermore Evaluated Photon Data Library 1997
(EPDL97) [18, 23]. EPDL97 cross sections are obtained by numerically integrating (2.6), that is
the KN formula and incoherent scattering functionS(q,Z). For more details see also [23]. At high
energies above 1 MeV, all of the approaches give almost the identical total cross section, even for
heavy elements. For lower energies, differences of the KN cross section with respect to the other
two approaches are mostly due to the cross section suppression due to shell effects compared to
the free-electron picture. The EPDL97 cross sections and the present Compton scattering model
account for such shell effects and their cross sections tendto zero for small photon energiesE.
In figure 4, differences between various approaches can be observed for the Compton scattering
cross sections differential in energy of the scattered photon E′ at selected energiesE = 20, 100,
1000 keV for carbon and lead. The shown cross sections were computed with the present Compton
model, with a fit to EPDL97 tabulations, and using the KN crosssection. For high energies of
the scattered photon, withE′/E close to one, the approach usingS(q,Z) provides a smooth ap-
proximation to the shell effects, which tends to zero forE′/E → 1 where the KN cross section is
finite. Both the KN cross section and the approach usingS(q,Z) do not account for effects due
to Doppler broadening and predict a sharp fall off atE/(1+ 2(E/mec2)). The Doppler broaden-
ing causes a blurring of this fall off, most notable for photon energies in the order of the kinetic
energies of the shell electrons. The present Compton scattering model predicts the fine structure
of differential Compton cross sections in form of discontinuities which are caused by surpassing
the individual binding energies of shell electrons. It alsoaccounts for Doppler broadening due to
the motion of the target electrons. Figure5 shows the Doppler broadening of the Compton line
from measurements [24] and as predicted by the Compton scattering model at an angleof 167◦

for 412 keV photons incident on aluminium and germanium. There is a good agreement between
simulations and measurements for both media.

1If not changed by the user, solid and liquid compounds are considered by default to be a metal in FLUKA if they
consist to more than 50% (atoms) of metallic elements.
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Figure 3. Total Compton scattering cross sections as a function of the initial photon energyE computed
with the present Compton scattering model, using cross section tabulations from EPDL97 [18], and using
the KN cross section. Cross section for carbon, iron and leadare shown.

The present model describes binding effects and electron motion in the frame of closed shell
atoms for orbital electrons and in the picture of a free electron gas for conduction band electrons.
Chemical bonds lead to modifications of the binding energiesand momentum distributions of the
valence orbitals with respect to an independent atom model.This can lead to inaccuracies of the
model for photon energies close to the binding energies of the outer shell electrons.
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Figure 4. Compton scattering cross sections differential in the energy of the scattered photonE′ at selected
initial photon energies (E = 20, 100, 1000keV) for carbon and lead. The cross sections arecomputed with
the present Compton scattering model, using a fit to tabulations of the incoherent scattering functionS(q,Z)

from EPDL97 [18], and using the KN cross section.

3 Modelling of two-quanta e+e− annihilation

3.1 Outline of the physics background

Energetic positrons in media, such as originating from positron emitters (∼ 1 MeV), generally slow
down to thermal energies (characteristic energy:(3/2) ·kT = 0.04 eV) due to Coulomb interaction
before they annihilate. This is reflected in energy loss cross sections which are significantly larger
than annihilation cross sections at higher (non-thermal) energies. For the small fraction of annihi-
lationsin flight, the momentum of the electron can be usually neglected compared to the generally
much larger positron momentum. The integral and differential cross sections for two-quanta an-
nihilation in flight of a freee+e− pair with the electron at rest can be found for instance in [16].
Annihilation in flight is readily considered by many MC codes [25], including FLUKA. Other types
of annihilation, such as one-quantum, no-quantum and three-quanta annihilation, do occur. How-
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Figure 5. Compton scattering cross sections differential in the energy of the scattered photonE′ at an angle
of 167◦ for 412 keV photons incident on aluminium and germanium. Experimental data from Cooper et
al. [24] are presented together with predictions of the Compton scattering model which were convolved with
a Gaussian with a full-width at half-maximum (FWHM) of 0.565keV to imitate the detector resolution of
the data [24].

ever, they are far less likely. An analytical estimation of the most probable of these processes, the
one-quantum annihilation, is given by Jung [26].

The two-quanta annihilation processat rest is of particular interest for applications, such as
PET, where other annihilation processes contribute merelyin form of background to the mea-
surement. Fore+e− annihilationsat rest, i.e. with thermalized positrons, the momentum of the
annihilatione+e− pair is generally determined by the motion of the bound electron. Interactions of
slow positrons with atoms, molecules, and ionic lattices are of complicated nature. The time scale
of a thermal positron approaching an atom or molecule is muchlarger than the electron cloud re-
laxation time. Long-range interactions can be approximatively described by the polarization of the
atom or molecule and dipole-charge interactions [27]. For short-range interactions (at distances∼
Bohr radius) to the contrast, no simple multipole expansionis possible any longer, and the potential
of the atomic nuclei, positronium atom formation [28, 29], and the annihilation reaction have to be
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taken into account. A detailed consideration of these processes involves the quantum mechanical
calculations of many-body interactions of the positron with the atomic or molecular electrons in or-
der to describee+e− correlation effects [30, 31] and phenomena, such as positron trapping effects
in lattices, which alter positron lifetimes and eventuallythe probability of annihilation in different
sites of the atom or molecule [2, 9].

The angular correlation of the annihilation photons and their emission energies (Doppler
broadening) are sensitive to these underlying physics processes as they can modify notably the mo-
mentum distribution of the annihilatinge+e− pairs. In fact, angular correlation and energy spectra
can be used for the identification of different materials (positron annihilation spectroscopy) [10] and
even for monitoring material parameters such as lattice defects, evoked for instance by compres-
sion of the material [2, 32]. The sensitivity to modifications of atomic structure is explained by the
fact that positrons annihilate predominantly with outer shell electrons [33], that are valence or con-
duction band electrons, which are themselves only slightlybound and involved in chemical bonds.
Correlation effects between electrons and positrons generally result in increased orbital densities
of electrons around the positron. In descriptions based on independent particle models, correlation
effects can be accounted for by means of enhancement factorsfor individual annihilation sites [34].
Large relevance of correlation effects are observed especially for outer shell electrons [35].

3.2 Acollinearity model

In spite of the complex underlying physics processes involved in positron annihilation in media,
it is experimentally found that the bulk of energy and angular distributions is readily described
by the sum of two Gaussians with sigmas and weights dependenton the medium for atoms and
molecules of both simple and complex structures [36]. Modifications for different media of the
Gaussian-alike central part of the angular and energy spectra are mostly only moderate, whereas
the high-momentum tails of the distributions (appreciablein logarithmic scale) exhibit a much
stronger variation. Highly precise experiments are designed to measure tails of large angular and
momenta distributions over five orders of magnitude [35]. However, these tails contribute with
a negligible amount to the total annihilation reaction rateand are consequently not relevant for
applications such as PET imaging techniques. These observations support the intent to describe the
bulk of the angular and energy spectra of two-quantae+e− annihilationat restapproximately by a
simplified semi-empirical approach.

In the FLUKA code, fast positrons are transported while considering energy losses andin flight
annihilation cross sections, as mentioned earlier, according to well-known formulas, see ([16],
chapter 4, section 21). Below 1 keV, positrons are no longer transported and their remaining ki-
netic energy is deposited on the spot. Then annihilationat restoccurs. For modelling of the angular
distribution and the correlated energy distribution of two-quanta annihilation reactionsat rest, the
same electron momentum distributions as for Compton scattering are used (see section2.3). The
momentum of thermal positrons is generally small compared to the momentum of the shell elec-
trons and is set to zero (i.e. is neglected). It is important to stress here that the chosen description
for the atomic electron momentum distributions neglects any modifications of electronic orbitals
due to chemical bonds and the presence of the positron. Instead,e+e− correlations are introduced
by the means of empirical correction factors in the spirit ofthe approaches discussed by Gupta and
Siegel [34] and Alatalo et al. [30]. The parameters for the empirical correction factors are obtained
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by matching energy and angular correlation spectra of annihilation photons predicted by the model
to experimental data.

3.2.1 Empirical correction factors for selection of annihilation shell and momentum

A positronat restwill annihilate inevitably with one of the atomic or conduction band electrons
of the target medium. In the model, once an electron is selected for annihilation (explained later)
the momentum of the electron is sampled from the corresponding momentum distribution of the
sub-shell or the free electron gas momentum distribution, in case of a conduction band electron,
see (2.11), (2.14) and (2.15). To allow for a suppression of annihilations with high-momentum
shell electrons, a momentum-dependent correction factorRm

n,l (p) is used. Hence, the PDF of the
annihilation momentum of thee+e− pair for an electron shelln, l ,m is given in the model by

Am
n,l (p) = Rm

n,l (p)Im
n,l (p) . (3.1)

We chose to introduce an empirical factor which matches the data of angular correlation and
Doppler broadening measurements of the hydrogen electron (see figures7 and 9). The factor,
rescaled by the corresponding binding energyEn,l , is then applied to all sub-shells of all elements.
It is parametrized in the form of a double-Gaussian PDF

Rm
n,l (p) =Nn,l ·

(

0.9·exp

[

−1
2

(

p
0.7·Fn,l

)2
]

+0.1·exp

[

−1
2

(

p
1.5·Fn,l

)2
])

, (3.2)

wherep is the electron momentum,
Fn,l =

√

2meEn,l (3.3)

andNn,l being the normalization factor. No momentum correction factor is used for the conduc-
tion band electrons and their momentum is directly sampled from the free electron momentum
distribution (2.15).

The unnormalized relative probabilityPe−
n,l for a given positron to annihilate with a certain sub-

shell electronn, l or conduction band electron is assumed to depend only on the binding energyEn,l

of the electron and is parametrized by a Gaussian of the form

Pe−
n,l = exp

[

−1
2

(

En,l

σe−

)2
]

, (3.4)

whereσe− is a free parameter.σe− was determined by matching data of angular correlation mea-
surements for nitrogen (see figure7) and set to 23 eV. To computePe−

n,l for the case of annihilation
with conduction electrons, conduction electrons are assumed to reside in a potential well made up
of a binding energy assumed to be 2 eV and the average kinetic energy of an electron in a free
electron gasEavg = 3/5EF. The total binding energyEn,l of conduction band electrons used for
sampling is thus given by

ECB = 2eV+2/5·EF , (3.5)

with the Fermi energyEF = p2
F/(2me). The normalized probability for the annihilation with a

certain target electronn, l ,m for a given medium is

P̂e−
n,l ,m =

wn,l ,m ·Pe−
n,l

∑n′,l ′,m′ wn′,l ′,m′ ·Pe−
n′,l ′

, (3.6)
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wherewn,l ,m is the fractional frequency of the element with electronn, l ,m in a compound and
n, l ,m runs over all electrons in the medium.

3.2.2 Kinematics of two-quanta e+e− annihilation

In the following all momenta and energies without superscript are given in the laboratory frame
while momenta and energies in the cms frame of the annihilating e+e− pair are labelled with
‘cms’. An e+e− pair annihilates by emitting two quanta at an angle of 180◦ in the cms frame which
are mutually polarized. The momentum of thee+e− pair is transferred to the photons leading to
a deviation from collinearity in the laboratory frame. In the laboratory frame the total initially
available energy is given by

Eep = ∑
i=e,p

Ei −EB−EH . (3.7)

HereEi =

√

(mec2)2+(pic)
2 is the initial energy of the annihilating electron or positron, with pµ

i

being the respective momentum four-vector.EB is the binding energy of the electron andEH = Ekin
e

is the kinetic energy of the bound electron (i.e., the hole state energy).EB andEH form the potential
well in which the electron resides. The positron is assumed to be at rest withpp = 0 and residing
in a zero potential well. The available energy is assumed to be shared equally between the two
annihilation photons in the cms frame

Ecms
γ ,1 = Ecms

γ ,2 =
1
2

√
s=

1
2

√

(pep)µ pµ
ep, (3.8)

wherepµ
ep = (Eep/c,pep), with pep = pe. The energy and momentum of the annihilation photons

in the laboratory frame is then obtained by a Lorentz transformation given by the boost four-vector
pµ

ep. Binding and hole state energies are generally small compared to the energy of the annihilation
photons. Hence, the approximation of subtractingEB andEH in the cms frame should have little
effect on the angular distributions.

3.3 Evaluation of the Acollinearity model

Contrary to the Compton scattering model, where the selection of the participating target electron
is independent of its shell and binding energy, positron annihilations occur predominantly with
the less tightly bound outer-shell electrons. Positron annihilation is therefore more sensitive to
modifications of these orbitals with respect to the closed-shell atom picture. We found that a sim-
ple scaling factor of 1.4 between the annihilation momentumdensity and the unperturbed atomic
electron momentum density describes very roughly experimental Doppler broadening data from
Iwata [36]. The same scaling factor was also obtained recently by Green et al. [37].

Figure6 shows angular correlation spectra of noble gases as predicted by the present model
(section3.2) and from measurements. Noble gases consist of single elements with closed shells
in which the orbitals are not modified by molecular bonds. Consequently, assuming accurate mea-
surements, the differences between measurements and predictions of the Acollinearity model can
be attributed to correlations not accounted for by the empirical correction factors, to insufficiencies
in their parametrization or to the limited accuracy of the fits of the Compton profiles.

For molecular compounds, the valence shell orbitals may be modified by chemical bonds.
These alterations are not considered by Compton profiles which are computed for single atoms.
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Figure 6. Simulated and measured [36] normalized angular correlation spectra for selected noble gases.
Spectra show the projected (one-dimensional) angle.

Nevertheless, the agreement of the model with experimentaldata from simple and organic com-
pounds is satisfactory, as shown for example in figure7.

For metals, the central part of the angular correlation spectrum is determined by positron
annihilations with conduction band electrons. In contrast, the tails of the distributions are generally
dominated by annihilations with core electrons. Figure8 shows some examples of comparisons
of simulated and measured angular correlation spectra for metals. Both magnesium and calcium
exhibit a clear separation between a ‘central bulk’-part ofthe spectra produced by annihilations
with conduction band electrons and a ‘tail’-part produced by annihilations with the core electrons.
For gold, annihilations are predicted by the model to occur only with a probability of about 10%
with conduction electrons. Consequently, a strong division between ‘central bulk’ and ‘tail’-part
can not be observed. While the shape of the ‘central bulk’ (byconduction band electrons) and also
the ‘tail’-part (by core electrons) are generally well reproduced for all tested metals, the relative
fraction of annihilations on each of the parts is not always in agreement with the experimental data
(see for instance calcium in figure8). The relative fraction of annihilations on the conductionband
and core electrons is determined by relation (3.4) and (3.5).

In addition to the angular correlation spectrum of hydrogen, shown in figure7, figure9presents
the Doppler broadening spectra for hydrogen of measurements and model predictions.

The model was primarily designed to reproduce the ‘bulk’-part of the angular and energy spec-
tra. But as seen in figure10, which shows a comparison of Doppler broadening spectra from model
predictions and experimental data [38] with a logarithmic ordinate extending to low probabilities,

– 15 –



2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
7
0
1
8

Angle [mrad]
0 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 P
D

F

0

0.05

0.1

0.15

0.2

0.25

0.3

Hydrogen

Nitrogen

Water

Present work (FLUKA)
Iwata et al.

Angle [mrad]
0 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 P
D

F

0

0.05

0.1

0.15

0.2

0.25

)
2

Carbon Dioxide (CO

)
4

Carbon Tetrafluoride (CF

)2H
2

Acetylene (C

Present work (FLUKA)
Iwata et al.

Figure 7. Simulated and measured [36] normalized angular correlation spectra for selected molecules.
Spectra show the projected (one-dimensional) angle.
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Figure 8. Simulated and measured [36] normalized angular correlation spectra for selected metals. Spectra
show the projected (one-dimensional) angle.

the model does not behave badly for such low probabilities. The comparison supports the presump-
tion that the model scheme could be used in principle as well to predict contributions to the tails of
the spectra from the high-momentum core electrons down oversome orders of magnitude, as used
for instance by positron annihilation spectroscopy.
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Figure 10. Simulated and measured [38] normalized energy Doppler broadening spectrum with a logarith-
mic ordinate.

4 Conclusions

Two models describing Compton scattering and acollinearity of two-quantae+e− annihilations
in matter based on electron momentum distributions were developed and integrated in the MC
code FLUKA. The validation of both models shows a satisfactory agreement with experimental
data. The Compton scattering model provides a detailed and parameter-free description of shell
structure effects in a simple formalism while accounting for changes of photon polarization in
a natural way. The Acollinearity model uses electron momentum distributions together with a
semi-empirical description ofe+e− correlation effects for determining the annihilation shell and
momentum. Both models allow for fast MC sampling.2 For normal FLUKA simulations, where
electrons, positrons and photons are transported in media,the usage of these models contributes
with a negligible increase to the total simulation time. TheCompton scattering model is activated
by default if accurate simulations are requested in the current FLUKA version. The Acollinearity
model will be active by default starting from the next FLUKA version. Activation of both models
can be controlled by the user via the FLUKA input card ‘EMFRAY’ [ 14].

2The average sampling time for Compton scattering of a 511 keVphoton in lead is about 2·10−6 s/event. The average
sampling time for the annihilation of a positron in water is about 7·10−6 s/event. Evaluation of the required CPU times
needed for sampling are given for a processor of type: Intel(R) Xeon(R) CPU X5677@3.47GHz.
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A Lorentz and gauge transformations of polarized photons

The state of a polarized photon, modelled as a point particle, is identified by its spacetime
positionxµ , its momentum vectorkµ = (k,k), and its polarization stateε µ = (ε0,ε) which fulfill
the conditions

kµε µ = 0 and εµε µ = 1 (A.1)

in all Lorentz frames. With a Lorentz transformationΛ a polarized photon can be transformed to
the rest frame of the electron with the electron momentum vector pµ = (mec,0). It can be shown
that an arbitrary Lorentz transformation results in a polarrotation about the momentum vector in
the space of polarization. Details are given for instance in[39].

Being in the rest frame of the electron,ε µ is defined apart from a gauge transformation [15]

εµ = ε µ + λkµ , (A.2)

whereλ is a complex number,ε µ describes the same polarization state which still fulfills the
conditions (A.1), as photons are massless particles withkµkµ = 0. When choosing a gauge in
which the polarization vectors have only spatial components (‘axial gauge’ or ‘transverse gauge’
with ε0 = 0) we have additionallypµεµ = pµε ′µ = 0, whereε ′µ is the polarization vector after a
scattering process. Such a gauge transformation toε0 = ε ′

0 = 0 is given by

λ = −ε0

k
. (A.3)
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