
Python for Computational Science

Hans Fangohr
February 17, 2025

1

Outline

1. Python for Computational Science

2. Part 1
3. First steps with Python

4. Introspection (dir)

5. Defining functions

6. About Python

7. Using modules

8. Conditionals, if-else

9. Raising exceptions

10. Sequences

11. Loops

12. Style guide for Python code

2

Outline

13. Reading and writing files

14. Writing modules

15. Name spaces, global and local variables

16. Plotting data from csv file

17. Catching exceptions

18. Print
19. String formatting

20. Dictionary

21. Default function arguments

22. Keyword function arguments

23. Python installation

24. Virtual Environments venv

3

Outline

25. Installing python packages with pip

26. Numpy

27. IPython, Jupyter, Editors and IDEs

28. Matplotlib

29. Testing

30. Numpy usage examples

31. Pandas
32. Part 2
33. Higher Order Functions

34. Iterators
35. Testing

36. Variables, equality and identity

4

Outline

37. Recursion
38. str, repr and eval

39. List comprehension

40. Object Oriented (OO) Programming

41. Typing

42. Interpolation

43. Closures
44. Common Computational Tasks

45. Curve fitting

46. Optimisation

47. Optimisation

48. FIFO example and Object Oriented Programming (OOP)

5

Outline

49. Functional tools: lambda, map, filter, reduce

50. Scientific Python

51. Root finding

52. Computing derivatives numerically

53. Numerical Integration of (math) functions

54. Numerical Integration

55. Ordinary Differential Equations (ODEs)

56. Symbolic Python (sympy)
57. APPENDIX
58. Practical computational science recommendations

59. Useful tools
60. ∗Integer division in Python 2 and 3

61. Legacy string formatting

6

Outline

62. Random other things

7

Python for Computational Science

Computational Science

• use of computers to support research and operation in
science, engineering, industry and services

• applications include
• analysis of data and visualisation
• data science / data analytics
• artificial intelligence (AI) & machine learning (ML)
• control
• computer simulations
• virtual design & optimisation
• symbolic mathematics

8

Computational Science - What are objectives?

Minimum objective

• solve the given (science/data) problem using computation

Ideally also

• test the software
• document and archive the software
• make the study reproducible
• make the study re-usable
• make the software re-usable
• be time-efficient in developing the software, and
• be time-efficient in executing the software

9

Computational Science - Required skills

Minimum requirements:

• understanding of application domain
• understanding of programming and data structures

Additional skills to be more efficient:

• overview of existing libraries / tools
• (research) software engineering
• basic understanding of hardware and use through
software if performance matters

10

Computational Science — a new domain

. . .
BiologyMathematics

Computer
Science

Engineering

Chemistry

Physics

Computational
Science

Computational science:
an enabling methodology, like literacy and mathematics

11

Computational Science — a new domain

• Computational Science is not Computer Science
• specific skill set required: application domain knowledge
and computational science

• often scientists who learn the computational side
• no clear career path: neither scientist nor software
engineer

• growing movement to establish such roles in academia:
Research Software Engineer

• https://www.software.ac.uk
• https://www.de-rse.org

• “better software, better research”
12

https://www.software.ac.uk
https://www.de-rse.org

This course: Why Python?

• Python is relatively easy to learn [1]
• high efficiency: a few lines of code achieve a lot of
computation

• growing use in (open source) academia and industry, thus
• many relevant libraries available
• minimises the time of the programmer
• but: (naive) Python in general much slower execution than
compiled languages (such as Fortran, C, C++, Rust, …).

[1] https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

13

https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

This course: Introduction to Python for Computational Science

• introduces the foundations of computational science and
data science

• Python programming language
• focus on parts of the Python programming language
relevant to computational science

• computational science methodology
• research software engineering
• enable self-directed learning in the future

14

This course: learning methods

• daily lectures
• daily laboratory sessions (think computer laboratory)

• opportunity to start and complete self-paced exercises,
and to ask for any other clarification.

• automatic feedback on submitted exercises
• teaching materials and lectures are designed to support
practical exercises

15

This course: practicalities

Source of information:
http://www.desy.de/~fangohr/teaching

• time table
• laboratory exercises
• pdf files of these slides (may change)
• additional textbook
• further materials

16

http://www.desy.de/~fangohr/teaching

Part 1

Part 1

16

First steps with Python

Hello World program

• Our first Python program: Entered interactively in Python
prompt:

>>> print("Hello World")
Hello World

Or in Interactive Python (IPython) prompt:

In [1]: print("Hello world")
Hello world

• Python prompt (>>>) and IPython prompt (In []:) are
very similar

• We prefer the more convenient IPython prompt (but the
slides usually show the more compact >>> notation)

17

∗Read-Eval-Print Loop (REPL)

The python and the IPython prompt are both examples for a
READ-EVAL-PRINT LOOP (REPL):

• Read (the command the user enters)
• Evaluate (the command)
• Print (the result of the evaluation)
• Loop (i.e. go back to the beginning and wait for next
command)

18

Integrated development environments (Spyder)

• You can write programs with a python prompt, a shell and
an editor

• More convenient is the use of an “Integrated Development
Environment” (IDE)

• Example IDEs: Spyder, Visual Studio Code, PyCharm, IDLE,
Emacs, …

• A python prompt is typically embedded in the IDE
• We use Spyder in this module

19

Everything in Python is an object (with a type)

>>> type("Hello World")
<class 'str'> # "Hello world" is a string

'class' means 'type'
>>> type(print)
<class 'builtin_function_or_method'>

>>> type(10)
<class 'int'> # 10 is an integer number

>>> type(3.5)
<class 'float'> # 3.5 is floating point number

(floating point number:
it has a decimal point)

>>> type('1.0')
<class 'str'> # string (because of the quotes)

>>> type(1 + 3j)
<class 'complex'> # complex number 20

Python prompt can act like a calculator

>>> 2 + 3
5
>>> 42 - 15.3
26.7
>>> 100 * 11
1100
>>> 2400 / 20
120
>>> 2 ** 3 # 2 to the power of 3
8
>>> 9 ** 0.5 # sqrt of 9
3.0

21

Create variables through assignment

>>> a = 10
>>> b = 20
>>> a # short cut for 'print(a)'
10
>>> b # short cut for 'print(b)'
20
>>> a + b # ...
30
>>> ab4 = (a + b) / 4
>>> ab4
7.5

22

Functions and using existing functions

• Example: print function

>>> print("Hello World")
Hello World

The print function takes an argument (here a string), and
does something with the argument. (Here printing the
string to the screen.)

• Example: abs function

>>> x = -100
>>> y = abs(x)
>>> print(y)
100

A function may return a value: the abs function returns
the absolute value (100) of the argument (-100). 23

The help function

The help(x) function provides documentation for object x.

Example:

>>> help(abs)
Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

24

Introspection (dir)

The directory function (dir)

• Everything in Python is an object.
• Python objects have attributes.
• dir(x) returns the attributes of object x
• Example:

>>> c = 2 + 1j
>>> dir(c) # we ignore attributes starting with __
[... 'conjugate', 'imag', 'real']
>>> c.imag
1.0
>>> c.real
2.0
>>> c.conjugate()
(2-1j)

25

Attributes of objects can be functions

Example:

>>> c = 2 + 1j
>>> dir(c)
[... 'conjugate', 'imag', 'real']
>>> type(c.real)
<class 'float'>
>>> type(c.conjugate)
<class 'builtin_function_or_method'>

To execute a function, we need to add () to their name:

>>> c.conjugate # this is the function object
<built-in method conjugate of complex object at 0x10a95f3d0>
>>> c.conjugate() # this executes the function
(2-1j) # return value of conjugate function

An object attribute that is a function, is called a method. 26

Introspection example with string

>>> word = 'test'
>>> print(word)
test
>>> type(word)
<class str>
>>> dir(word)
['__add__', '__class__', '__contains__', ...,
'__doc__', ..., 'capitalize', <snip>,
'endswith', ..., 'upper', 'zfill']
>>> word.upper()
'TEST'
>>> word.capitalize()
'Test'
>>> word.endswith('st')
True
>>> word.endswith('a')
False

27

Summary useful commands (introspection)

• print(x) to display the object x
Not needed at the prompt, but in programs that we will write later.

• type(x) to determine the type of object x
• help(x) to obtain the documentation string for object x
• dir(x) to display the methods and members of object x,
or the current name space (dir()).

28

Defining functions

Function terminology

Example abs(x) function:

x = -1.5
y = abs(x)

• x is the argument given to the function (also called input
or parameter)

• y is the return value (the result of the function’s
computation)

• Functions may expect zero, one or more arguments
• Not all functions (seem to) return a value. (If no return
keyword is used, the special object None is returned.)

29

Defining a function ourselves

• Functions
• provide (potentially complicated) functionality
• are building blocks of computer programs
• hide complexity from the user of the function
• help manage complexity of software

• Example 1:

def mysum(a, b):
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

30

Functions should be documented (“docstring”)

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

Can now use the help function for our new function:

>>> help(mysum)
Help on function mysum in module __main__:

mysum(a, b)
Return the sum of parameters a and b.

31

Function documentation strings

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

Essential information for documentation string:

• What inputs does the function expect?
• What does the function do?
• What does it return?

∗Desirable:

• Examples
• Notes on algorithm (if relevant)
• exceptions that might be raised
• [Author, date, contact details: not needed if version control is used]

Advanced: Recommendations for documentation string style are numpydoc style or PEP257 docstring conventions.
32

https://numpydoc.readthedocs.io/en/latest/format.html
http://www.python.org/dev/peps/pep-0257/

Function documentation string example 1
def mysum(a, b):

"""Return the sum of parameters a and b.

Parameters

a : numeric

first input
b : numeric

second input

Returns

a+b : numeric

returns the sum (using the + operator) of a and b. The return type will
depend on the types of `a` and `b`, and what the plus operator returns.

Examples

>>> mysum(10, 20)
30
>>> mysum(1.5, -4)
-2.5

Notes

History: example first created 2002, last modified 2013
Hans Fangohr, fangohr@soton.ac.uk,
"""
return a + b

33

Function documentation string example 2
def factorial(n):

"""Compute the factorial recursively.

Parameters

n : int

Natural number `n` > 0 for which the factorial is computed.

Returns

n! : int

Returns n * (n-1) * (n-2) * ... * 2 * 1

Examples

>>> factorial(1)
1
>>> factorial(3)
6
>>> factorial(10)
3628800
"""
assert n > 0

if n == 1:
return 1

else:
return n * factorial(n - 1) 34

Function example

def plus42(n):
"""Add 42 to n and return""" # docstring

result = n + 42 # body of
return result # function

main program follows
a = 8
b = plus42(a)

After execution, b carries the value 50 (and a = 8).

35

Summary functions

• Functions provide (black boxes of) functionality:
crucial building blocks that hide complexity

• interaction (input, output) through input arguments and
return values
(printing and returning values is not the same, see slide 43)

• docstring provides the specification (contract) of the
function’s input, output and behaviour

• advanced∗: a function should (normally) not modify input
arguments
(watch out for lists, dicts, more complex data structures as input arguments)

36

Functions printing vs returning values

Key message: functions should generally return values.

We use the Python prompt to explore the difference with these
two function definitions:

def print42():
print(42)

def return42():
return 42

37

Functions printing vs returning values

>>> b = return42() # return 42, is assigned
>>> print(b) # to b
42

>>> a = print42() # return None, and
42 # print 42 to screen
>>> print(a)
None # special object None

38

Functions printing vs returning values

If we use IPython, it shows whether a function returns
something (i.e. not None) through the Out [] token:

In [1]: return42()
Out[1]: 42 # Return value of 42

In [2]: print42()
42 # No 'Out []', so no

returned value

39

Summary: to print or to return?

• A function that returns the control flow through the
return keyword, will return the object given after return.

• A function that does not use the return keyword, returns
the special object None.

• Generally, functions should return a value.
• Generally, functions should not print anything.
• Calling functions from the prompt can cause some
confusion here: if the function returns a value and the
value is not assigned, it will be printed.

40

About Python

Python

What is Python?

• High level programming language
• interpreted
• supports three main programming styles
(imperative=procedural, object-oriented, functional)

• General purpose tool, yet good for numeric work with
extension libraries

Availability

• Python is free
• Python is platform independent (works on Windows,
Linux/Unix, Mac OS, …)

• Python is open source
41

Which Python version

• There are currently two versions of Python:
• Python 2.7 and
• Python 3.x

• Python 2.x and 3.x are incompatible although the changes
only affect very few commands.

• Write new programs in Python 3.
• You may have to read / work with Python 2 code at some
point.

42

Python documentation

There is lots of useful documentation:

• Teaching materials on website, including these slides and
a text-book like document

• Online documentation, for example
• http://www.python.org) (Python home page)
• Matplotlib (publication figures)
• Numpy (fast vectors and matrices, (NUMerical PYthon)
• SciPy (scientific algorithms, solve_ivp)
• Pandas (data engineering and data science)
• scikit-learn (machine learning)
• SymPy (Symbolic calculation)

• interactive documentation (such as dir() and help())

43

https://fangohr.github.io/teaching/python/book.html
http://www.python.org
https://matplotlib.org/
https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/
https://scikit-learn.org/
https://sympy.org/

Using modules

The math module (import math)

>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> dir(math) #attributes of 'math' object
['__doc__', '__file__', < snip >
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'copysign', 'cos', 'e', 'erf',
'exp', <snip>, 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(math.sqrt) # ask for help on sqrt
sqrt(...)

sqrt(x)
Return the square root of x.

44

Name spaces and modules

Three (good) options to access a module:

1. use the full name:

import math
print(math.sin(0.5))

2. use some abbreviation

import math as m
print(m.sin(0.5))
print(m.pi)

3. import all objects we need explicitly

from math import sin, pi
print(sin(0.5))
print(pi)

45

Modules provide functionality

• each module provides some additional python
functionality

• Python has many modules:
• Python Standard Library: math, pathlib, sys, …
• Contributions from others: numpy, jupyter, pytest, …
• Every programmer can create their own modules.

• there is distinction between module, package, and library
but in practice the terms are used interchangeably.

46

Conditionals, if-else

Truth values

The python values True and False are special inbuilt objects:

>>> a = True
>>> print(a)
True
>>> type(a)
<class bool>
>>> b = False
>>> print(b)
False
>>> type(b)
<class bool>

47

Truth values

We can operate with these two logical values using boolean
logic, for example the logical and operation (and):

>>> True and True # logical and operation
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

48

Truth values

There is also logical or (or) and the negation (not):

>>> True or False
True
>>> not True
False
>>> not False
True
>>> True and not False
True

49

Truth values

In computer code, we often need to evaluate some expression
that is either true or false (sometimes called a “predicate”).
For example:

50

Truth values

>>> x = 30 # assign 30 to x
>>> x >= 30 # is x greater than or equal to 30?
True
>>> x > 15 # is x greater than 15
True
>>> x > 30
False
>>> x == 30 # is x the same as 30?
True
>>> not x == 42 # is x not the same as 42?
True
>>> x != 42 # is x not the same as 42?
True

51

if-then-else

The if-else command allows to branch the execution path
depending on a condition. For example:

>>> x = 30 # assign 30 to x
>>> if x > 30: # predicate: is x > 30
... print("Yes") # if True, do this
... else:
... print("No") # if False, do this
...
No

52

if-then-else

The general structure of the if-else statement is

if A:
B

else:
C

where A is the predicate.

• If A evaluates to True, then all commands B are carried out (and
C is skipped).

• If A evaluates to False, then all commands C are carried out
(and B) is skipped.

• if and else are Python keywords.

53

if-then-else

A and B can each consist of multiple lines, and are grouped through
indentation as usual in Python.

54

if-else example

def slength1(s):
"""Returns a string describing the
length of the sequence s"""
if len(s) > 10:

ans = 'very long'
else:

ans = 'normal'

return ans

>>> slength1("Hello")
'normal'
>>> slength1("HelloHello")
'normal'
>>> slength1("Hello again")
'very long' 55

if-elif-else example

If more cases need to be distinguished, we can use the
keyword elif (standing for ELse IF) as many times as desired:

def slength2(s):
if len(s) == 0:

ans = 'empty'
elif len(s) > 10:

ans = 'very long'
elif len(s) > 7:

ans = 'normal'
else:

ans = 'short'

return ans

56

if-elif-else example

>>> slength2("")
'empty'
>>> slength2("Good Morning")
'very long'
>>> slength2("Greetings")
'normal'
>>> slength2("Hi")
'short'

57

LAB1

Raising exceptions

57

Exceptions

• Errors arising during the execution of a program result in
“exceptions” being ’raised’ (or ’thrown’).

• We have seen exceptions before, for example when
dividing by zero:

>>> 4.5 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: float division by zero

or when we try to access an undefined variable:

58

Exceptions

>>> print(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

• Exceptions are a modern way of dealing with error
situations

• We will now see
• what exceptions are coming with Python
• how we can raise (“throw”) exceptions in our code

59

In-built Python exceptions

Python’s in-built exceptions (from
https://docs.python.org/3/library/exceptions.html)

60

https://docs.python.org/3/library/exceptions.html

In-built Python exceptions

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
| +-- ModuleNotFoundError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

∗Advanced topic: We can catch exceptions.

∗Advanced topic: We can provide our own exception classes
(by inheriting from Exception).

61

Raising exceptions

• Because exceptions are Python’s way of dealing with runtime
errors, we should use exceptions to report errors that occur in
our own code.

• To raise a ValueError exception, we use

raise ValueError("Message")

and can attach a message "Message" (of type string) to that
exception which can be seen when the exception is reported or
caught:

>>> raise ValueError("Some problem occurred")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Some problem occurred

62

Raising NotImplementedError Example

Often used is the NotImplementedError in incremental
software development:

def my_complicated_function(x):
message = f"Called with x={x}"
raise NotImplementedError(message)

If we call the function:

>>> my_complicated_function(42)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_complicated_function

NotImplementedError: Called with x=42

63

Sequences

Sequences overview

Different types of sequences

• strings
• lists (mutable)
• tuples (immutable)
• arrays (mutable, part of numpy)

They share common behaviour.

64

Strings

>>> a = "Hello World"
>>> type(a)
<class str>
>>> len(a)
11
>>> print(a)
Hello World

Different possibilities to limit strings:

'A string'
"Another string"
"A string with a ' in the middle"
"""A string with triple quotes can
extend over several
lines""" 65

Strings 2 (exercise)

• Define a, b and c at the Python prompt:

>>> a = "One"
>>> b = "Two"
>>> c = "Three"

• Exercise: What do the following expressions evaluate to?
1. d = a + b + c
2. 5 * d
3. d[0], d[1], d[2] (indexing)
4. d[-1]
5. d[4:] (slicing)

66

Strings 3 (exercise)

>>> s="""My first look at Python was an
... accident, and I didn't much like what
... I saw at the time."""

For the string s:

• count the number of (i) letters ’e’ and (ii) substrings ’an’
• replace all letters ’a’ with ’0’
• make all letters uppercase
• make all capital letters lowercase, and all lower case
letters to capitals

67

Lists

[] # the empty list
[42] # a 1-element list
[5, 'hello', 17.3] # a 3-element list
[[1, 2], [3, 4], [5, 6]] # a list of lists

• Lists store an ordered sequence of Python objects
• Access through index (and slicing) as for strings.
• use help(), often used list methods is append()

(In general computer science terminology, vector or array might be better name as the

actual implementation is not a linked list, but direct O(1) access through the index is

possible.)

68

Example program: using lists

>>> a = [] # creates a list
>>> a.append('dog') # appends string 'dog'
>>> a.append('cat') # ...
>>> a.append('mouse')
>>> print(a)
['dog', 'cat', 'mouse']
>>> print(a[0]) # access first element
dog # (with index 0)
>>> print(a[1]) # ...
cat
>>> print(a[2])
mouse
>>> print(a[-1]) # access last element
mouse
>>> print(a[-2]) # second last
cat

69

Example program: lists containing a list

>>> a = ['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a
['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a[0]
dog
>>> a[3]
[1, 10, 100, 1000]
>>> max(a[3])
1000
>>> min(a[3])
1
>>> a[3][0]
1
>>> a[3][1]
10
>>> a[3][3]
1000

70

Sequences – more examples

>>> a = "hello world"
>>> a[4]
'o'
>>> a[4:7]
'o w'
>>> len(a)
11
>>> 'd' in a
True
>>> 'x' in a
False
>>> a + a
'hello worldhello world'
>>> 3 * a
'hello worldhello worldhello world'

71

Tuples

• tuples are very similar to lists

• tuples are immutable (unchangeable after they have been
created) whereas lists are mutable (changeable)

• tuples are usually written using parentheses (↔ “round
brackets”):

72

Tuples

>>> t = (3, 4, 50) # t for Tuple
>>> t
(3, 4, 50)
>>> type(t)
<class tuple>

>>> L = [3, 4, 50] # compare with L for List
>>> L
[3, 4, 50]
>>> type(L)
<class list>

73

Tuples are defined by comma

• tuples are defined by the comma (!), not the parenthesis

>>> a = 10, 20, 30
>>> type(a)
<class tuple>

• the parentheses are usually optional (but should be
written anyway):

>>> a = (10, 20, 30)
>>> type(a)
<class tuple>

74

Tuples are sequences

• normal indexing and slicing (because tuple is a sequence)

>>> t[1]
4
>>> t[:-1]
(3, 4)

75

Why do we need tuples (in addition to lists)?

1. use tuples if you want to make sure that a set of objects
doesn’t change.

2. Using tuples, we can assign several variables in one line
(known as tuple packing and unpacking)

x, y, z = 0, 0, 1

This allows “instantaneous swap” of values:

a, b = b, a

Strictly: “tuple packing” on right hand side and “sequence unpacking” on left.

76

Why do we need tuples (in addition to lists)?

3. functions return tuples if they return more than one
object

def f(x):
return x**2, x**3

a, b = f(x)

4. tuples can be used as keys for dictionaries as they are
immutable

77

(Im)mutables

• Strings — like tuples — are immutable:

>>> a = 'hello world' # String example
>>> a[3] = 'x'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object does not support item assignment

• strings can only be ’changed’ by creating a new string, for
example:

>>> a = a[0:3] + 'x' + a[4:]
>>> a
'helxo world'

78

Summary sequences

• lists, strings and tuples (and arrays) are sequences.
• sequences share the following operations

a[i] returns element with index i of a
a[i:j] returns elements i up to j− 1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
x in a returns True if x is element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In the table above, a and b are sequences, i, j and n are
integers, x is an element.

79

Conversions of sequence to list and to tuple

• to tuple:
Convert any sequence into a tuple using the tuple
function:

>>> tuple([1, 4, "dog"])
(1, 4, 'dog')

• to list:
Convert any sequence into a list using the list function:

>>> list((10, 20, 30))
[10, 20, 30]

80

Conversions of sequence to strings

• every string object s has a join method that joins elements of a
squence together, with the string s connecting the sequence elements:

>>> x = ['A', 'list', 'of', 'strings.']
>>> " ".join(x)
'A list of strings.'
>>> "-".join(x)
'A-list-of-strings.'
>>> "-um-".join(x)
'A-um-list-um-of-um-strings.'
>>> "".join(x)
'Alistofstrings.'

• Only works if the elements in the sequence are of type string already:

>>> a = [10, 20, 30]
>>> "-".join(a)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected str instance, int found
>>>

81

∗Conversions to and from iterators

• Looking ahead to iterators, we note that list and tuple can
also convert from iterators:

>>> list(range(5))
[0, 1, 2, 3, 4]

• ∗And if you ever need to create an iterator from a sequence, the
iter function can this:

>>> iter([1, 2, 3])
<list_iterator object at 0x1013f1fd0>

82

Reversing a sequence with slicing operator ::-1

• The slicing operator ::-1 creates a reversed copy of a sequence:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # list
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> "Hello World"[::-1] # string
'dlroW olleH'

• Why does this work?
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[:] # slice from beginning to end (creates copy of a)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[::2] # slice from beginning to end in steps of 2
[0, 2, 4, 6, 8]
>>> a[::-2] # in steps of -2
[9, 7, 5, 3, 1]
>>> a[::-1] # in steps of -1
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 83

Reversing a list with list.reverse() method

• list objects have an in-built reverse() method:

>>> a = [1, 2, 3, 4]
>>> a.reverse()
>>> a
[4, 3, 2, 1]

• this is called working “in place” as it re-arranges the data in the
place where it is stored (in contrast to creating a second copy)

• useful if the data is large and we want to avoid a second copy

• not available for string and tuple as these are immutable

84

∗Reverse sequence with reversed iterator

>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = reversed(a)
>>> b # will iterate through

reverse sequence when needed
<list_reverseiterator object at 0x101117d30>
>>> type(b)
<class 'list_reverseiterator'>
>>> list(b) # conversion to list enforces iteration
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> list(reversed(a)) # reversing a in one line
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

85

Loops

Introduction loops

Computers are good at repeating tasks (often the same task
for many different sets of data).

Loops are the way to execute the same (or very similar) tasks
repeatedly (“ in a loop”).

Python provides the “for loop” and the “while loop”.

86

Example program: for-loop

animals = ['dog', 'cat', 'mouse']

for animal in animals:
print(f"This is the {animal}!")

produces

This is the dog!
This is the cat!
This is the mouse!

The for-loop iterates through the sequence animals and
assigns the values in the sequence subsequently to the name
animal. 87

Iterating over integers

Often we need to iterate over a sequence of integers:

for i in [0, 1, 2, 3, 4, 5]:
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

88

Iterating over integers with range

The range(n) object is used to iterate over a sequence of
increasing integer values up to (but not including) n:

for i in range(6):
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

89

The range object

• range is used to iterate over integer sequences
• We can use the range object in for loops:

>>> for i in range(3):
... print(f"i={i}")
i=0
i=1
i=2

90

The range object

• We can convert it to a list:

>>> list(range(6))
[0, 1, 2, 3, 4, 5]

• This conversion to list is useful to understand what
sequences the range object would provide if used in a for
loop:

91

The range object

>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(range(0, 6))
[0, 1, 2, 3, 4, 5]
>>> list(range(3, 6))
[3, 4, 5]
>>> list(range(-3, 0))
[-3, -2, -1]

92

The range object

• ∗Advanced: range has its own type:

>>> type(range(6))
<class range>

range objects are lazy sequences (Python range is not an iterator)

93

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

Summary range

range
range([start,] stop [,step]) iterates over integers from
start up to to stop (but not including stop) in steps of step.

start defaults to 0 and step defaults to 1.

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 4))
[] # no iterations

94

Iterating over sequences with for-loop

• for loop iterates over iterables.
• Sequences are iterable.
• Examples

for i in [0, 3, 4, 19]: # list is a
print(i) # sequence

for animal in ['dog', 'cat', 'mouse']:
print(animal)

for letter in "Hello World": # strings are
print(letter) # sequences

for i in range(5): # range objects
print(i) # are iterable 95

Example: create list with for-loop

def create_list_of_increasing_halfs(n):
"""Given integer n >=0, return list of length
n starting with [0, 0.5, 1.0, 1.5, ...]."""
result = []
for i in range(n):

number = i * 1 / 2
result.append(number)

return result

main program
print(create_list_of_increasing_halfs(5))

Output:

[0.0, 0.5, 1.0, 1.5, 2.0] 96

Example: modify list with for-loop

def modify_list_add_42(original_list):
"""Given a list, add 42 to every element
and return"""
modified_list = []
for element in original_list:

new_element = element + 42
modified_list.append(new_element)

return modified_list

main program
print(modify_list_add_42([0, 10, 100, 1000]))

Output:

[42, 52, 142, 1042] 97

Reminder: If-then-else

• Example 1 (if-then-else)

a = 42
if a > 0:

print("a is positive")
else:

print("a is negative or zero")

98

Another iteration example

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

99

https://en.wikipedia.org/wiki/Thirteenth_floor

Another iteration example (with continue)

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
continue # jump to next iteration

result.append(k)
return result

100

https://en.wikipedia.org/wiki/Thirteenth_floor

Exercise range_double

Write a function range_double(n) that generates a list of numbers
similar to list(range(n)). In contrast to list(range(n)), each
value in the list should be multiplied by 2. For example:

>>> range_double(4)
[0, 2, 4, 6]
>>> range_double(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

For comparison the behaviour of range:

>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

101

For loop summary

• for-loop to iterate over sequences
• can use range to generate sequences of integers
• special keywords:

• continue - skip remainder of body of statements and
continue with next iteration

• break - leave for-loop immediately
• ∗Advanced:

• can iterate over any iterable
• we can create our own iterables
• See summary Socratica on Iterators, Iterables, and Itertools

102

https://youtu.be/WR7mO_jYN9g

Exercise: First In First Out (FIFO) queue

Write a First-In-First-Out queue implementation, with
functions:

• add(name) to add a customer with name name (call this
when a new customer arrives)

• next() to be called when the next customer will be
served. This function returns the name of the customer

• show() to print all names of customers that are currently
waiting

• length() to return the number of currently waiting
customers

Suggest to use a global variable q and define this in the first
line of the file by assigning an empty list: q = [].

103

While loops

• Reminder:
a for loop iterates over a given sequence or iterable

• A while loop iterates while a condition is fulfilled

• x = 64
while x > 10:

x = x // 2
print(x)

produces

32
16
8

104

∗While loop example 2

Determine ϵ:

eps = 1.0

while eps + 1 > 1:
eps = eps / 2.0

print(f"epsilon is {eps}")

Output:

epsilon is 1.11022302463e-16

105

Style guide for Python code

Syntax versus style

• Python programs must follow Python syntax.
• Python programs should follow Python style guide,
because

• readability is key (debugging, documentation, team effort)
• conventions improve effectiveness

106

Common style guide: PEP8

From http://www.python.org/dev/peps/pep-0008/:

• This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by
changes in the language itself.

• ”Readability counts”: One of Guido van Rossum’s key insights is
that code is read much more often than it is written. The
guidelines provided here are intended to improve the
readability of code and make it consistent across the wide
spectrum of Python code.

107

http://www.python.org/dev/peps/pep-0008/

PEP8 Style guide

• Indentation: use 4 spaces
• One space around assignment operator (=) operator:
c = 5 and not c=5.

• Spaces around arithmetic operators can vary. Both
x = 3*a + 4*b and x = 3 * a + 4 * b are okay.

• No space before and after parentheses:
x = sin(x) but not x = sin(x)

• A space after comma: range(5, 10) and not range(5,10).
• No whitespace at end of line
• No whitespace in empty line
• One or no empty line between statements within function

108

PEP8 Style guide

• Two empty lines between functions
• One import statement per line
• import first standard Python library (such as math), then
third-party packages (numpy, scipy, ...), then our own
modules

• no spaces around = when used in keyword arguments:
"Hello World".split(sep=' ') but not
"Hello World".split(sep = ' ')

109

PEP8 Style Summary

• Follow PEP8 guide, in particular for new code.
• Use tools to help us:

• Spyder editor can show PEP8 violations (In Spyder 6:
Preferences→ Completion and Linting→ Code style
and formatting→ [X] Enable code style lintiing→
[OK])

• Similar tools/plugins are available for other editors.
editors.

• pycodestyle program available to check source code from
command line (used to be called pep8 in the past).
To check file myfile.py for PEP8 compliance:

pycodestyle myfile.py

110

∗Style conventions for documentation strings

• Python documentation strings (pydoc) conventions:
• PEP257 docstring style (from 2001), basis for both
• numpydoc style (science) and
• Google pydoc style

• Examples on slide 33 and 34 are compatible with all
conventions

• Editors can highlight deviations
• Program to check documentation string style compliance
in file myfile.py:

• pydocstyle --convention=pep257 myfile.py

• pydocstyle --convention=numpy myfile.py

• pydocstyle --convention=google myfile.py
111

http://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

LAB2

112

Outlook: first plot

import math
import matplotlib.pyplot as plt # convention

xs = [] # store x-values for plot in list
ys = [] # store y-values for plot in list
for i in range(100): # compute data

x = 0.1 * i
xs.append(x)
y = math.sin(x) # we plot sin(x)
ys.append(y)

plot data
plt.plot(xs, ys, '-o')

plt.savefig("matplotlib-mini-example.pdf")

112

Outlook: first plot

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

113

Reading and writing files

File input/output

It is a common task to

• read some input data file
• do some calculation/filtering/processing with the data
• write some output data file with results

Python distinguishes between

• text files ('t')
• binary files 'b')

If we don’t specify the file type, Python assumes we mean text
files.

114

Writing a text file

>>> with open('test.txt', 'tw') as f:
... f.write("first line\nsecond line")
...
22

creates a file test.txt that reads

first line
second line

115

Writing a text file

• To write data, we need to open the file with 'w' mode:

with open('test.txt', 'w') as f:

By default, Python assumes we mean text files. However,
we can be explicit and say that we want to create a Text
file for Writing:

with open('test.txt', 'wt') as f:

• If the file exists, it will be overridden with an empty file
when the open command is executed.

• The file object f has a method f.write which takes a
string as an input argument.

116

Reading a text file

We create a file object f using

>>> with open('test.txt', 'rt') as f: # Read Text

and have different ways of reading the data:

1. f.read() returns one long string for the whole file

>>> with open('test.txt', 'rt') as f:
... data = f.read()
...
>>> data
'first line\nsecond line'

117

Reading a text file

2. f.readlines() returns a list of strings (each being one
line)

>>> with open('test.txt', 'rt') as f:
... lines = f.readlines()
...
>>> lines
['first line\n', 'second line']

118

Reading a text file

3. ∗Advanced: Use text file f as an iterable object: process
one line in each iteration

>>> with open('test.txt', 'rt') as f:
>>> for line in f:
... print(line, end='')
...
first line
second line
>>> f.close()

119

Reading a text file

This is important for large files: the file can be larger than
the computer RAM as only one line at a time is read from
disk to memory.

120

∗File input and output without context manager

With file context manager (recommended):

>>> with open('test.txt', 'rt') as f: # This creates
... # the context.
... data = f.read() # We can use 'f'
... # in the context.
... # File 'f' is automatically closed
>>> data # when the context is left.
'first line\nsecond line'

Without file context manager (not recommended!):

>>> f = open('test.txt', 'rt')
>>> data = f.read()
>>> f.close() # must close file manually
>>> data
'first line\nsecond line' 121

Use case: Reading a file, iterating over lines

Often we want to process line by line. Typical code fragment:

with open('myfile.txt', 'rt') as f:
lines = f.readlines()

some processing of the lines object
for line in lines:

print(line)

122

Splitting a string

• We often need to split a string into smaller parts: use
string method split():
(try help("".split) at the Python prompt for more info)

Example:

>>> c = 'This is my string'
>>> c.split()
['This', 'is', 'my', 'string']
>>> c.split('i')
['Th', 's ', 's my str', 'ng']

123

Useful functions processing text files:

• string.strip() method gets rid of leading and trailing white
space, i.e. spaces, newlines (\n) and tabs (\t):

>>> a = " hello\n "
>>> a.strip()
'hello'

• int() and float convert strings into numbers (if possible)

>>> int("42")
42
>>> float("3.14")
3.14
>>> int("0.5")
Traceback (most recent call last):

ValueError: invalid literal for int()
with base 10: '0.5' 124

Exercise: Shopping list

Given a list

bread 1 1.39
tomatoes 6 0.26
milk 3 1.45
coffee 3 2.99

Write program that computes total cost per item, and writes to
shopping_cost.txt:

bread 1.39
tomatoes 1.56
milk 4.35
coffee 8.97

125

One solution

One solution is shopping_cost.py

with open('shopping.txt', 'tr') as fin: # INput File
lines = fin.readlines()

with open('shopping_cost.txt', 'tw') as fout: # OUTput File
for line in lines:

words = line.split()
itemname = words[0]
number = int(words[1])
cost = float(words[2])
totalcost = number * cost
fout.write(f"{itemname:10} {totalcost}\n")

126

Exercise

Write function print_line_sum_of_file(filename) that
reads a file of name filename containing numbers separated
by spaces, and which computes and prints the sum for each
line. A data file might look like

2 3 5 -30 100
0 45 3 2
17

127

∗Binary files 1

• Files that store binary data are opened using the 'b' flag
(instead of 't' for Text):

open('data.dat', 'br')

• For text files, we read and write str objects. For binary
files, use the bytes type instead.

• By default, store data in text files. Text files are human
readable (that’s good) but take more disk space than
binary files.

• Reading and writing binary data is outside the scope of
this introductory module. If you read arbitrary binary
data, you may need the struct module.

• For large/complex scientific data, consider HDF5.

128

∗HDF5 files

• If you need to store large and/or complex data, consider
the use of HDF5 files:
https://portal.hdfgroup.org/display/HDF5/HDF5

• Python interface: https://www.h5py.org (import h5py)
• hdf5 files

• provide a hierarchical structure (like subdirectories and
files)

• can compress data on the fly
• supported by many tools
• standard in some areas of science
• optimised for large volume of data and effective access

129

https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.h5py.org

LAB3

Writing modules

129

Writing module files

• Motivation: it is useful to bundle functions that are used
repeatedly and belong to the same subject area into one
module file (also called “library”)

• This allows to re-use the functions in multiple Python
applications.

• Every Python file can be imported as a module.
• If the module file contains commands (other than class
and function definitions) then these are executed when
the file is imported. This can be desired but sometimes it
is not.

130

The internal __name__ variable (1)

• Here is an example of a module file saved as module1.py:

def someusefulfunction():
pass

print(f"My name is {__name__}")

We can execute this module file, and the output is

My name is __main__

• The internal variable __name__ takes the (string) value
"__main__" if the program file module1.py is executed.

131

The internal __name__ variable (1)

• On the other hand, we can import module1.py in another file,
for example like this:

import module1

The output is now:

My name is module1

• We see that __name__ inside a module takes the value of the
module name if the file is imported.

132

if __name__ == __main__ …

module2.py:
1 def someusefulfunction():
2 pass
3

4 if __name__ == "__main__":
5 print("I am the top level")
6 else:
7 print(f"I am imported as a library '{__name__}'")

• Line 5 is only executed when the module is executed as the top
level (for example as python module2.py, or pressing F5 in
Spyder when editing the dile module2.py).

• __name__ allows conditional execution of code when top-level
or imported.

133

Application file example

def useful_function():
Core function in this app.
Could be useful in other apps.
pass

def main():
Main functionality of this app in here.
useful_function()
...

if __name__ == "__main__":
main() # start main application

else:
get here if the file is imported
pass

134

Library file example

def useful_function():
core functionality of library here
pass

def test_for_useful_function():
print("Running self test ...")

if __name__ == "__main__":
test_for_useful_function()

else:
print("Setting up library")
initialisation code that might be needed
if imported as a library

135

Name spaces, global and local
variables

Name spaces — what can be seen where?

We distinguish between

• global variables (defined in main program) and

• local variables (defined for example in functions)

• built-in commands

136

Python’s look up rule

Python’s look up rule for Names
When coming across an identifier, Python looks for this in the
following order in

• the local name space (L)
• (if appropriate in the next higher level local name space),
(L2, L3, …)

• the global name space (G)
• the set of built-in commands (B)

This is summarised as “LGB” or “LnGB”.

If the identifier cannot be found, a NameError is raised.

137

Local names shadow global names

• This means, we can read global variables from functions.
Example:

def f():
print(x)

x = 'I am global'
f()

Output:

I am global

138

Local names shadow global names

• but local variables “shadow” global variables:

def f():
y = 'I am local y'
print(x)
print(y)

x = 'I am global x'
y = 'I am global y'
f()
print("back in main:")
print(y)

Output:

139

Local names shadow global names

I am global x
I am local y
back in main:
I am global y

140

Why should I care about global variables?

• Generally, the use of global variables is not
recommended:

• functions should take all necessary input as arguments
• and return all relevant output.
• This makes the functions work as independent units and is
essential to control complexity of software (good
engineering practice)

• However, sometimes the same constant or variable (such
as the mass of an object) is required throughout a
program:

• it is not good practice to define this variable more than
once (it is likely that we assign different values and get
inconsistent results)

141

Why should I care about global variables?

• in this case — in small programs — the use of (read-only)
global variables may be acceptable.

• Object Oriented Programming provides a somewhat neater
solution to this.

142

Plotting data from csv file

Data analysis example: temperature anomaly

• National Oceanic and Atmospheric Administration (NOAA)
hosts climate data at https://www.ncei.noaa.gov/access/monitoring/

climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024

• provides average global temperature data since 1850
• we choose 12-month average from September to August
from 1850 to 2024 -> Download CSV

• anomaly data shows the temperature deviation from the
average 1910 to 2000.

143

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024

Beginning of data file

Title: Land and Ocean Oct - Sept Average Temp Anomalies
Units: Degrees Celsius
Base Period: 1901-2000
Missing: -999
Year,Anomaly
1851,-0.14
1852,-0.07
1853,-0.07
1854,-0.11
1855,-0.06
1856,-0.11
1857,-0.23
1858,-0.17
1859,-0.09
1860,-0.15
1861,-0.32

144

Data analysis example: attempt 1 1/3

import matplotlib.pyplot as plt

read data
with open("data.csv", "tr") as f:

lines = f.readlines()

year = []
dT = []

for line in lines[5:]: # skip first 5 lines
a, b = line.split(",")
year.append(int(a)) # convert string of year to int
dT.append(float(b)) # convert string of temp to float

145

Data analysis example: attempt 1 2/3

plot data
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1.pdf")

146

Data analysis example: attempt 1 3/3

1850 1875 1900 1925 1950 1975 2000 2025
years

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

te
m

pe
ra

tu
re

 a
no

m
al

y
[d

eg
 C

]

147

∗Data analysis example: outlook

• In this example, we store each data set in a list. Better options
are numpy.array or pandas.Series.

• Here we read the CSV file manually but there are dedicated
libraries to read CSV files.
Preferred option is read_csv() from pandas (255).

import pandas
d = pandas.read_csv('data.txt', skiprows=4, index_col=0)
d.plot.bar()

Next best is loadtxt() from numpy (223).

import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt("data.csv", delimiter=",", skiprows=5)
plt.plot(data[:,0], data[:,1]) # axes are not annotated yet

148

Catching exceptions

Exceptions example

• suppose we try to read data from a file:

with open('myfilename.txt', 'r') as f:
lines = f.readlines()

for line in lines:
print(line)

• If the file doesn’t exist, then the open() function raises
the FileNotFoundError exception:

FileNotFoundError: [Errno 2] No such file or
directory: 'myfilename.txt'↪→

149

Catching exceptions

• We can modify our code to ’catch’ this error:

1 try:
2 with open('myfilename.txt', 'r') as f:
3 lines = f.readlines()
4 except FileNotFoundError:
5 print("The file couldn't be found.")
6 else:
7 # this is executed if no exception is raised
8 for line in lines:
9 print(line)

10

which produces this message:

150

Catching exceptions

The file couldn't be found.

• The try branch (line 1) will be executed.

• Should an FileNotFoundError exception be raised, then the except
branch (starting line 4) will be executed.

• Should no exception be raised in the try branch, then the except
branch is ignored, and the program carries on starting in line .

151

Catching exceptions

Slight extension to print more detailed error message:

1 try:
2 with open('myfilename.txt', 'r') as f:
3 lines = f.readlines()
4 except FileNotFoundError as error:
5 print("The file couldn't be found.")
6 print(f"Error message: {error}")
7 else:
8 # this is executed if no exception is raised
9 for line in lines:

10 print(line)
11

152

Catching exceptions

Output:

The file couldn't be found.
Error message: [Errno 2] No such file or directory:

'myfilename.txt'↪→

153

Catching exceptions summary

• Catching exceptions allows us to take action on errors that
occur

• For the file-reading example, we could ask the user to
provide another file name if the file can’t be opened.

• Catching an exception once an error has occurred may be
easier than checking beforehand whether a problem will
occur (“It is easier to ask forgiveness than get
permission”.)

154

Overview try-except-else-finally

try:
statement that might raise an exception
pass

except SomeError:
deal with error
pass

else:
code to execute if no error is raised
pass

finally:
code that must always be executed
(for example closing a file)
pass

155

try-except example

From Python documentation

try:
f = open("myfile.txt")
s = f.readline()
i = int(s.strip())

except OSError as err:
print("OS error:", err)

except ValueError:
print("Could not convert data to an integer.")

except Exception as err:
print(f"Unexpected {err=}, {type(err)=}")
raise

The last raise re-raises the last exception as if it wasn’t caught before.

156

https://docs.python.org/3/tutorial/errors.html

Exercise

Extend print_line_sum_of_file(filename) so that if the
data file contains non-numbers (i.e. strings), these evaluate to
the value 0. For example

1 2 4 -> 7
1 cat 4 -> 5
coffee -> 0

157

Print

print function

• the print function sends content to the “standard
output” (usually the screen)

• print() prints an empty line:

>>> print()

• Given a single string argument, this is printed, followed by
a new line character:

>>> print("Hello")
Hello

158

print function

• Given multiple objects separated by commas, they will be
printed separated by a space character:

>>> print("dog", "cat", 42)
dog cat 42

• To supress printing of a new line, use the end option:

>>> print("Dog", end=""); print("Cat")
DogCat
>>>

159

print function

• Given another object (not a string), the print function will
ask the object for its preferred way to be represented as a
string (via the __str__ method):

>>> print(42)
42

With Object Oriented programming, we can customise the
__str__ method for each class.

160

Common strategy for the print command

• Construct some string s, then print this string using the
print function

>>> s = "I am the string to be printed"
>>> print(s)
I am the string to be printed

• The question is, how can we construct the string s? We
talk about string formatting.

161

String formatting

String formatting & Example 1

• Task: Given some objects, we would like to create a string
representation.

• Example 1: a variable t has the value 42.123 and we like to
print Duration is 42.123s to the screen.

• Solution: Create a formatted string “Duration is
42.123s” and pass this string to the print function:

>>> t = 42.123
>>> print(f"Duration = {t}s")
Duration = 42.123s

• With string formatting, we mean the creation of the string
“Duration is 42.123s”

162

String formatting & Example 2

• Example 2: a variable t has the value 42.123 and we like to
print Duration is 42.1s to the screen (i.e round to one
post-decimal digit.)

• Solution:

>>> t = 42.123
>>> print(f"Duration = {t:.1f}s")
Duration = 42.1s

163

String formatting: Example 2 explanation

Explanation of f"Duration = {t:.1f}s”

f" Beginning of a formatted string literal
Duration = string content

{…} content in curly braces is evaluated by Python
t take value from variable t
:f format t as a floating point number
.1 display one digit after the decimal point
s string content
" end of formatted string literal

164

String formatting examples with numbers

>>> import math
>>> p = math.pi
>>> f"{p}" # default representation (same as `str(p)`)
'3.141592653589793'
>>> str(p)
'3.141592653589793'
>>> f"{p:f}" # as floating point number (6 post-dec digits)
'3.141593'
>>> f"{p:10f}" # total number 10 characters wide
' 3.141593'
>>> f"{p:10.2f}" # 10 wide and 2 post-decimal digits
' 3.14'
>>> f"{p:.10f}" # 10 post-decimal digits
'3.1415926536'
>>> f"{p:e}" # in exponential notation
'3.141593e+00'
>>> f"{p:g}" # extra compact
'3.14159' 165

Expressions in f-strings are evaluated at run time

We can evaluate Python expressions in the f-strings:

>>> import math
>>> f"The diagonal has length {math.sqrt(2)}."
'The diagonal has length 1.4142135623730951.'

∗Advanced: Precision specifier can also be variables:

>>> width = 10
>>> precision = 4
>>> f"{math.pi:{width}.{precision}}"
' 3.142'

166

Show variable name and value with {name=}

Convenient short cut for debugging print statements:

>>> a = 10
>>> b = 20
>>> c = math.sqrt(a**2 + b**2)
>>> f"State: {a=} {b=} {c=}"
'State: a=10 b=20 c=22.360679774997898'

167

String formatting method overview

“f-strings”: most convenient and recommended method (2016):

>>> value = 42
>>> f"the value is {value}"
'the value is 42'

“new style” or “advanced” string formatting (Python 3, 2006):

>>> "the value is {}".format(value)
'the value is 42'

“% operator” (Python 1 and 2):

>>> "the value is %s" % value
'the value is 42'

168

Dictionary

Dictionaries

• Python provides another data type: the dictionary.
Dictionaries are also called “associative arrays” and “hash tables”.

• Dictionaries are unordered sets of key-value pairs.
Starting from Python 3.7, dictionaries preserve insertion order.

• An empty dictionary can be created using curly braces:

>>> d = {}

• Keyword-value pairs can be added like this:

>>> d['today'] = '22 deg C' # 'today' is key
'22 deg C' is value

>>> d['yesterday'] = '19 deg C'

169

Dictionaries

• We can retrieve values by using the keyword as the index:

>>> d['today']
'22 deg C'

170

Dictionaries

• d.keys() returns all keys:

>>> d.keys()
dict_keys(['today', 'yesterday'])

• d.values() returns all values:

>>> d.values()
dict_values(['22 deg C', '19 deg C'])

• Check if key is in dictionary:

>>> 'today' in d.keys()
True

Equivalent to

171

Dictionaries

>>> 'today' in d
True

172

Dictionary example 1: drinks order

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Cup of tea'
order['Mary'] = 'Cappuccino'

deliver order at bar
for person in order.keys():

print(f"{person} requests {order[person]}")

produces this output:

Peter requests Sparkling water
Paul requests Cup of tea
Mary requests Cappuccino

173

Iterating over dictionaries

Iterating over the dictionary itself is equivalent to iterating over the
keys. Example:

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Cup of tea'
order['Mary'] = 'Cappuccino'

iterating over keys:
for person in order.keys():

print(f"{person} requests {order[person]}")

is equivalent to iterating over the dictionary:
for person in order:

print(f"{person} requests {order[person]}")
174

Dictionary example 2: counting objects

def count_fruit(fruits):
"""Given a list of fruits (each fruit one string), return a
dictionary: each fruit is a key, and the associated value
reports how often the fruit occurred in the list of fruits.
"""
d = {} # start with empty dictionary
for fruit in fruits: # process all elements in list fruits

if fruit not in d: # this is the first time we find
the fruit in the list

d[fruit] = 1 # create an entry with key=fruit
else: # we have seen this fruit before

d[fruit] = d[fruit] + 1 # increase counter

return d

result = count_fruit(['banana', 'apple', 'banana', 'orange'])
print(result)

produces this output:

{'banana': 2, 'apple': 1, 'orange': 1} 175

Summary dictionaries

• similar to data base

• fast to retrieve value

• useful if you are dealing with two lists at the same time
(possibly one of them contains the keyword and the other the
value)

• useful if you have a data set that needs to be indexed by strings
or tuples (or other immutable objects)

• keys must be immutable (such as strings, numbers, tuples)

• values can be any Python object (including dictionaries)

176

Default function arguments

Default argument values for functions

• Motivation:
• suppose we need to compute the area of rectangles and
• we know the side lengths a and b.
• Most of the time, b=1 but sometimes b can take other
values.

• Solution 1:

def area(a, b):
return a * b

print(f"The area is {area(3, 1)}")
print(f"The area is {area(2.5, 1)}")
print(f"The area is {area(2.5, 2)}")

177

Default argument values for functions

• We can make the function more user friendly by providing
a default value for b. We then only have to specify b if it is
different from this default value:

• Solution 2 (with default value for argument b):

def area(a, b=1):
return a * b

print(f"The area is {area(3)}")
print(f"The area is {area(2.5)}")
print(f"The area is {area(2.5, 2)}")

178

Default argument values for functions

• Default parameters have to be at the end of the argument
list in the function definition.

179

Default argument values

You may have met default arguments in use before, for
example

• the print function uses end='\n' as a default value
• the open function uses mode='rt' as a default value
• the list.pop method uses index=-1 as a default

180

Keyword function arguments

Keyword argument values

• We can call functions with a “keyword” and a value. (The
keyword is the name of the variable in the function
definition.)

• Here is an example

def f(a, b, c):
print(f"{a=} {b=} {c=}")

f(1, 2, 3)
f(c=3, a=1, b=2)
f(1, c=3, b=2)

181

Keyword argument values

which produces this output:

a=1 b=2 c=3
a=1 b=2 c=3
a=1 b=2 c=3

• If we use only keyword arguments in the function call,
then we do not need to know the order of the arguments.
(This is good.)

• Choosing meaningful variable names in the function
definition makes the function more user friendly.

182

∗Disallow or enforce keyword argument use

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

See https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

183

https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

∗Disallow or enforce keyword argument use

def standard_arg(arg):
print(arg)

def pos_only_arg(arg, /):
print(arg)

def kwd_only_arg(*, arg):
print(arg)

def combined_example(pos_only, /, standard, *, kwd_only):
print(pos_only, standard, kwd_only)

184

Python installation

Python installation: python interpreter

Options to install the Python interpreter (for example python 3.12):

• might be provided by operating system (some version)

• install Python from https://www.python.org/

• Linux: use package management of operating system

• MacOS: install via brew, (ports, fink)

• pyenv - https://github.com/pyenv/pyenv

• miniforge / miniconda, anaconda

• pixi

• …

185

https://www.python.org/
https://github.com/pyenv/pyenv

Python packages

Once we have a python interpreter, we can install python packages
for that interpreter.

Python packages

• are a set of files
• carry metadata (example:

https://github.com/VaasuDevanS/cowsay-python/blob/main/pyproject.toml)

• know which other packages they need (“dependencies”)

• often in git repository
(https://github.com/VaasuDevanS/cowsay-python)

• can be installed with pip (see slide 189)

• can be centrally registered (Python Packging Index→ PyPI),
example: https://pypi.org/project/cowsay/)

Better to use “environments” before installing packages (187)
Tutorial at https://packaging.python.org/en/latest/tutorials/packaging-projects/. 186

https://github.com/VaasuDevanS/cowsay-python/blob/main/pyproject.toml
https://github.com/VaasuDevanS/cowsay-python
https://pypi.org/project/cowsay/
https://packaging.python.org/en/latest/tutorials/packaging-projects/

Virtual Environments venv

Virtual environment

Given an installed Python interpreter, we can create virtual
environments:

python -m venv myvirtualenv

and activate that environment (see also next slide):

• linux/MacOS: source myvirtualenv/bin/activate

• cmd.exe: myvirtualenv\Scripts\activate.bat

Why virtual environments?

• good practice: one environment per project

• better reproducibility

• can install two versions of the same library in different
environments

187

Activating virtual environments in different shells

From https://docs.python.org/3/library/venv.html:

188

https://docs.python.org/3/library/venv.html

Installing python packages with pip

PyPI

• The Python Package Index (PyPI) provides many python
packages (https://pypi.org)

• Can search the website for packages, and available
versions

• Install locally (in virtual environment) using pip

Example: install the python cowsay package:

pip install cowsay

Uninstall:

pip uninstall cowsay

189

https://pypi.org

pip commands

• pip install cowsay

• pip install cowsay==3.0

– install version 3.0

• pip uninstall cowsay

• pip install -U cowsay

– upgrade cowsay

• pip show cowsay

- show information about installed package

• pip list

- list installed packages

• pip freeze

- list installed packages in machine readable format

190

Summary virtual environments and pip commands

Summary

• create virtual environment before installing packages

• Common names for virtual environments: env, venv, .env, .venv

• use (at least) one virtual environment per project

• use

pip freeze

and

pip install -r requirements.txt

to maintain reproducible environments

See more detailed discussion at: https://fangohr.github.io/
introduction-to-python-for-computational-science-and-engineering/18-environments.html 191

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html

Conda packages

• Anaconda software distribution is a convenient way to install python
(and more) and python packages

• Anaconda company introduced “conda“ packages, and provides the
“anaconda distribution”

• https://conda-forge.org/ is an open source community-driven
effort providing conda-packages (i.e. same format, different provider)
and miniforge

• Many (but not all) python packages on PyPI have been ported to conda
packages

• conda packages are not limited to python packages (i.e. they are more
generic)

• conda provides “conda-environments” (similar to virtual environments)
• We can install Python packages via pip inside a conda environment.

Legal alert: since 2020, anaconda has changed license conditions. If
your organisation has more >250 staff, you probably need to pay
license fees to use anaconda. 192

https://conda-forge.org/

Recommendation

Recommendation:

• if you know and like anaconda (or miniconda), use
miniforge instead
(https://github.com/conda-forge/miniforge)

• otherwise use pixi (https://pixi.sh) (Slide 194)

193

https://github.com/conda-forge/miniforge
https://pixi.sh

∗pixi- package management

Pixi is a package and tasks management tool that can install conda and pip
packages.

• https://pixi.sh/
• pixi stores its files in the (hidden) subfolder '.pixi'

Example:

$ pixi init # create pixi environment in this folder
$ pixi add python==3.13 numpy # request python version 3.13
$ pixi add numpy # add numpy (uses conda-forge package by default)
$ pixi add --pypi cowsay # add cowsay from PyPI (via pip)
$ pixi shell # activate pixi environment
<pixi-env> $ python
Python 3.13.0 | packaged by conda-forge | (main, Nov 27 2024, 19:18:26)
>>> import numpy
>>> import cowsay
>>>

194

https://pixi.sh/

LAB4

Numpy

194

numpy

numpy

• is an interface to high performance linear algebra libraries
(such as BLAS, LAPACK, ATLAS, MKL, BLIS)

• provides
• the array object (strictly ndarray type)
• fast mathematical operations over arrays
• linear algebra, Fourier transforms, random number
generation

• Numpy is not part of the Python standard library.

195

numpy 1d-arrays (vectors)

• An (1d) array is a sequence of objects
• all objects in one array are of the same type

>>> import numpy as np # widely used convention
>>> a = np.array([1, 4, 10]) # convert any sequence to array
>>> a
array([1, 4, 10])
>>> type(a)
<class numpy.ndarray>
>>> a + 100 # arithmetic operations apply to all elements
array([101, 104, 110])
>>> a**2
array([1, 16, 100])
>>> np.sqrt(a)
array([1. , 2. , 3.16227766])
>>> a > 3 # apply >3 comparison to all elements
array([False, True, True], dtype=bool)

196

Array creation 1: from iterable

• 1d-array (vector) from iterable

>>> import numpy as np
>>> a = np.array([1, 4, 10]) # from list
>>> a
array([1, 4, 10])
>>> print(a)
[1 4 10]

• 2d-array (matrix) from nested sequences

>>> B = np.array([[0, 1.5], [10, 12]]) # from nested list
>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> print(B)
[[0. 1.5]
[10. 12.]] 197

Array type

• All elements in an array must be of the same type
• For existing array, the type is the dtype attribute

>>> a.dtype
dtype('int64')
>>> B.dtype
dtype('float64')

• We can fix the type of the array when we create the array, for
example:

>>> a2 = array([1, 4, 10], float)
>>> a2
array([1., 4., 10.])
>>> a2.dtype
dtype('float64')

198

Important array types

• For numerical calculations, we normally use double floats
which are known as float64 or short float:

>>> a2 = array([1, 4, 10], float)
>>> a2.dtype
dtype('float64')

• This is also the default type for zeros and ones.
• A full list is available at
http://docs.scipy.org/doc/numpy/user/basics.types.html

199

http://docs.scipy.org/doc/numpy/user/basics.types.html

Array size

The size of an array is the number of items:

>>> a.size
3
>>> B.size
4

The number of bytes per item is the itemsize:

>>> a.itemsize # dtype is int64 = 64 bit = 8 byte
8
>>> B.itemsize # dtype is float64 = 64 bit = 8 byte
8

200

Array size

The total number of bytes of an array is given through the nbytes
attribute:

>>> a.nbytes
24
>>> B.nbytes
32

201

∗Diving in with numpy.info

>>> z = np.arange(0, 12, 1).reshape(3, 4)
>>> z
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> z.dtype
dtype('int64')
>>> np.info(z)
class: ndarray
shape: (3, 4)
strides: (32, 8) # 32 bytes from row to row
itemsize: 8
aligned: True
contiguous: True
fortran: False
data pointer: 0x6000012dc060
byteorder: little
byteswap: False
type: int64
>>> z.nbytes
96 202

Array creation 2: arange

• arange([start,] stop[, step,]) is inspired by range:
create array from start up to but not including stop

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(10, dtype=float)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

• arange provides non-integer increments:

>>> np.arange(0, 0.5, 0.1)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5])

203

Array creation 3: linspace

• linspace(start, stop, num=50) provides num points
linearly spaced between start and stop (including stop):

>>> np.linspace(0, 10, 11)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
>>> np.linspace(0, 1, 11)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

204

Array shape

The shape is a tuple that describes

• (i) the dimensionality of the array (that is the length of the
shape tuple) and

• (ii) the number of elements for each dimension (“axis”)

Example:

>>> a.shape
(3,) # 1d array with 3 elements
>>> B.shape
(2, 2) # 2d array with 2 x 2 elements

205

Array shape

Can use shape attribute to change shape:

>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> B.shape
(2, 2)
>>> B.shape = (4,)
>>> B
array([0. , 1.5, 10. , 12.])

Number of dimension also available in attribute ndim:

206

Array shape

>>> B.ndim
2
>>> len(B.shape) # same as B.ndim
2

207

Array indexing (1d arrays)

Regarding indexing, (1d)-Arrays behave like sequences:

>>> x = np.arange(0, 10, 2)
>>> x
array([0, 2, 4, 6, 8])
>>> x[3]
6
>>> x[4]
8
>>> x[-1] # last element
8

208

Array indexing (2d arrays)

>>> C = np.arange(12)
>>> C
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> C.shape = (3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, 0] # first index for rows, second for columns
0
>>> C[2, 0]
8
>>> C[2, -1] # row 3, last column
11
>>> C[-1, -1] # last row, last column
11 209

Array slicing (1d arrays)

Double colon operator ::
Read as START:END:INDEXSTEP

If either START or END are omitted, the respective ends of the
array are used. INDEXSTEP defaults to 1.

Examples:

210

Array slicing (1d arrays)

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y[0:5] # slicing (default step is 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:1] # equivalent (step 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:2] # slicing with index step 2
array([0, 2, 4])
>>> y[:5:2] # from the beginning
array([0, 2, 4])
>>> y[0:5:-1] # negative index step size
array([], dtype=int64)
>>> y[5:0:-1] # from end to beginning
array([5, 4, 3, 2, 1])
>>> y[5:0:-2] # in steps of two
array([5, 3, 1])
>>> y[::-1] # reverses array elements
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

[Double colon operator works for all sequences.]

211

Array slicing (2d)

Slicing for 2d (or higher dimensional arrays) is analog to 1-d
slicing, but applied to each component. Common operations
include extraction of a particular row or column from a matrix:

>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, :] # row with index 0
array([0, 1, 2, 3])
>>> C[:, 1] # column with index 1

(i.e. 2nd col)
array([1, 5, 9])

212

Array creation 4: zeros and ones

Other useful methods are zeros and ones which accept a
desired matrix shape as the input:

>>> np.zeros((2, 4)) # two rows, 4 cols
array([[0., 0., 0., 0.],

[0., 0., 0., 0.]])
>>> np.zeros((4,)) # (4,) is tuple
array([0., 0., 0., 0.])
>>> np.zeros(4) # 4 works as well
array([0., 0., 0., 0.])

>>> np.ones((2, 7))
array([[1., 1., 1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1., 1., 1.]])

213

Array creation 5: eye and diag

Create Identity matrix eye (name from capital I used in
equations):

>>> np.eye(2)
array([[1., 0.],

[0., 1.]])

Create diagonal matrix diag:

>>> np.diag([10, 20, 30])
array([[10, 0, 0],

[0, 20, 0],
[0, 0, 30]])

214

∗Views of numpy arrays

Slicing a numpy array results in a view of the data (not a copy).

>>> C = np.arange(12).reshape(3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> view_C = C[0, :]
>>> view_C
array([0, 1, 2, 3])
>>> C[0, 0] = 42
>>> view_C
array([42, 1, 2, 3])

Often, this is desired — in particular when the arrays are large.

215

∗array.base points to the view’s data

• x.base == None means x is not a view.
• x.base is y means x is a view of y.

Example:

>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(x.base)
None
>>> y = x[::2] # create a view with every 2nd element
>>> print(y.base)
[0 1 2 3 4 5 6 7 8 9]
>>> y.base is x
True
>>> np.shares_memory(x, y) # do x and y share memory?
True 216

Creating copies of numpy arrays

Create copy of 1d array:

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> copy_y = y.copy()
>>> y[0] = 42
>>> copy_y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(copy_y.base)
None
>>> np.shares_memory(y, copy_y)
False

217

Solving linear systems of equations

np.linealg.solve(A, b) solves Ax = b for a square matrix A and
given vector b, and returns the solution vector x. Example:

Ax =

(
1 0
0 2

)(
x0
x1

)
=

(
1
4

)
= b

is equivalent to the system of linear equations:

1x0 + 0x1 = 1
0x0 + 2x1 = 4

>>> A = np.array([[1, 0], [0, 2]])
>>> b = np.array([1, 4])
>>> x = np.linalg.solve(A, b)
>>> x
array([1., 2.])
>>> np.dot(A, x) # Computing A*x
array([1., 4.]) # this should be b

218

Other linear algebra tools

help(np.linalg) provides an overview, including

• det to compute the determinant
• eig to compute eigenvalues and eigenvectors
• pinv to compute the (pseudo) inverse of a matrix
• svd to compute a singular value decomposition

219

Can I always use numpy instead of math?

Use numpy instead of math so f accept scalars (int, float, complex) and numpy arrays.

import numpy as np

def f(x):
"""Accepts scalar x or numpy array x and returns exp(-x) * x^2"""
return np.exp(-x) * x**2

x = 0.5
print(f"Calling with {x=} and {type(x)=}")
print(f" -> {f(x)=:f} and {type(f(x))=}.")
x = np.array([0.5, 1.0])
print(f"Calling with {x=} and {type(x)=}")
print(f" -> {f(x)=} and {type(f(x))=}.")

Ouput:

Calling with x=0.5 and type(x)=<class 'float'>
-> f(x)=0.151633 and type(f(x))=<class 'numpy.float64'>.

Calling with x=array([0.5, 1.]) and type(x)=<class 'numpy.ndarray'>
-> f(x)=array([0.15163266, 0.36787944]) and type(f(x))=<class 'numpy.ndarray'>.

Note that for numpy.exp(x) for a scalar x is slower than math.exp(x). 220

numpy performance optimisation

• numpy is fast if number of elements is large: for an array
with one element, np.sqrt will be slower than math.sqrt

• avoid loops (formulate instead as matrix operation)
• numpy can be up to ∼100 times faster than naive Python
• ∗avoid copies of data (i.e. use views)

221

arrays are often faster than loops

Without arrays (need to use loop):

In [1]: %%timeit
...: N = 5000
...: mysum1 = 0
...: for i in range(N):
...: x = 0.1*i
...: mysum1 += math.sqrt(x)*math.sin(x)
...:

657 mu s +- 17.8 mu s per loop (7 runs, 1,000 loops each)

Optimised with numpy array:

In [2]: %%timeit
...: N = 5000
...: x = np.arange(0, N)*0.1
...: mysum2 = np.sum(np.sqrt(x)*np.sin(x))
...:

46.9 mu s +- 19.8 mu s per loop (7 runs, 10,000 loops each)

657µ seconds version 46.9µ seconds: factor ∼ 14 222

Reading data from text files with numpy

import numpy as np

def write_data_file(filename):
"""create test data file with this content:
0 0
1 1
2 4
3 9
"""
with open(filename, 'wt') as f:

for i in range(0, 4):
f.write(f"{i} {i**2}\n")

write_data_file('test-data.txt')
read white-space separated data file with numpy.loadtxt:
data = np.loadtxt('test-data.txt')
print(data)

223

Reading data from text files with numpy

Ouput:

[[0. 0.]
[1. 1.]
[2. 4.]
[3. 9.]]

224

Revisit NOAA data from CSV file (numpy)

import matplotlib.pyplot as plt
import numpy as np

read data
data = np.loadtxt("data.csv", delimiter=",", skiprows=5)
year = data[:, 0]
dT = data[:, 1]

plot data
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1.pdf")

Creates plot on slide 147.

225

Summary

• numpy provides fast array operations
• elements in the array have the same type (typically a
numerical type)

• conversion options include:
• can create array from sequence s with a = np.array(s).
• can create list from array with a.tolist()

• ∗data is stored contiguously in memory (if possible)

226

Further reading for numpy

• Consult Numpy documentation if used outside this course.
Start here:

• Basics: https://numpy.org/doc/stable/user/absolute_
beginners.html

• Quickstart:
https://numpy.org/doc/stable/user/quickstart.html

• Matlab users may want to read Numpy for Matlab Users

227

http://www.numpy.org
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/quickstart.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html

IPython, Jupyter, Editors and IDEs

IPython (interactive python)

• Interactive Python (ipython) prompt
• command history (across sessions), auto completion
• special commands:

• %run myfile will execute file myfile.py in current name
space

• %reset can delete all objects if required
• use range? instead of help(range)
• %logstart will log your session
• %prun will profile code
• %timeit can measure execution time
• %load loads file for editing (also from URL)
• %debug start debugger after error

• Much more (read at http://ipython.org)

228

http://ipython.org

Jupyter Notebook useful for research and data science

• Used to be the IPython Notebook, but now supports many
more languages (JUlia, PYThon, ER→ JUPYTER)

• Notebook is executable document hosted in web browser.
• Home page http://jupyter.org

Great value for research
• Fangohr etal: Data Exploration and Analysis with Jupyter Notebooks
10.18429/JACoW-ICALEPCS2019-TUCPR02 (2020)

• Granger and Perez: Thinking and Storytelling with Jupyter,
10.1109/MCSE.2021.3059263 (2021)

• Fangohr, Di Pierro and Kluyver: Jupyter in Computational Science,
10.1109/MCSE.2021.3059494 (2021)

• Beg, Fangohr, etal: Using Jupyter for reproducible scientific workflows,
Computing in Science and Engineering 23, 36-46
10.1109/MCSE.2021.3052101 (2021)

• Blog entry: Jupyter for Computational Science and Data Science (2022) 229

http://jupyter.org
https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPR02
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059494
https://doi.org/10.1109/MCSE.2021.3052101
https://fangohr.github.io/blog/jupyter-for-computational-science-and-data-science.html

Integrated Development Environments (IDEs) and editors

Including

• Spyder
• PyCharm (commercial)
• Visual studio code
• Emacs
• vim and Emacs→ Spacemacs
• vim (vi)
• …

230

https://www.spacemacs.org

Matplotlib

Matplotlib

• Matplotlib tries to make easy things easy and hard things
possible

• Matplotlib is a 2D plotting library which produces
publication quality figures (increasingly also 3d)

• Matplotlib can be fully scripted but interactive interface
available

231

Figure and axes windows

• We can have multiple subplots in one figure (fig)

• each has one axes object (with x-axis and y-axis)

• use plt.subplots to create figure and list of axes objects (example
next slide)

0 1 2 3
x-label for ax1

0.0

0.2

0.4

0.6

0.8

1.0

ax1

0 1 2 3
x-label for ax2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ax2

Figure with two sublots (called ax1 and ax2)

232

∗Figure and axes windows - source

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 3.14, 100)
y1 = np.sin(x)
y2 = np.sin(x * 5) * np.exp(-x)

fig, axes = plt.subplots(1, 2, figsize=(8, 4)) # 1 row, 2 cols
ax1, ax2 = axes # extract the two axes objects
ax1.plot(x, y1) # plot curve in left subplot
ax1.set_xlabel("x-label for ax1")
ax2.plot(x, y2) # plot curve in right subplot
ax2.set_xlabel("x-label for ax2")
ax1.text(1.5, 0.5, "ax1", weight="bold", fontfamily="monospace")
ax2.text(1.5, 0.3, "ax2", weight="bold", fontfamily="monospace")
fig.suptitle("Figure with two sublots (called ax1 and ax2)")
fig.savefig("matplotlib-subplot-example.pdf")

233

matplotlib.pyplot - example 1

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, 10, 100) # create some data
ys = np.sin(xs)

fig, ax = plt.subplots() # one figure, one subplot
ax.plot(xs, ys)
fig.savefig("pyplot-demo1.pdf")

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

234

matplotlib.pyplot - example 2: labels and grid

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(xs, ys, 'o-', linewidth=2, color='orange')

ax.grid(True)
ax.set_xlabel('x')
ax.set_ylabel('y=f(x)')
fig.savefig("pyplot-demo2.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y=
f(x

)

235

matplotlib.pyplot - example 3: two curves

xs = np.linspace(0, 10, 100) # create some data
ys1 = np.sin(xs)
ys2 = np.sin(xs)**2
fig, ax = plt.subplots(figsize=(6, 4)) # plot data
ax.plot(xs, ys1, '--', color='orange', label='sin(x)')
ax.plot(xs, ys2, '-', color='darkgreen', label='sin(x)^2')
ax.set_xlabel('x')
ax.legend()
fig.savefig("pyplot-demo3.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin(x)
sin(x)^2

236

Matplotlib.pyplot interface

• Matplotlib.pyplot is an object oriented plotting interface
• Very fine grained control over plots
• recommended to use

237

matplotlib.pyplot - references

Matplotlib.pyplot
Matplotlib.pyplot is an object oriented plotting interface.

• Matplotlib tutorials at
https://matplotlib.org/stable/tutorials/index

• Check gallery at
https://matplotlib.org/stable/gallery/index.html

• Nicolas Rougier. Scientific Visualization: Python +
Matplotlib. Nicolas P. Rougier. 2021, 978-2- 9579901-0-8.
hal-03427242, online at https://github.com/rougier/
scientific-visualization-book

238

https://matplotlib.org/stable/tutorials/index
https://matplotlib.org/stable/gallery/index.html
https://github.com/rougier/scientific-visualization-book
https://github.com/rougier/scientific-visualization-book

Matplotlib in IPython QTConsole and Notebook

Within the IPython console (for example in Spyder) and the
Jupyter Notebook, use

• %matplotlib inline to see plots inside the console
window, and

• %matplotlib qt to create pop-up windows with the plot.
(May need to call matplotlib.show().) We can
manipulate the view interactively in that window.

• In Spyder, the plots appear by default in the “plots” pane.
• Within the Jupyter notebook, you can use %matplotlib
widget which embeds an interactive window in the note
book (needs ipympl installed).

239

Testing

Testing - context

• Writing software is easy – debugging it is hard
• When debugging, we always test
• Later code changes may require repeated testing
• Best to automate testing by writing functions that contain
tests

• A big topic: here we provide some key ideas
• We use Python extension tool py.test, see pytest.org

240

http://pytest.org

Example 1: Source code of mixstrings.py on following pages.

• a function mixstrings is defined together with multiple
test_ functions

• tests are run if mixstrings.py is the top-level (tests are
not run if file is imported)

• no output if all tests pass (“no news is good news”)
• More common approach than calling tests from __main__:
use py.test mixstrings.py

241

1 def mixstrings(s1, s2):
2 """Given two strings s1 and s2, create and return a new
3 string that contains the letters from s1 and s2 mixed:
4 i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
5 s[3] = s2[1], s[4] = s1[2], ...
6 If one string is longer than the other, the extra
7 characters in the longer string are ignored.
8

9 Example:
10

11 >>> mixstrings("Hello", "12345")
12 'H1e2l3l4o5'
13 """
14 # what length to process
15 n = min(len(s1), len(s2))
16 # collect chars in this list
17 s = []
18

19 for i in range(n):
20 s.append(s1[i])
21 s.append(s2[i])
22 return "".join(s)
23

242

24 def test_mixstrings_basics():
25 assert mixstrings("hello", "world") == "hweolrllod"
26 assert mixstrings("cat", "dog") == "cdaotg"
27

28 def test_mixstrings_empty():
29 assert mixstrings("", "") == ""
30

31 def test_mixstrings_different_length():
32 assert mixstrings("12345", "123") == "112233"
33 assert mixstrings("", "hello") == ""
34

35 if __name__ == "__main__":
36 test_mixstrings_basics()
37 test_mixstrings_empty()
38 test_mixstrings_different_length()

243

py.test (also known as pytest)

We can use the standalone program py.test to run test functions in any
python program:

• py.test will look for functions with names starting with test_
• and execute each of those as one test.
• Example:

$> py.test -v mixstrings.py
============================= test session starts ===========
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 3 items

mixstrings.py::test_mixstrings_basics PASSED [33%]
mixstrings.py::test_mixstrings_empty PASSED [66%]
mixstrings.py::test_mixstrings_different_length PASSED [100%]
============================== 3 passed in 0.01s ============

• This works, even if the file to be tested (here mixstrings.py) does not refer to
pytest at all.

244

*Calling pytest from a python file

If desired, one can trigger execution of pytest from python file.

Example:

import pytest

<parts of the file missing here>

if __name__ == "__main__":
pytest.main(["-v", "mixstrings.py"])

However, it is much more common to use py.test to discover and execute the tests
(often across multiple files).

245

Testing (partially) defines functionality

• Just being given the tests for a function, often defines the
functions behaviour.

• Example:

def test_reverse_words_empty():
assert reverse_words("") == ""

def test_reverse_words_one_word():
assert reverse_words("Python") == "Python"

def test_reverse_words_simple():
assert reverse_words("Hello world!") == "world! Hello"

def test_reverse_words_with_punctuation():
assert reverse_words("Hi, there!") == "there! Hi,"

246

LAB5

Numpy usage examples

246

Performance gains with numpy

• Calculations using numpy are faster (∼ 100 times) than
using pure Python (see example next slide).

• Imagine we need to compute the mexican hat function
with many points

4 2 0 2 4

0.5

0.0

0.5

1.0

1.5 Mexican hat function

247

Performance gains with numpy

1 """Demo: practical use of numpy (mexhat-numpy.py)"""
2
3 import datetime
4 import math
5 import sys
6 import time
7 import matplotlib.pyplot as plt
8 import numpy as np
9

10 N = 100000
11
12
13 def mexhat_py(t, sigma=1):
14 """Computes Mexican hat shape, see http://en.wikipedia.org/wiki/Mexican_hat_wavelet
15 for equation (13 Dec 2011)"""
16 c = 2.0 / math.sqrt(3 * sigma) * math.pi**0.25
17 return c * (1 - t**2 / sigma**2) * math.exp(-(t**2) / (2 * sigma**2))
18
19
20 def mexhat_np(t, sigma=1):
21 """Computes Mexican hat shape using numpy"""
22 c = 2.0 / math.sqrt(3 * sigma) * math.pi**0.25
23 return c * (1 - t**2 / sigma**2) * np.exp(-(t**2) / (2 * sigma**2))

248

Performance gains with numpy

26 def test_is_really_the_same():
27 """Checking whether mexhat_np and mexhat_py produce the same results."""
28 xs1, ys1 = loop1()
29 xs2, ys2 = loop2()
30 deviation = math.sqrt(sum((ys1 - ys2) ** 2))
31 print("error:", deviation)
32 assert deviation < 1e-14
33
34
35 def loop1():
36 """Compute list ys with mexican hat function in ys(xs), returns tuple (xs, ys)"""
37 xs = np.linspace(-5, 5, N)
38 ys = []
39 for x in xs:
40 ys.append(mexhat_py(x))
41 return xs, ys
42
43
44 def loop2():
45 """As loop1, but uses numpy to be faster."""
46 xs = np.linspace(-5, 5, N)
47 return xs, mexhat_np(xs)

249

Performance gains with numpy

50 def time_this(f):
51 """Call f, measure and return number of seconds execution of f() takes"""
52 starttime = time.time()
53 f()
54 stoptime = time.time()
55 return stoptime - starttime
56
57
58 def make_plot(filename):
59 fig, ax = plt.subplots()
60 xs, ys = loop2()
61 ax.plot(xs, ys, label="Mexican hat function")
62 ax.legend()
63 fig.savefig(filename)
64
65
66 def main():
67 test_is_really_the_same()
68 make_plot("mexhat-numpy.pdf")
69 time1 = time_this(loop1)
70 time2 = time_this(loop2)
71 print(f"Numpy version is {time1 / time2:.1f} times faster")

250

Performance gains with numpy

72 print(f"Executed at {datetime.datetime.now()!s} ", end="")
73 print(f"with Python {sys.version_info.major}.{sys.version_info.minor}")
74
75
76 if __name__ == "__main__":
77 main()

Produces this output:

error: 1.159820840535702e-15
Numpy version is 75.1 times faster
Executed at 2025-02-17 20:04:55.102963 with Python 3.12

• A lot of the source code above is focussed on measuring the execution
time.

• Within IPython, we could just have used %timeit loop1() and
%timeit loop2() to get to the timing information.

251

0d-arrays with only one item convert to scalars

>>> import numpy as np
>>> x = np.array([81., 100.]) # 1d-numpy array with two elements
>>> x.shape
(2,)
>>> np.sqrt(x)
array([9., 10.])
>>> math.sqrt(x) # fails: math.sqrt wants a scalar (e.g. float)
[...]
TypeError: only length-1 arrays can be converted to Python scalars
>>> y = np.array(81.0) # this is a 0d-numpy array
>>> y.shape
()
>>> math.sqrt(y) # behaves like a python float
9.0
>>> type(math.sqrt(y))
<class 'float'>

252

0d-arrays with only one item convert to scalars

This allows us to write functions f(x) that can take an input argument x
which can either be a numpy.array or a scalar. The mexhat_np(t) function
is such an example:

>>> a = mexhat_np(0); print(f"{a=}")
a=1.537293661343647

>>> a = mexhat_np(np.array([0])); print(f"{a=}")
a=array([1.53729366])

>>> a = mexhat_np(np.linspace(0, 1, 3)); print(f"{a=}")
a=array([1.53729366, 1.01749267, 0.])

253

Pandas

Pandas

• de-facto standard in data science (and maschine learning)
• builds on numpy
• convenient handling of multi-dimensional data sets
• important data structures: Series and DataFrame

• excellent import and export functionality, including csv
and xlsx.

• many, many, many parameters, functions, tools (Can’t
know them all)

• for data cleaning and data exploration typically used in
Juptyter Notebook

See https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/
17-pandas.html

254

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html

Revisit NOAA data from CSV file (pandas)

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv', skiprows=4, index_col=0)
df.plot() # create line-plot
plt.savefig("anomaly1-pandas-plot.pdf")

more fine grained control - use matplotlib as usual
plt.close() # start new plot
year = df.index
dT = df['Anomaly']
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1-pandas.pdf")

255

Revisit NOAA data from CSV file (pandas)

Creates plot on slide 147.

256

Part 2

Part 2

257

Higher Order Functions

Motivational exercise: function tables

• Write a function print_x2_table() that prints a table of
values of f(x) = x2 for x = 0, 0.5, 1.0, ..2.5, i.e.

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

• Then do the same for f(x) = x3

• Then do the same for f(x) = sin(x)

258

Can we avoid code duplication?

Idea: Pass function f(x) to tabulate to tabulating function

Example: (print_f_table.py)

def print_f_table(f):
"""Given a function f, tabulate it."""
for i in range(6):

x = i * 0.5
print(f"{x} {f(x)}")

def square(x):
return x ** 2

print_f_table(square)

259

Can we avoid code duplication?

produces

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

260

Can we avoid code duplication (2)?

def print_f_table(f):
for i in range(6):

x = i * 0.5
fx = f(x)
print(f"{x} {fx}")

def square(x):
return x ** 2

def cubic(x):
return x ** 3

print("Square"); print_f_table(square)
print("Cubic"); print_f_table(cubic)

261

Can we avoid code duplication (2)?

produces:

Square
0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

Cubic
0.0 0.0
0.5 0.125
1.0 1.0
1.5 3.375
2.0 8.0
2.5 15.625

262

∗Example: iterating over functions

• Example (trigtable.py):

import math
funcs = [math.sin, math.cos]
for f in funcs:

fname = f.__name__
for x in [0, math.pi/2]:

fx = f(x)
print(f"{fname}({x:.3f}) = {fx:.3f}")

produces

sin(0.000) = 0.000
sin(1.571) = 1.000
cos(0.000) = 1.000
cos(1.571) = 0.000 263

Higher order functions / are first class objects

Functions are ’just’ objects in Python. Related terminology:

• Functions are first class objects↔ functions can be given
to other functions as arguments

• Higher order functions accept (or return) functions as
arguments.

264

http://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/Higher-order_function

Iterators

Iterators

• Iterators in Python are useful for efficiently processing
sequences of data without loading everything into
memory.

• Iterators allow for lazy evaluation, making them ideal for
handling large datasets, streaming data

• Iterators can be used to iterator through all elements (of
some custom data structure)

Iterators are used in the for loop.

265

For loop and iterator protocol

For loops can iterate over iterables. What are the detailed
mechanics?
When we run a for loop, we follow the iterator protocol:

>>> for i in iterable: # iterable could be ['dog', 'cat']
print(i)

• Python calls iter(iterable), which should return an
iterator.

• It repeatedly calls next(iterator) to retrieve elements.
• When StopIteration is raised, the loop stops.

266

Iterators and iterables

An object x is considered an iterator if it implements two
methods:

• x.__iter__(): Returns the iterator object itself
• x.__next__(): Returns the next item in the sequence and
raises StopIteration when there are no more items.

An object is an iterable if it can return an iterator using iter().

• Examples for iterables are lists, tuples, dictionaries, sets,
and strings.

267

For-loop example

>>> i = iter(["dog", "cat"]) # create iterator
from list

>>> next(i)
'dog'
>>> next(i)
'cat'
>>> next(i) # reached end
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

268

∗Generators

• Generators are functions defined using yield instead of
return

• When called, a generator returns an object that behaves
like an iterator: it has a __next__() method.

• Can use generators to compute one element sequence at
a time (i.e. do not need storage for sequence).

269

∗Generators

>>> def squares(n):
... for i in range(n):
... yield i**2
...
>>> s = squares(3)
>>> next(s)
0
>>> next(s)
1
>>> next(s)
4
>>> next(s)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

The execution flow returns at the yield keyword (similar to return), but the flow continues after the yield when
the next method is called the next time.

A more detailed example demonstrates this:

270

∗Generators

def squares(n):
print("begin squares()")
for i in range(n):

print(f" before yield i={i}")
yield i**2
print(f" after yield i={i}")

>>> g = squares(3)
>>> next(g)
begin squares()
before yield i= 0

0
>>> next(g)
after yield i= 0
before yield i= 1

1
>>> next(g)
after yield i= 1
before yield i= 2

4
>>> next(g)
after yield i= 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

See also Socratica on Iterators, Iterables, and Itertools

271

https://youtu.be/WR7mO_jYN9g

∗Generator for (infinite) sequence of integers

def range_infinity():
"""Provides integer numbers starting from 0
going up to infinity."""
n = 0
while True:

yield n
n = n + 1

will run for a long time if not interrupted
for i in range_infinity():

if i % 1000: # true every 1000 numbers
print(i)

272

Testing

Testing - context

• Writing software is easy – debugging it is hard
• When debugging, we always test
• Later code changes may require repeated testing
• Best to automate testing by writing functions that contain
tests

• A big topic: here we provide some key ideas
• We use Python extension tool py.test, see pytest.org

273

http://pytest.org

Example 1: Source code of mixstrings.py on following pages.

• a function mixstrings is defined together with multiple
test_ functions

• tests are run if mixstrings.py is the top-level (tests are
not run if file is imported)

• no output if all tests pass (“no news is good news”)
• More common approach than calling tests from __main__:
use py.test mixstrings.py

274

1 def mixstrings(s1, s2):
2 """Given two strings s1 and s2, create and return a new
3 string that contains the letters from s1 and s2 mixed:
4 i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
5 s[3] = s2[1], s[4] = s1[2], ...
6 If one string is longer than the other, the extra
7 characters in the longer string are ignored.
8

9 Example:
10

11 >>> mixstrings("Hello", "12345")
12 'H1e2l3l4o5'
13 """
14 # what length to process
15 n = min(len(s1), len(s2))
16 # collect chars in this list
17 s = []
18

19 for i in range(n):
20 s.append(s1[i])
21 s.append(s2[i])
22 return "".join(s)
23

275

24 def test_mixstrings_basics():
25 assert mixstrings("hello", "world") == "hweolrllod"
26 assert mixstrings("cat", "dog") == "cdaotg"
27

28 def test_mixstrings_empty():
29 assert mixstrings("", "") == ""
30

31 def test_mixstrings_different_length():
32 assert mixstrings("12345", "123") == "112233"
33 assert mixstrings("", "hello") == ""
34

35 if __name__ == "__main__":
36 test_mixstrings_basics()
37 test_mixstrings_empty()
38 test_mixstrings_different_length()

276

py.test (also known as pytest)

We can use the standalone program py.test to run test functions in any
python program:

• py.test will look for functions with names starting with test_
• and execute each of those as one test.
• Example:

$> py.test -v mixstrings.py
============================= test session starts ===========
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 3 items

mixstrings.py::test_mixstrings_basics PASSED [33%]
mixstrings.py::test_mixstrings_empty PASSED [66%]
mixstrings.py::test_mixstrings_different_length PASSED [100%]
============================== 3 passed in 0.01s ============

• This works, even if the file to be tested (here mixstrings.py) does not refer to
pytest at all.

277

*Calling pytest from a python file

If desired, one can trigger execution of pytest from python file.

Example:

import pytest

<parts of the file missing here>

if __name__ == "__main__":
pytest.main(["-v", "mixstrings.py"])

However, it is much more common to use py.test to discover and execute the tests
(often across multiple files).

278

Advanced Example 2: factorial.py
For reference: In this example, we check that an exception is raised if a particular error is made in calling the
function.

1 import math
2 import pytest
3
4 def factorial(n):
5 """ Compute and return n! recursively.
6 Raise ValueError if n is negative or non-integer.
7
8 >>> from myfactorial import factorial
9 >>> [factorial(n) for n in range(5)]

10 [1, 1, 2, 6, 24]
11 """
12
13 if n < 0:
14 raise ValueError(f"n should be > 0 but n={n}")
15
16 if isinstance(n, int):
17 pass
18 else:
19 raise TypeError(f"n must be integer but is {type(n)}.")
20
21 # actual calculation
22 if n == 0:
23 return 1
24 else:
25 return n * factorial(n - 1)
26 279

26

27 def test_basics():
28 assert factorial(0) == 1
29 assert factorial(1) == 1
30 assert factorial(3) == 6
31

32 def test_against_standard_lib():
33 for i in range(20):
34 assert math.factorial(i) == factorial(i)
35

36 def test_negative_number_raises_error():
37 with pytest.raises(ValueError): # this will pass if
38 factorial(-1) # factorial(-1) raises
39 # a ValueError
40

41 def test_noninteger_number_raises_error():
42 with pytest.raises(TypeError):
43 factorial(0.5)

280

Output from successful testing:

$> py.test -v factorial.py
============================= test session starts ===============
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 4 items

factorial.py::test_basics PASSED [25%]
factorial.py::test_against_standard_lib PASSED [50%]
factorial.py::test_negative_number_raises_error PASSED [75%]
factorial.py::test_noninteger_number_raises_error PASSED [100%]
============================== 4 passed in 0.02s ================

281

Notes on pytest

• Normally, we call py.test from the command line
• Either give filenames to process (will look for functions starting with
test in those files)

• or let py.test autodiscover all files (!) starting with test to be
processed.

Example:

============================= test session starts ==============
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 7 items

mixstrings.py::test_mixstrings_basics PASSED [14%]
mixstrings.py::test_mixstrings_empty PASSED [28%]
mixstrings.py::test_mixstrings_different_length PASSED [42%]
factorial.py::test_basics PASSED [57%]
factorial.py::test_against_standard_lib PASSED [71%]
factorial.py::test_negative_number_raises_error PASSED [85%]
factorial.py::test_noninteger_number_raises_error PASSED [100%]
============================== 7 passed in 0.01s =============== 282

Testing summary

• Unit testing, integration testing, regression testing, system
testing

• absolute key role in modern software engineering: always
write (some) tests for your software

• bigger projects have ”continuous integration testing”:
automatic execution of tests on any change

• ”eXtreme Programming” (XP) philosophy suggests to write
tests before you write code (”test-driven-development
(TDD)”)

Executable py.test and python module pytest are not part of
the standard python library.

283

Variables, equality and identity

Variables are references to objects

In Python, variables are references to (or names of) objects.
This is why in the following example, a and b represent the
same list: a and b are two different references to the same
object:

>>> a = [0, 2, 4, 6] # bind name 'a' to list
>>> a # object [0,2,4,6].
[0, 2, 4, 6]
>>> b = a # bind name 'b' to the same
>>> b # list object.
[0, 2, 4, 6]
>>> b[1] # show second element in list
2 # object.
>>> b[1] = 10 # modify 2nd elememnt (via b).
>>> b # show b.
[0, 10, 4, 6]
>>> a # show a.
[0, 10, 4, 6] 284

Identity (id, is) and equality (==)

Identity:

• Two objects a and b are the same object if they live in the
same place in memory.

• Python provides the id function that returns the identity
of an object. (It is the memory address.)

• We check with id(a) == id(b) wether a and b are
identical (i.e. the same object).

• a is b is equivalent to id(a) == id(b).

Equality:

• Two different objects a and b can have the same value. We
check with a == b for equality.

285

Identity (id, is) and equality (==)

Example 1

>>> a = 1
>>> b = 1.0
>>> id(a); id(b)
4298187624 # not in the same place
4298197712 # in memory
>>> a is b # i.e. not the same objects
False
>>> a == b # but carry the same value
True

Example 2

286

Identity (id, is) and equality (==)

>>> a = [1, 2, 3]
>>> b = a # b is reference to object of a
>>> a is b # thus they are the same
True
>>> a == b # the value is (of course) the same
True

287

Functions – side effect

If we carry out some activity A, and this has an (unexpected)
effect on something else, we speak about side effects:

def sum(xs):
s = 0
for i in range(len(xs)):

s = s + xs.pop()
return s

xs = [10, 20, 30]
print(f"xs = {xs}; ", end='')
print(f"sum(xs)={sum(xs)}; ", end='')
print(f"xs = {xs}")

Output:

xs = [10, 20, 30]; sum(xs)=60; xs = [] 288

Functions - side effect 2

Better ways to compute the sum of a list xs (or sequence in
general)
• use indices to iterate over list

def sum(xs):
s=0
for i in range(len(xs)):

s = s + xs[i]
return s

• or (better): iterate over list elements directly

def sum(xs):
s=0
for elem in xs

s = s + elem
return s

• or (best) use in-built command sum(xs) 289

Recursion

Recursion

Recursion in a screen recording program, where the smaller
window contains a snapshot of the entire screen. Source:
http://en.wikipedia.org/wiki/Recursion

290

http://en.wikipedia.org/wiki/Recursion

Recursion example: factorial

• Computing the factorial (i.e. n!) can be done by computing
(n− 1)!n, i.e. we reduce the problem of size n to a
problem of size n− 1.

• For recursive problems, we always need a base case. For
the factorial we know that 0! = 1.

• For n = 4:

4! = 3! · 4 (1)
= 2! · 3 · 4 (2)
= 1! · 2 · 3 · 4 (3)
= 0! · 1 · 2 · 3 · 4 (4)
= 1 · 1 · 2 · 3 · 4 (5)
= 24. (6) 291

Recursion example

Python code to compute the factorial n! = n ∗ (n− 1)!
recursively:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)

Usage output:

>>> factorial(0)
factorial(0)
1
>>> factorial(2)
2
>>> factorial(4)
24 292

Recursion example Fibonacci numbers

Defined (recursively) as f(n) = f(n− 1) + f(n− 2) for integers n,
and n > 0, and f(1) = 0 and f(2) = 1

Python implementation (fibonacci.py):

def f(n):
if n == 1:

return 0
elif n == 2:

return 1
else:

return f(n - 2) + f(n - 1)

293

Recursion exercises

1. Write a function recsum(n) that sums the numbers from 1
to n recursively

2. Study the recursive Fibonacci function from slide 293:
• what is the largest number n for which we can reasonable
compute f(n) within a minute?

• Can you write faster versions of the Fibonacci function?
(There are faster versions with and without recursion.)

294

str, repr and eval

The str function and __str__ method

All objects in Python should provide a method __str__ which
returns an informal string representation of the object.
This method a.__str__ is called when we apply the str
function to object a:

>>> a = 3.14
>>> a.__str__()
'3.14'
>>> str(a)
'3.14'

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> str(now)
'2022-01-13 13:44:56.392268' 295

Implicit calling of str function

The string method x.__str__ of object x is called implicitly, when we

• pass the object x directly to the print command

• use the ”{x}” notation in f-strings

>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> print(now)
2022-01-13 13:44:56.392268
>>> f"{now}"
'2022-01-13 13:44:56.392268'

296

∗The repr function and __repr__ method

• The repr function should convert a given object into an as
accurate as possible string representation

• The repr function will generally provide a more detailed
string than str.

• Applying repr to the object x will attempt to call
x.__repr__().

• The python (and IPython) prompt uses repr to ’display’
objects.

297

∗The repr function and __repr__ method

Example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> str(t)
'2022-01-13 13:55:39.158456'
>>> repr(t)
'datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)'
>>> t
datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)

For many objects, str(x) and repr(x) return the same string.

298

∗The eval function

The eval function accepts a string, and evaluates the string (as if it was
entered at the Python prompt):

>>> x = 1
>>> eval('x + 1')
2
>>> s = "[10, 20, 30]"
>>> type(s)
<class str>
>>> eval(s)
[10, 20, 30]
>>> type(eval(s))
<class list>

299

∗The repr and eval function

Given an accurate representation of an object as a string, we
can convert that string into the object using the eval function.

>>> i = 42
>>> type(i)
<class int>
>>> repr(i)
'42'
>>> type(repr(i))
<class str>
>>> eval(repr(i))
42
>>> type(eval(repr(i)))
<class int>

300

∗The repr and eval function

The datetime example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> t_as_string = repr(t)
>>> t_as_string
'datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)'
>>> t2 = eval(t_as_string)
>>> t2
datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)
>>> type(t2)
<class datetime.datetime>
>>> t == t2
True

301

List comprehension

List comprehension - one slide summary

>>> xs = [2*i for i in range(5)] # 'list comprehension'
>>> print(xs)
[0, 2, 4, 6, 8]

is equivalent to this for set of commands with a for loop:

>>> xs = []
>>> for i in range(5):
... xs.append(2*i)
...
>>> print(xs)
[0, 2, 4, 6, 8]

• useful when we need to process or create a list quickly
• no additional functionality over for-loop
• sometimes more elegant (≈ shorter) than for-loop

302

List comprehension

• List comprehension follows the mathematical “set builder
notation”

• Convenient way to process a list into another list (without
for-loop).

Examples

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> [x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

303

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation
http://en.wikipedia.org/wiki/Set-builder_notation

List comprehension structure

Structure of list comprehension:

[EXPRESSION(OBJECT) for OBJECT in ITERABLE]

where EXPRESSION, OBJECT, and ITERABLE can vary.
Examples:

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> import math
>>> [math.sqrt(x) for x in [1, 4, 9, 16]]
[1.0, 2.0, 3.0, 4.0]

>>> [s.capitalize() for s in ["dog", "cat", "mouse"]]
['Dog', 'Cat', 'Mouse']

304

List comprehension example 1 and 2

Can be useful to populate lists with numbers quickly

• Example 1:

>>> ys = [x**2 for x in range(10)]
>>> ys
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

• Example 2:

>>> import math
>>> xs = [0.1 * i for i in range(5)]
>>> xs
[0.0, 0.1, 0.2, 0.3, 0.4]
>>> ys = [math.exp(x) for x in xs]
>>> ys
[1.0, 1.1051709180756477, 1.2214027581601699,
1.3498588075760032, 1.4918246976412703]

305

List comprehension with filter

[EXPRESSION(OBJECT) for OBJECT in ITERABLE
if CONDITION(OBJECT)]

• include OBJECT only if CONDITION(OBJECT) is True.
• Example:

>>> [i for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [i for i in range(10) if i > 5]
[6, 7, 8, 9]

>>> [i for i in range(10) if i**2 > 5]
[3, 4, 5, 6, 7, 8, 9]

306

∗Dictionary comprehension

In addition to list comprehension there is also dictionary
comprehension available:

>>> {x: x**2 for x in range(5)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> {word: len(word) for word in ["dog", "bird", "mouse"]}
{'dog': 3, 'bird': 4, 'mouse': 5}

The structure is

{KEY(OBJECT) : VALUE(OBJECT) for OBJECT in ITERABLE}

307

∗Generator comprehension (advanced)

Generators (see slide 269) can also be created using a
comprehension syntax:

>>> gen = (x**2 for x in range(5))
>>> type(gen)
<class 'generator'>
>>> for item in gen:
... print(item)
...
0
1
4
9
16
>>> list((x**2 for x in range(5)))
[0, 1, 4, 9, 16]
>>>

308

Object Oriented (OO) Programming

Overview

• Motivation and terminology
• Time example

• encapsulation
• defined interfaces to hide data and implementation
• operator overloading
• inheritance
• (teaching example only: normally datetime and others)

• Geometry example
• Objects we have used already
• Summary

309

Motivation

• When programming we often store data
• and do something with the data.
• For example,

• an array keeps the data and
• a function does something with it.

• Programming driven by actions (i.e. calling functions to do
things) is called imperative or procedural programming.

Object Orientation

• merge data and functions (that operate on this data)
together into classes.

(…and objects are “instances of a class”)

310

Terminology

• a class combines data and functions
(think of a class as a blue print for an object)

• objects are instances of a class
(you can build several objects from the same blue print)

• a class contains members
• members of classes that store data are called attributes
• members of classes that are functions are called methods
(or behaviours)

311

Example 1: a class to deal with time

class Time:
def __init__(self, hour, min):

self.hour = hour
self.min = min

def print24h(self):
print(f"{self.hour:2}:{self.min:2}")

def print12h(self):
if self.hour < 12:

ampm = "am"
else:

ampm = "pm"

print(f"{self.hour % 12:2}:{self.min:2} {ampm}")

312

Example 1: a class to deal with time

if __name__ == "__main__":
t = Time(15, 45)

print("print as 24h: "),
t.print24h()
print("print as 12h: "),
t.print12h()

print(f"The time is {t.hour} hours and {t.min} minutes.")

Produces this output:

print as 24h:
15:45
print as 12h:
3:45 pm
The time is 15 hours and 45 minutes.

313

• class Time: starts the definition of a class with name Time

• __init__ is the constructor and is called whenever a new object is
initialised

• all methods in a class need self as the first argument. Self represents
the object.

• variables can be stored and are available everywhere within the object
when assigned to self, such as self.hour in the example.

• in the main program:

• t = Time(15, 45) creates the object t
↔ t is an instance of the class Time

• methods of t can be called like this t.print24h().

This was a mini-example demonstrating how data attributes (i.e. hour and
min) and methods (i.e. print24h() and print12h()) are combined in the
Time class.

314

Members of an object

• In Python, we can use dir(t) to see the members of an object
t. For example:

>>> t = Time(15, 45)
>>> dir(t)
['__class__', '__doc__', ...<entries removed here>....,
'hour', 'min', 'print12h', 'print24h']

• We can also modify attributes of an object using for example
t.hour = 10. However, direct access to attributes is sometimes
supressed (although it may look like direct access→ property).

315

Data hiding (also: information hiding)

• A well designed class provides methods to get and set attributes.

• These methods define the interface to that class.

• Purpose of get and set methods:

• to perform error and consistency checking when values are set
• to hide the implementation of the class (from the user):

• we can change the implementation of the class without
changing the interface (and a user of the class would never
know)

• makes future changes possible

• We introduce set and get methods as one would use in Java and C++ to
reflect the common ground in OO class design. In Python, the use of
property is often preferred over set and get methods.

316

Example 2: a class to deal with time

1 class Time:
2 def __init__(self, hour, min):
3 self.setHour(hour)
4 self.setMin(min)
5

6 def setHour(self, hour):
7 if 0 <= hour <= 23:
8 self._hour = hour
9 else:

10 raise ValueError(f"Invalid hour value: {hour}")
11

12 def setMin(self, min):
13 if 0 <= min <= 59:
14 self._min = min
15 else:
16 raise ValueError(f"Invalid min value: {min}")

317

Example 2: a class to deal with time

18 def getHour(self):
19 return self._hour
20

21 def getMin(self):
22 return self._min
23

24 def print24h(self):
25 print(f"{self.getHour():2}:{self.getMin():02}")
26

27 def print12h(self):
28 if self._hour < 12:
29 ampm = "am"
30 else:
31 ampm = "pm"
32

33 print(f"{self._hour%12:2}:{self._min:2} {ampm}")
34

318

Example 2: a class to deal with time

36 if __name__ == "__main__":
37 t = Time(15, 45)
38

39 print("print as 24h: "),
40 t.print24h()
41 print("print as 12h: "),
42 t.print12h()
43 print(f"that is {t.getHour()} hours and {t.getMin()} minutes")

which produces

print as 24h:
15:45
print as 12h:
3:45 pm
that is 15 hours and 45 minutes

319

Data Hiding summary

• providing set and get methods for attributes of an object

• The pythonic way for get and set functions is through properties. A
property is a special attribute:

• get and set functions are called automatically when the
attribute is accessed or assigned to.

• add these lines to create the properties min and hour:

hour = property(fget=getHour, fset=setHour)
min = property(fget=getMin, fset=setMin)

320

∗Private members

• Advanced: Attributes and methods that the user cannot
access directly are called private.

• In Python, class members can never be truly private. (in
contrast to C++, Java, ...)

• Convention: an attribute starting with an underscore is
private, and should not be accessed directly (by the user
of the class). Example: self._hour

321

Operator overloading

• We constantly use operators to “do stuff” with objects.
• What the operator does, depends on the objects it operates on. For
example:

>>> a = "Hello "; b = "World"
>>> a + b # concatenation
'Hello World'
>>> c = 10; d = 20
>>> c + d # addition
30

• This is called operator overloading because the operation is
overloaded with more than one meaning.

• Other operators include -,* , **, [], (), >, >=, ==, <=, <,
str(), repr(), ...

• We can overload these operators for our own objects. The next slide
shows an example that overloads the > operator for the Time class.

• It also overloads the “str” and “repr“ functions. 322

class Time:
def __init__(self, hour, min):

self.hour, self.min = hour, min

def __str__(self):
"""overloading the str operator (STRing)"""
return f"[{self.hour:2d}:{self.min:2d}]"

def __repr__(self):
"""overloading the repr operator (REPResentation)"""
return f"Time({self.hour:2d}, {self.min:2d})"

def __gt__(self, other):
"""overloading the GreaterThan operator"""
selfminutes = self.hour * 60 + self.min
otherminutes = other.hour * 60 + other.min
return selfminutes > otherminutes

323

if __name__ == "__main__":
t1 = Time(15, 45)
t2 = Time(10, 55)

print(f"Informal string representation of t1: {str(t1)}")
print(f"Representation of object = {repr(t1)}")

print("compare t1 and t2: "),
if t1 > t2:

print("t1 is greater than t2")

Output:

Informal string representation of t1: [15:45]
Representation of object = Time(15, 45)
compare t1 and t2:
t1 is greater than t2

324

Inheritance

• Sometimes, we need classes that share certain (or very
many, or all) attributes but are slightly different.

• Example 1: Geometry
• a point (in 2 dimensions) has an x and y attribute
• a circle is a point with a radius
• a cylinder is a circle with a height

• Example 2: People at universities
• A person has an address.
• A student is a person and selects modules.
• A lecturer is a person with teaching duties.
• …

• In these cases, we can define a base class (or parent
class) and derive other classes from it.

• This is called inheritance

325

Inheritance example Time

class Time:
def __init__(self, hour, min):

self.hour = hour
self.min = min

def __str__(self):
"""overloading the str operator (STRing)"""
return f"[{self.hour:2}:{self.min:02}]"

def __gt__(self, other):
"""overloading the GreaterThan operator"""
selfminutes = self.hour * 60 + self.min
otherminutes = other.hour * 60 + other.min
return selfminutes > otherminutes

326

Inheritance example Time

class TimeUK(Time):
"""Derived (or inherited class)"""
def __str__(self):

"""overloading the str operator (STRing)"""
if self.hour < 12:

ampm = "am"
else:

ampm = "pm"

return f"[{self.hour%12:2}:{self.min:02} {ampm}]"

if __name__ == "__main__":
t3 = TimeUK(15, 45)
t4 = Time(16, 15)
print(t3)
print(t4)

if t3 > t4:
print("t3 is greater than t4")

else:
print("t3 is not greater than t4") 327

Inheritance example Time

Output:

[3:45 pm]
[16:15]
t3 is not greater than t4

328

*Inheritance example Geometry

import math

class Point: # this is the base class
"""Class that represents a point"""

def __init__(self, x=0, y=0):
self.x = x
self.y = y

class Circle(Point): # is derived from Point
"""Class that represents a circle"""

def __init__(self, x=0, y=0, radius=0):
Point.__init__(self, x, y)
self.radius = radius

def area(self):
return math.pi * self.radius**2

329

*Inheritance example Geometry

class Cylinder(Circle): # is derived from Circle
"""Class that represents a cylinder"""

def __init__(self, x=0, y=0, radius=0, height=0):
Circle.__init__(self, x, y, radius)
self.height = height

def volume(self):
return self.area() * self.height

if __name__ == "__main__":
d = Circle(x=0, y=0, radius=1)
print("circle area:", d.area())
print("attributes of circle object are")
print([name for name in dir(d) if name[:2] != "__"])
c = Cylinder(x=0, y=0, radius=1, height=2)
print("cylinder volume:", c.volume())
print("attributes of cylinder object are")
print([name for name in dir(c) if name[:2] != "__"])

330

*Inheritance example Geometry

Output:

circle area: 3.141592653589793
attributes of circle object are
['area', 'radius', 'x', 'y']
cylinder volume: 6.283185307179586
attributes of cylinder object are
['area', 'height', 'radius', 'volume', 'x', 'y']

331

*Inheritance (2)

• if class A should be derived from class B we need to use
this syntax:
class A(B):

• Can call constructor of base class explicitly if necessary
(such as in Circle calling of Point.__init__(...))

• Derived classes inherit attributes and methods from base
class (see output on previous slide: for example the
cylinder and circle object have inherited x and y from the
point class).

332

*super()

In the Circle class definition, we can replace

Point.__init__(self, x, y)

with

super().__init__(x, y)

as a short cut to call a method from the (single) parent class.

(Same for the Cylinder class definition.)

333

Everything in Python is an object

All “things” in Python are objects, including numbers, strings and
functions.

>>> dir(42) # numbers are objects
>>> dir(list) # list is an object
>>> import math
>>> dir(math) # modules are objects
>>> dir(lambda x: x) # functions are objects

334

Summary Object Oriented Programming

Summary
• Object orientation is about merging data and functions
into one object (sometimes called encapsulation).

• Data hiding (through get and set methods) makes the
classes more flexible: easier to maintain, possible to
change internal implementation

• Through operator overloading we can make working with
the objects more convenient and more flexible

• Classes can be derived from other classes: facilitates
re-use of code

335

Typing

Dynamic Typing

Python derives flexibility from being dynamically typed:

def add(x, y):
"""Type of x and y is dynamic."""
print(f"Type of {x=} is {type(x)}")
return x + y

print(add(10, 20))
print(add("Hello", " World"))

Output:

Type of x=10 is <class 'int'>
30
Type of x='Hello' is <class 'str'>
Hello World

336

Duck typing — behaviour more important than type

def print_length(x):
"""Works for every object with __len__ method."""
print(f"The object of type {type(x)} has length {len(x)}.")

class Len42class:
"""A class where every object has length 42."""
def __len__(self):

return 42

x = [10, 20]
print_length(x) # list has length
y = Len42class() # y has length
print_length(y)

Output:

The object of type <class 'list'> has length 2.
The object of type <class '__main__.Len42class'> has length 42.

337

Static typing

• More formal “static typing” information can be useful:
• better (machine readable) documentation of types
• static type checking may discover mistakes
• editors/IDEs can use static type information
• potential execution speed-up (see cython)

• Typing module for type annotation introduced in Python
3.5

• Relevant PEPs: PEP483 and PEP484
• More concise introduction to typing realpython.com

338

https://docs.python.org/3/library/typing.html
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://realpython.com/python-type-checking/#static-type-checking

Type annotation example

• Function type annotation: expect str and return str

1 def hello(name: str) -> str:
2 """Given a name, return 'Hello ' + name."""
3 return "Hello " + name
4

5 hello("Paul") # correct function call
6 hello(42) # incorrect type

• Can use mypy to do static type analysis:

typing-static1.py:6: error: Argument 1 to "hello" has
incompatible type "int"; expected "str" [arg-type]↪→

Found 1 error in 1 file (checked 1 source file)

339

Gradual typing

• gradual introduction of type annotations is possible: can
introduce type annotation for some functions only

• effective to annotate most heavily used functions first
• they are called from other places
• accidental calls with incorrect types can be discovered

340

Gradual typing example

•1 def mysum(a: int, b: int) -> int:
2 """Expect two ints and return the sum."""
3 return a + b
4

5 def f_without_types(x):
6 """Return x. A function without type annotation."""
7 return x
8

9 print(mysum(2, 3))
10 print(mysum("Hello", 2023)) # will not work

• Can use mypy to do static type analysis:

typing-gradual.py:10: error: Argument 1 to "mysum" has
incompatible type "str"; expected "int" [arg-type]↪→

Found 1 error in 1 file (checked 1 source file)

341

Type annotation summary

Typing in Python

• no need to specify types in Python (“dynamically typed”)
• we can provide type annotation to hint at the expected
type

• but Python interpreter does not check/enforce the type

Why (gradual) type annotations?

• contributes to documentation
• external tools can check typing (such as mypy)
• editors may use the information (e.g. for autocompletion)

342

Interpolation

Interpolation of discrete data points

Piecewise constant interpolation

Linear interpolation

Polynomial interpolation
Source: https://en.wikipedia.org/wiki/Interpolation

343

https://en.wikipedia.org/wiki/Interpolation

Interpolation of data

Given a set of N points (xi, yi) with i = 1, 2, . . .N, we sometimes
need a function f(x) which returns yi = f(xi) and interpolates
the data between the xi.

• → y0 = scipy.interpolate.interp1d(x, y) provides
this interpolation

• interp1d returns a callable y0 which interpolates the x-y
data for any given x when called as y0(x).

• Data interpolation of yi = f(xi) may be useful to
• create smoother plots of f(x)
• find minima/maxima of f(x)
• find xc so that f(xc) = yc, provide inverse function x = f−1(y)
• integrate f(x)

344

Interpolation example
import matplotlib.pyplot as plt
import numpy as np
import scipy.interpolate

def create_data(n):
"""Given an integer n, returns n data points x and values y as a numpy.array."""
xmax = 5.0
x = np.linspace(0, xmax, n)
y = -x**2
y += 1.5 * np.random.normal(size=len(x)) # make y-data somewhat irregular
return x, y

n = 10
x, y = create_data(n) # input data (such as a measurement)
xfine = np.linspace(0.1, 4.9, n * 100) # use finer and regular mesh for plot
interpolate with piecewise constant function (p=0):
y0 = scipy.interpolate.interp1d(x, y, kind="nearest")
interpolate with piecewise linear func (p=1):
y1 = scipy.interpolate.interp1d(x, y, kind="linear")
interpolate with cubic spline:
y2 = scipy.interpolate.interp1d(x, y, kind="cubic")

fig, ax = plt.subplots()
ax.plot(x, y, "o", label="data point")
ax.plot(xfine, y0(xfine), label="nearest")
ax.plot(xfine, y1(xfine), label="linear")
ax.plot(xfine, y2(xfine), label="cubic")
ax.legend(); ax.set_xlabel("x"); fig.savefig("interpolate.pdf") 345

Interpolation example

0 1 2 3 4 5
x

25

20

15

10

5

0
data point
nearest
linear
cubic

346

Closures

Returning function objects

We have seen that we can pass function objects as arguments
to a function. Now we look at functions that return function
objects.

Example (closure_adder42.py):

def make_add42():
def add42(x):

return x + 42
return add42

add42 = make_add42()
print(add42(2)) # output is '44'

347

Closures

A closure (Wikipedia) is a function with bound variables. We often
create closures by calling a function that returns a (specialised)
function. For example (closure_adder.py):

import math

def make_adder(y):
def adder(x):

return x + y
return adder

add42 = make_adder(42)
addpi = make_adder(math.pi)
print(add42(2)) # output is 44
print(addpi(-3)) # output is 0.14159265359

348

http://en.wikipedia.org/wiki/Closure_(computer_science)

Common Computational Tasks

Overview working with functions and data

differentiation

integration

root finding

optimisation

interpolation

curve fitting

quad

brentq, solve

fmin

Interp1d

curve fitting 349

Overview common computational tasks

• Data file processing, python, numpy & pandas

• Data cleaning, data engineering, tabular data (pandas)
• Linear algebra fast arrays (numpy)
• Random number generation and Fourier transforms
(numpy)

• Interpolation of data (scipy.interpolate.interp)
• Fitting a curve to data (scipy.optimize.curve_fit)
• Integrating a function numerically
(scipy.integrate.quad)

• Integrating a ordinary differential equation numerically
(scipy.integrate.solve_ivp)

350

Overview common computational tasks

• Finding the root of a function (scipy.optimize.fsolve,
scipy.optimize.brentq)

• Minimising or maximising a function
(scipy.optimize.fmin)

• Symbolic manipulation of terms, including integration,
differentiation and code generation (sympy)

All in the following (third party) python packages:

scipy, numpy, pandas, sympy

351

Curve fitting

Curve fitting

Given n data points (xi, yi), i = 1, . . . ,n, and a model y = f(x, p⃗),
with model parameters p⃗ = (p1,p2, ...), find coefficients p⃗ so
that yi = f(xi, p⃗) describes the data “best”.

0 1 2 3 4 5
x

2

3

4

5

6

7

8

y

Linear regression

data xi, yi

fit f(x) = ax + b with parameters a=1.02 b=1.98

Wikipedia: Curve fitting 352

https://en.wikipedia.org/wiki/Curve_fitting

Curve fitting example: parabola

0 1 2 3 4 5
x

15

10

5

0

5

10

data points
fit f(x) = ax2 + bx + c with a=-1.05 b=0.425 c=9.46

353

Curve fitting example: parabola

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy.optimize
4

5 def create_data(n):
6 """Given an integer n, returns n data points
7 x and values y as a numpy.array."""
8 xmax = 5.0
9 x = np.linspace(0, xmax, n)

10 y = -x**2 + 10 # i.e. a=-1 b=0 c=10
11 # make y-data somewhat irregular
12 y += 1.5 * np.random.normal(size=len(x))
13 return x, y
14

15 def model(x, a, b, c): # Equation for fit
16 """Return ax^2 + bx + c."""
17 return a * x ** 2 + b * x + c
18

19 # main program
20 n = 100
21 x, y = create_data(n)
22 # do curve fit
23 p, pcov = scipy.optimize.curve_fit(model, x, y)
24 a, b, c = p
25 # plot fit and data
26 xfine = np.linspace(0.1, 4.9, n * 5)
27 fig, ax = plt.subplots()
28 ax.plot(x, y, "o", label="data points")
29 label = fr"fit $f(x) = ax^2 + bx + c$ with {a=:.3} {b=:.3} {c=:.3}"
30 ax.plot(xfine, model(xfine, a, b, c), label=label)
31 ax.legend()
32 ax.set_xlabel("x")
33 fig.savefig("curvefit2.pdf")

354

Curve fitting example: parabola

fig, ax = plt.subplots()
ax.plot(x, y, "o", label="data points")
label = fr"fit $f(x) = ax^2 + bx + c$ with {a=:.3} {b=:.3} {c=:.3}"
ax.plot(xfine, model(xfine, a, b, c), label=label)
ax.legend()
ax.set_xlabel("x")
fig.savefig("curvefit2.pdf")

355

Curve fitting example: exponential function

4 2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5 data points
fit f(x) = aexp(x/b) with a=0.198 b=-1.97

356

Curve fitting example: exponential function

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy.optimize
4

5 def create_data(n):
6 """Given an integer n, returns n data points
7 x and values y as a numpy.array."""
8 xmax = 5.0
9 x = np.linspace(-xmax, xmax, n)

10 y = 0.2*np.exp(x/-2) # i.e. a=0.2 b=-1
11 # make y-data somewhat irregular
12 y += 0.1 * np.random.normal(size=len(x))
13 return x, y
14

15 def model(x, a, b): # Equation for fit
16 """Return a*exp(x/b)."""
17 return a * np.exp(x/b)
18 357

Curve fitting example: exponential function

19 # main program
20 n = 100
21 x, y = create_data(n)
22 # do curve fit, and provide initial guess p0 = (a, b)
23 p, pcov = scipy.optimize.curve_fit(model, x, y, p0=(1, -1))
24 a, b = p # extract result of curve_fit
25

26 # plot fit and data
27 xfine = np.linspace(-4.9, 4.9, n * 5)
28 fig, ax = plt.subplots()
29 ax.plot(x, y, "o", label="data points")
30 label = fr"fit $f(x) = a\exp(x/b)$ with {a=:.3} {b=:.3}"
31 ax.plot(xfine, model(xfine, a, b), label=label)
32 ax.legend()
33 ax.set_xlabel("x")
34 fig.savefig("curvefit3.pdf")

358

Curve fitting

• The curve fitting process is mapped onto a optimisation
problem:

• Algorithm tries to minimise the error of the fit for the
given data

• by varying the model parameters.
• A good initial guess (p0) may be needed.

359

Optimisation

Optimisation example: garden fence

garden
area A

a

b

fence

Optimisation problem:

• The shape of the fenced area must be a rectangle (side
lengths a and b).

• We have L = 100m of fence available.
• We want to maximise the enclosed garden area A = ab.
• What are the optimal values for a and b?

360

Optimisation example: strategy

garden
area A

a

b

fence

How do we find a and b that optimise the area A(a,b)?

• We know L = 100m = 2a+ 2b
• So we have only one unknown: when a is fixed, then b is
given by b = (L− 2a)/2.

• Change a systematically to find best largest value of A.

361

Optimisation example: attempt 1 1/3

import matplotlib.pyplot as plt

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
for a given a, what is length b to use all 100m?
L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2

362

Optimisation example: attempt 1 2/3

main program
side_lengths = [] # collect the side length a
areas = [] # collect the associated areas

vary side length of fence a [in metres]
for a in range(10, 40, 5):

side_lengths.append(a)
areas.append(fenced_area(a))

plt.plot(side_lengths, areas, '-o')
plt.xlabel('a [m]')
plt.ylabel('garden area [m^2]')
plt.grid(True)
plt.savefig('optimisation-fence.pdf')

363

Optimisation example: attempt 1 3/3

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a

[m
^2

]

364

Optimisation example: “educational example”

We show one strategy to solve an optimisation problem with a
simple example so we can focus on the strategy.

For the given fence problem:

• we can guess the correct answer
• there are better ways to find the result with the computer
• we can find the correct answer analytically

Analytical solution

• A(a) = ab = a (L−2a)
2 = aL

2 − a
2

• Find maximum using dA
da

!
= 0 : dA

da = L
2 − 2a⇒ a = L

4

• b = L−2a
2 ⇒ b = L

4

• Check d2A
da2 = −2 < 0⇒ A

(L
4
)
is maximum. ✓

365

Optimisation

Optimisation (Minimisation)

• Optimisation typically described as: given a (“objective”)
function f(x), find xm so that f(xm) is the (local) minimum
of f.

• Optimisation algorithms need to be given a starting point
(initial guess x0 as close as possible to xm)

• Minimum position x obtained may be local (not global)
minimum

To maximise a function f(x), create a second function
g(x) = −f(x) and minimise g(x).

366

Optimisation example: parabola

from scipy import optimize

def f(x):
"""parabola - minimum at x=0"""
return x**2

minimum = optimize.fmin(f, 1)
print("======= Result: ==========")
print(minimum)

Code produces this output:

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 17
Function evaluations: 34

======= Result: ==========
[-8.8817842e-16] 367

Optimisation example: garden fence

garden
area A

a

b

fence

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a

[m
^2

]

368

Optimisation example: garden fence
from scipy.optimize import fmin

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
for a given a, what is length b to use all 100m?
L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2
return a*b # area that fence encloses

def objective_function(a):
return -1*fenced_area(a)

main program
a0 = 10 # m, initial guess for fence length of a
a_opt = fmin(objective_function, a0)
print("======= Result: ==========")
print(a_opt)

369

Optimisation example: garden fence

Code produces this output:

Optimization terminated successfully.
Current function value: -625.000000
Iterations: 22
Function evaluations: 44

======= Result: ==========
[25.]

370

Optimisation example: multiple minima
1 import numpy as np
2 from scipy.optimize import fmin
3 import matplotlib.pyplot as plt
4
5 def f(x): # objective function
6 return np.cos(x) - 3 * np.exp(-((x - 0.2) ** 2))
7
8 # find minima of f(x),
9 # starting from 1.0 and 2.0 respectively

10 minimum1 = fmin(f, 1.0)
11 print("Start search at x=1., minimum is", minimum1)
12 minimum2 = fmin(f, 2.0)
13 print("Start search at x=2., minimum is", minimum2)
14
15 # plot function
16 x = np.arange(-10, 10, 0.1)
17 y = f(x)
18 fig, ax = plt.subplots()
19 ax.plot(x, y, label=r"$\cos(x)-3e^{-(x-0.2)^2}$")
20 ax.set_xlabel("x")
21 ax.set_xlabel("$f(x)$")
22 ax.grid()
23 ax.axis([-5, 5, -2.2, 0.5])
24
25 # add minimum1 to plot

371

Optimisation example: multiple minima
26 ax.plot(minimum1, f(minimum1), "vr", label="minimum 1")
27 # add start1 to plot
28 ax.plot(1.0, f(1.0), "or", label="start 1")
29
30 # add minimum2 to plot
31 ax.plot(minimum2, f(minimum2), "vg", label="minimum 2")
32 # add start2 to plot
33 ax.plot(2.0, f(2.0), "og", label="start 2")
34
35 ax.legend(loc="lower left")
36 fig.savefig("fmin1.pdf")

Code produces this output:

Optimization terminated successfully.
Current function value: -2.023866
Iterations: 16
Function evaluations: 32

Start search at x=1., minimum is [0.23964844]
Optimization terminated successfully.

Current function value: -1.000529
Iterations: 16
Function evaluations: 32

Start search at x=2., minimum is [3.13847656]

372

Optimisation example: multiple minima

4 2 0 2 4
f(x)

2.0

1.5

1.0

0.5

0.0

0.5

cos(x) 3e (x 0.2)2

minimum 1
start 1
minimum 2
start 2

373

FIFO example and Object Oriented
Programming (OOP)

Object Orientation (OO) and Closures

Earlier, we did an exercise for a first-in-first-out queue. At the
time, we used a global variable to keep the state of the queue.
To compare different approaches, the following slides show:

1. the original FIFO-queue solution (using a global variable,
generally not good)

2. a modified version where the queue variable is passed to
every function (→ this is object oriented programming
without objects)

3. an object oriented version (where the queue data is part
of the queue object). Probably the best solution, see OO
programming for details.

4. a version based on closures (where the state is part of the
closures)

374

Original FIFO solution (fifoqueue.py)

queue = []
def length():

"""Returns number of waiting customers"""
return len(queue)

def show():
"""print list of customers, longest waiting customer at end."""
for name in queue:

print(f"waiting customer: {name}")

def add(name):
"""Customer with name 'name' joining the queue"""
queue.insert(0, name)

def next_():
"""Returns name of next to serve, removes customer from queue"""
return queue.pop()

add('Spearing'); add('Fangohr'); add('Takeda')
show(); next_()

375

Improved FIFO solution (local variables)

Improved FIFO solution (fifoqueue2.py)

def length(queue):
return len(queue)

def show(queue):
for name in queue:

print(f"waiting customer: {name}")

def add(queue, name):
queue.insert(0, name)

def next_(queue):
return queue.pop()

q1 = []
q2 = []
add(q1, 'Spearing'); add(q1, 'Fangohr'); add(q1, 'Takeda')
add(q2, 'John'); add(q2, 'Peter')
print(f"{length(q1)} customers in queue1:"); show(q1)
print(f"{length(q2)} customers in queue2:"); show(q2) 376

Object-Oriented FIFO solution (fifoqueueOO.py)

class Fifoqueue:
def __init__(self):

self.queue = []

def length(self):
return len(self.queue)

def show(self):
for name in self.queue:

print(f"waiting customer: {name}")

def add(self, name):
self.queue.insert(0, name)

def next_(self):
return self.queue.pop()

q1 = Fifoqueue(); q2 = Fifoqueue()
q1.add('Spearing'); q1.add('Fangohr'); q1.add('Takeda')
q2.add('John'); q2.add('Peter')
print(f"{q1.length()} customers in queue1:"); q1.show() 377

*Functional (closure) FIFO solution (fifoqueue_closure.py)

def make_queue():
queue = []
def length():

return len(queue)

def show():
for name in queue: print(f"waiting customer: {name}")

def add(name):
queue.insert(0, name)

def next_():
return queue.pop()

return add, next_, show, length

q1_add, q1_next, q1_show, q1_length = make_queue()
q2_add, q2_next, q2_show, q2_length = make_queue()
q1_add('Spearing'); q1_add('Fangohr'); q1_add('Takeda')
q2_add('John'); q2_add('Peter')
print(f"{q1_length()} customers in queue1:"); q1_show()
print(f"{q2_length()} customers in queue2:"); q2_show() 378

*Advanced: Using double-ended-queue (deque)

Specialised double-ended-queue data structure deque [1] available in the
collections module of python:
[1] https://docs.python.org/3/library/collections.html#collections.deque

from collections import deque

def length(queue):
return len(queue)

def show(queue):
for name in queue:

print(f"waiting customer: {name}")

def add(queue, name):
queue.appendleft(name)

def next_(queue):
return queue.pop()

q1 = deque()
add(q1, 'Spearing'); add(q1, 'Fangohr'); add(q1, 'Takeda') 379

https://docs.python.org/3/library/collections.html#collections.deque

Lessons (Object Orientation)

Object orientation (OO):

• one important idea is to combine data and functions
operating on data (in objects),

• objects contain data but
• access to data through interface (implementation details
irrelevant to user)

• can program in OO style without OO-programming
language:

• as in FIFO2 solution
• as in closure based approach

• OO mainstream programming paradigm (Java, C++, C#, ...)
• Python supports OO programming, and all things in
Python are objects (see also slides 355 pp)

380

Functional tools: lambda, map, filter,
reduce

More list processing and functional programming

• So far, have processed lists by iterating through them
using for-loop

• perceived to be conceptually simple (by most learners)
but

• not as compact as possible and not always as fast as
possible

• Alternatives:
• list comprehension
• map, filter, reduce, often used with lambda

381

Anonymous function lambda

• lambda: anonymous function (function literal)
• Useful to define a small helper function that is only
needed once

382

Anonymous function lambda

>>> lambda a: a
<function <lambda> at 0x319c70>
>>> lambda a: 2 * a
<function <lambda> at 0x319af0>
>>> (lambda a: 2 * a)
<function <lambda> at 0x319c70>
>>> (lambda a: 2 * a)(10)
20
>>> (lambda a: 2 * a)(20)
40
>>> (lambda x, y: x + y)(10, 20)
30
>>> (lambda x, y, z: (x + y) * z)(10, 20, 2)
60
>>> type(lambda x, y: x + y)
<type 'function'>

383

Lambda usage example 1

Integrate f(x) = x2 from 0 to 2 (numerically):

• Without lambda (lambda1.py):

from scipy.integrate import quad
def f(x):

return x**2

y, abserr = quad(f, a=0, b=2)
print(f"value is {y:f} +- {abserr:g}")

• With lambda (lambda1b.py):

from scipy.integrate import quad
y, abserr = quad(lambda x: x**2, a=0, b=2)
print(f"value is {y:f} +- {abserr:g}")

Output (same for both programs):

value is 2.666667 +- 2.96059e-14 384

Higher order functions

Roughly: “Functions that take or return functions” (see for
example Wikipedia entry)

Rough summary (check help(COMMAND) for details)

• map(function, iterable)→ iterable:
apply function to all elements in iterable

• filter(function, iterable)→ iterable:
return items of iterable for which function(item) is true.

• reduce(function, iterable, initial)→ value:
apply function(x,y) from left to right to reduce iterable to a
single value.

Note that sequences are iterables.

385

http://en.wikipedia.org/wiki/Higher-order_function

Map

• map(function, iterable) → iterable:
apply function to all elements in sequence

• Example:

>>> def f(x):
... return x ** 2
>>> map(f, [0, 1, 2, 3, 4])
<map object at 0x1026a52e8> # this is iterable
>>> list(map(f, [0, 1, 2, 3, 4])) # convert to list
[0, 1, 4, 9, 16]

• lambda converts an expression (x ** 2) to a function:

>>> list(map(lambda x: x ** 2, [0, 1, 2, 3, 4]))
[0, 1, 4, 9, 16]

• Equivalent operation using list comprehension:

>>> [x ** 2 for x in [0, 1, 2, 3, 4]]
[0, 1, 4, 9, 16]

386

Examples map

• Example (maths):
>>> import math
>>> list(map(math.exp, [0, 0.1, 1.]))
[1.0, 1.1051709180756477, 2.718281828459045]

• Example (slug):

>>> news="Python programming occasionally \
... more fun than expected"
>>> slug = "-".join(map(
... lambda w: w[0:6], news.split()))
>>> slug
'Python-progra-occasi-more-fun-than-expect'

Equivalent list comprehension expression:

>>> slug = "-".join([w[0:6] for w in news.split()])

387

Filter

filter(function, iterable)→ iterable:

return items of iterable for which function(item) is true:

>>> def is_positive(n): # returns True for positive n
... return n > 0
>>> list(filter(is_positive,
... [-3, -2, -1, 0, 1, 2, 3, 4]))
[1, 2, 3, 4]
>>> list(filter(lambda n: n > 0,
... [-3, -2, -1, 0, 1, 2, 3, 4]))
[1, 2, 3, 4]

List comprehension equivalent:

>>> [n for n in [-3, -2, -1, 0, 1, 2, 3, 4] if n > 0]
[1, 2, 3, 4]

388

Examples filter

>>> c = "The quick brown fox jumps".split()
>>> print(c)
['The', 'quick', 'brown', 'fox', 'jumps']
>>> def len_gr_4(s): # return True if s has >4 letters
... return len(s) > 4
>>> list(map(len_gr_4, c))
[False, True, True, False, True]
>>> filter(len_gr_4, c)
<filter object at 0x10522e5c0>
>>> list(filter(len_gr_4, c))
['quick', 'brown', 'jumps']
>>> list(filter(lambda s: len(s) > 4, c)
['quick', 'brown', 'jumps']

389

Examples filter

Equivalent operation using list comprehension:

>>> [s for s in c if len(s) > 4]
['quick', 'brown', 'jumps']

390

Reduce

• functools.reduce(function, iterable, initial) → value:
apply function(x, y) from left to right to reduce iterable to a single
value.

• Examples:

>>> from functools import reduce
>>> def f(x, y):
... print(f"Called with {x=}, {y=}")
... return x + y
...
>>> reduce(f, [1, 3, 5], 0)
Called with x=0, y=1
Called with x=1, y=3
Called with x=4, y=5
9

391

Reduce

>>> reduce(f, [1, 3, 5], 100)
Called with x=100, y=1
Called with x=101, y=3
Called with x=104, y=5
109
>>> reduce(f,"test","")
Called with x=, y=t
Called with x=t, y=e
Called with x=te, y=s
Called with x=tes, y=t
'test'
>>> reduce(f,"test","FIRST")
Called with x=FIRST, y=t
Called with x=FIRSTt, y=e
Called with x=FIRSTte, y=s
Called with x=FIRSTtes, y=t
'FIRSTtest'

392

*Operator module

• operator module contains functions which are typically
accessed not by name, but via some symbols or special
syntax.

• For example 3 + 4 is equivalent to operator.add(3, 4).
Thus:

def f(x, y):
return x + y

reduce(f, range(10), 0)

can also be written as:

393

*Operator module

reduce(operator.add, range(10), 0)

Note: could also use:

reduce(lambda x, y: x + y, range(10), 0)

but use of operator module is preferred (often faster) as
the functionality is already provided in a function.

394

Functional programming

• Functions like map, reduce and filter are found in just
about any lanugage supporting functional programming.

• provide functional abstraction for commonly written loops
• Use those (and/or list comprehension) instead of writing
loops, because

• Writing loops by hand is quite tedious and error-prone.
• The functional version is often clearer to read.
• The functional version can result in faster code (if you can
avoid lambda)

395

What command to use when?

• lambda allows to define a (usually simple) function ”in-place”.
We need this to convert an expression into a function.

• map transforms a sequence to another sequence (of same
length) using a function

• filter filters a sequence (reduces number of elements) using a
function

• list comprehension transforms a list (can include filtering)
using an expression

• if you need to use a lambda in a map, you are probably better off using list
comprehension.

• if you have a function to apply, map is more compact than a list
comprehension.

• reduce carries out an operation that ”collects” information
(sum, product, ...), for example reducing the sequence to a
single number.

396

Example: squaring elements in list with expression x**2

Some alternatives:

>>> res = []
>>> for x in range(5):
... res.append(x ** 2)
...
>>> res
[0, 1, 4, 9, 16]

>>> [x ** 2 for x in range(5)]
[0, 1, 4, 9, 16]

>>> list(map(lambda x: x ** 2, range(5)))
[0, 1, 4, 9, 16]

397

Example: squaring elements in list with function f

>>> def f(x):
... return x**2

>>> res = []
>>> for x in range(5):
... res.append(f(x))
...
>>> res
[0, 1, 4, 9, 16]

>>> [f(x) for x in range(5)]
[0, 1, 4, 9, 16]

>>> list(map(f, range(5)))
[0, 1, 4, 9, 16]

398

Scientific Python

SciPy (SCIentific PYthon)

(Partial) output of help(scipy):

constants --- Physical and math. constants and units
integrate --- Integration routines
interpolate --- Interpolation Tools
io --- Data input and output (also matlab)
linalg --- Linear algebra routines
ndimage --- N-D image package
optimize --- Optimization Tools
signal --- Signal Processing Tools
sparse --- Sparse Matrices
spatial --- Spatial data structures and algorithms
special --- Special functions
stats --- Statistical Functions

399

Root finding

Rootfinding

Root finding
• Given a function f(x),
• we are searching an x0 so
f(x0) = 0.

• We call x0 a root of f(x). 2.0 1.5 1.0 0.5 0.0 0.5 1.0
x

10

5

0

5

x0 = 1

f(x) = (x 1)3 + 8

Why?

• Many science and engineering problems lead to equations
of the type f(x) = 0

400

Rootfinding: find crossing of two functions

• Often we have two functions f1(x) and f2(x), and we are looking for x0
so that f1(x0) = f2(x0) (red dot, left plot).

• in that case, we define g(x) = f2(x)− f1(x) and find a root for g(x) (red
dot, right plot)

4 2 0 2 4
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x0

f1(x)
f2(x)

4 2 0 2 4
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x0

g(x) = f2(x) f1(x)

Note that f2(x) could be a constant, such as f2(x) = 100 if we want to find the value x0 for which f1(x0) = 100. 401

Example

• Find root of function f(x) = x2(x− 2)
• f has a double root at x = 0, and a single root at x = 2.
• Ask algorithm to find single root at x = 2.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

3

2

1

0

1

2

3

f(x
)=

x3
2x

2
=

x2 (
x

2)

402

Using BrentQ algorithm from scipy

from scipy.optimize import brentq

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = brentq(f, a=1.5, b=3, xtol=1e-6)

print(f"Root is approx {x}.")
print(f"The exact error is {2-x}.")

produces:

Root is approx 2.0000000189582865.
The exact error is -1.8958286496228993e-08.

403

Rootfinding for f(x) = 0 (scalar x): BrentQ

• To solve f(x) = 0 with o scalar x, we recommend the
BrentQ method

• Assumptions:
• We have the function f available as a Python function
• The function f has a single root between a and b
• The function is continuous

• The BrentQ method
• will find and return the root x ∈ [a,b]
• will use a fast (Newton) method if possible.

404

Root finding summary

• Given the function f(x), applications for root finding
include:

• to find x1 so that f(x1) = y for a given y (this is equivalent to
computing the inverse of the function f).

• to find crossing point xc of two functions f1(x) and f2(x) (by
finding root of difference function g(x) = f1(x)− f2(x))

• Recommended method: scipy.optimize.brentq which
combines the safe feature of the bisect method with the
speed of the Newton method.

• ∗For multi-dimensional functions f(x), use
scipy.optimize.fsolve.

405

∗Using fsolve for multi-dimensional root-finding problem

from scipy.optimize import fsolve # multidimensional solver

def f(v):
"""Return f(x, y) = (x^3, y). Trivial example with
root at x=0 and y=-1"""
x, y = v
return x**3, y+1

x, y = fsolve(f, x0=[2, 2]) # start search from x=2, y=2
print(f"Root is approximately at\nx={float(x)} "

f"and y={float(y)}")

produces:

Root is approximately at
x=1.0586069199901217e-16 and y=-1.0

406

The bisection algorithm

• Function: bisect(f, a, b)
• Assumptions:

• Given: a (float)
• Given: b (float)
• Given: f(x), continuous with single root in [a,b], i.e.
f(a)f(b) < 0

• Given: ftol (float), for example ftol = 10−6

The bisection method returns x so that |f(x)| < ftol.

1. x = (a+ b)/2
2. while |f(x)| > ftol do

• if f(x)f(a) > 0
then a← x # throw away left half
else b← x # throw away right half

• x = (a+ b)/2
3. return x 407

The bisection algorithm

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)

f(a0)

a0
f(b0)

b0

f(x0)

iteration 0

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)

f(a1)

a1 f(b1) b1

f(x1)

iteration 1

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)

f(a2)

a2

f(b2)

b2

f(x2)

iteration 2

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)
f(a3)

a3

f(b3)

b3

f(x3)

iteration 3

408

The bisection function from scipy

• Scientific Python provides an interface to the “Minpack”
library. One of the functions is

• scipy.optimize.bisect(f, a, b[, xtol])
• f is the function for which we search x such that f(x) = 0
• a is the lower limit of the bracket [a,b] around the root
• b is the upper limit of the bracket [a,b] around the root
• xtol is an optional parameter that can be used to modify
the default accuracy of xtol = 10−12

• the bisect function stops ’bisecting’ the interval around
the root when |b−a| < xtol.

409

Using bisection algorithm from scipy

from scipy.optimize import bisect

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = bisect(f, a=1.5, b=3, xtol=1e-6)

print(f"Root is approx {x}.")
print(f"The exact error is {x-2}.")
print(f"Error is less than 1e-6: {abs(x-2)<1e-6}")

produces

Root is approx 2.000000238418579.
The exact error is 2.384185791015625e-07.
Error is less than 1e-6: True

410

Rootfinding: the Newton method

• Aim: find xroot so that f(xroot) = 0.
• Idea: close to the root xroot, the tangent of f(x) is likely to
point to the root. Make use of this information.

• Algorithm:
while |f(x)| >ftol, do

xn+1 = xn −
f(xn)
f′(xn)

where f′(x) = df
dx(x).

• fast convergence (much better than bisection method)
• but not guaranteed to converge.
• Need a good initial guess x0 for the root.
• Need a way to compute (or approximate) f′(x) ≡ df

dx(x).

411

The Newton method (tol=1e-15)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

f(x
)=

x2 (
x

2)
=

x3
2x

2

f(x0)

f(x1)

f(x2)

f(x3)

x0 = 1.600000000000000; f(x0) = -1.024000000000000
x1 = 2.399999999999999; f(x1) = 2.303999999999997
x2 = 2.100000000000000; f(x2) = 0.440999999999999
x3 = 2.008695652173913; f(x3) = 0.035085723678803
x4 = 2.000074640791193; f(x4) = 0.000298585450178
x5 = 2.000000005570624; f(x5) = 0.000000022282496
x6 = 2.000000000000000; f(x6) = 0.000000000000000

412

Comparison Bisection & Newton method

Bisection method
• Requires root in bracket
[a,b]

• guaranteed to converge
(for single roots)

• Library function:
scipy.optimize.bisect

Newton method
• Requires good initial guess
x for root x0

• may never converge
• but if it does, it is quicker
than the bisection method

• Library function:
scipy.optimize.newton

In practice, start with brentq, which combines advantages of
bisect and newton.

413

Computing derivatives numerically

Overview

Motivation:

• We need derivatives of functions for some optimisation
and root finding algorithms

• Not always is the function analytically known (but we are
usually able to compute the function numerically)

• The material presented here forms the basis of the
finite-difference technique that is commonly used to
solve ordinary and partial differential equations.

414

From analytical maths to numerics: 1st derivative

• One definition of derivative (or “differential operator” d
dx):

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x− h)
2h

• Use difference operator to approximate differential
operator

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x− h)
2h ≈ f(x+ h)− f(x− h)

2h

• ⇒ can now compute an approximation of f ′(x) simply by
evaluating f(x+ h) and f(x− h).

• We can choose h. Make it small (perhaps 10−6), but not
too small (10−15).

415

Geometric representations finite difference approximation

central difference approximation of derivative

f′(x) = f(x+ h)− f(x− h)
2h

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

1.5

central difference
(x=0, h=0.5)

f(x) = x2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

1.5

central difference
(x=0.5, h=0.2)

f(x) = x2

f′(0) with h = 0.5

f′(0.5) with
h = 0.2

416

Example f(x) = 1
3x
3

• Derivative of f(x) = x3/3:

f′(x) = d
dxf(x) =

d
dx
x3
3 = x2

• Central differences approximation at x = 2 with h = 0.1:

f′(x) ≈ f(x+ h)− f(x− h)
2h =

1
3(x+ h)3 − 1

3 f(x− h)
3

2h

=
1
3
2.13 − 1.93

2h

=
1
3
2.13 − 1.93

0.2 = 4.0033333...

417

∗spacing h in central differences

Compute central difference approximation of
d
dx
x3
3 = x2

at x = 2. Correct result is x2 = 22 = 4.

Try different values of spacing h:

h centr. diff. appr abs. error
--

0.1 4.003333333333337 0.00333333
0.001 4.000000333332698 3.33333e-07
1e-06 4.000000000115023 1.15023e-10
1e-07 3.999999997894577 2.10542e-09
1e-09 4.000000330961484 3.30961e-07
1e-12 4.000355602329364 0.000355602
1e-15 3.996802888650563 0.00319711

→ too large h:
inaccurate
approximation
of derivative

→ too small h:
floating point
representation
errors 418

∗Example: spacing h in central differences

def f(x):
"""Return x^3/3. (Derivative is x^2)."""
return x**3 / 3

x = 2
exact = 2**2 # # correct derivative of x^3/3 at x=2 is 4
print(" h centr. diff. appr abs. error")
print(" --")
for h in [1e-1, 1e-3, 1e-6, 1e-7, 1e-9, 1e-12, 1e-15]:

fprime = (f(x+h) - f(x-h)) / (2 * h)
print(f"{h:8g} {fprime:20.15f} {abs(fprime-exact):10.6g}")

419

Summary

• Can approximate derivatives of f(x) numerically
• need only function evaluations of f(x)

• f(x) could be measured or simulated data, for example.

420

Numerical Integration of (math)
functions

Function integration example

Aim: Compute

I =
∫ b

a
f(x)dx, with a = −2, b = 2

and
f(x) = exp(− cos(2xπ)) + 3.2

from math import cos, exp, pi
from scipy.integrate import quad

function we want to integrate
def f(x):

return exp(cos(-2 * x * pi)) + 3.2

call quad to integrate f from -2 to 2
res, err = quad(f, -2, 2)

print(f"The numerical result is {res:f} (+-{err:g})")

The numerical result is 17.864264 (+-1.55117e-11)
421

Numerical Integration

Numerical Integration 1— Overview

Different situations where we use integration:

(A) solving (definite) integrals
(B) solving (ordinary) differential equations

• more complicated than (A)
• Euler’s method, Runge-Kutta methods

Both (A) and (B) are important.

We begin with the numeric computation of integrals (A).

422

(A) Definite Integrals

Often written as

I =
b∫
a

f(x)dx (7)

• example: I =
2∫
0
exp(−x2)dx

• solution is I ∈ R (i.e. a number)
• right hand side f(x) depends only on x
• if f(x) > 0 ∀x ∈ [a,b], then we can visualise I as the area
underneath f(x)

• Note that the integral is not necessarily the same as the
area enclosed by f(x) and the x-axis:

•
2π∫
0
sin(x)dx = 0

•
1∫
0
(−1)dx = −1

423

(B) Ordinary Differential Equations (ODE)

Often written as
y ′ ≡ dy

dx = f(x, y) (8)

• example: dv
dt =

1
m(g− cv

2)

• solution is y(x) : R→ R
x 7→ y(x)

(i.e. a function)

• right hand side f(x, y) depends on x and on solution y
• Can write (8) formally as y =

∫ dy
dxdx =

∫
f(x, y)dx. That’s why we

“integrate differential equations” to solve them.

424

Numeric computation of definite integrals

Example:

I =
2∫
0

exp(−x2)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)

425

Simple trapezoidal rule

• Approximate function by straight line

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
trapezoidal approximation

426

Simple trapezoidal rule

• Compute area underneath straight line p(x)

f(a)+f(b)
 2

ba

f(b)

f(a)

• Result

A =

b∫
a

p(x)dx = (b− a) f(a) + f(b)
2

427

Example: Simple trapezoidal rule

• Integrate f(x) = x2

I =
2∫
0

x2dx

• What is the (correct) analytical answer? Integrating

polynomials: I =
b∫
a
xkdx =

[
1

k+1x
k+1
]b
a

• for a = 0 and b = 2 and k = 2

I =
[

1
2+ 1x

2+1
]2
0
=
1
32

3 =
8
3 ≈ 2.6667

428

• Using the trapezoidal rule

A = (b− a) f(a) + f(b)
2 = 20+ 4

2 = 4

• The correct answer is I = 8/3 and the approximation is A = 4.
We thus overestimate I by A−I

I ≈ 50%.

• Plotting f(x) = x2 together with the approximation reveals why we
overestimate I

0 0.5 1 1.5 2
x

0

1

2

3

4
f(x) = x^2
trapezoidal approximation p(x)

• The linear approximation, p(x), overestimates f(x) everywhere (except
at x = a and x = b).

429

Composite trapezoidal rule

Example f(x) = exp(−x2):

I =
2∫
0

f(x)dx =
2∫
0

exp(−x2)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
composite trapezoidal
approximation (n=4)

I =
0.5∫
0

f(x)dx+
1∫

0.5

f(x)dx+
1.5∫
1

f(x)dx+
2∫

1.5

f(x)dx

430

General composite trapezoidal rule

For n subintervals the formulae for the composite trapezoidal
rule are

h =
b− a
n

xi = a+ ih with i = 1, . . . ,n− 1

A =
h
2

(
f(a) + 2f(x1) + 2f(x2) + . . .

+2f(xn−2) + 2f(xn−1) + f(b)
)

=
h
2

(
f(a) +

n−1∑
i=1

2f(xi) + f(b)
)

431

Error of composite trapezoidal rule

How accurate is the approximation?

We would like to know how much the error decreases when we
decrease h (by increasing the number of subintervals, n).
For the composite trapezoidal rule it can be shown that:

b∫
a

f(x)dx = h
2

(
f(a) + f(b) + 2

n−1∑
i=1

f(xi)
)

+O(h2)

The symbol O(h2) means that the error term is (smaller or
equal to an upper bound which is) proportional to h2:

• If we take 10 times as many subintervals then h becomes
10 times smaller (because h = b−a

n) and the error
becomes 100 times smaller (because 1

102 =
1
100). 432

Error of composite trapezoidal rule, example

• The table below shows how the error of the approximation, A, decreases with
increasing n for

I =
2∫
0

x2dx.

n h A I ∆ = A–I rel.err.=∆/I
1 2.000000 4.000000 2.666667 1.333333 50.0000%
2 1.000000 3.000000 2.666667 0.333333 12.5000%
3 0.666667 2.814815 2.666667 0.148148 5.5556%
4 0.500000 2.750000 2.666667 0.083333 3.1250%
5 0.400000 2.720000 2.666667 0.053333 2.0000%
6 0.333333 2.703704 2.666667 0.037037 1.3889%
7 0.285714 2.693878 2.666667 0.027211 1.0204%
8 0.250000 2.687500 2.666667 0.020833 0.7813%
9 0.222222 2.683128 2.666667 0.016461 0.6173%
10 0.200000 2.680000 2.666667 0.013333 0.5000%
50 0.040000 2.667200 2.666667 0.000533 0.0200%
100 0.020000 2.666800 2.666667 0.000133 0.0050%

• The accuracy we actually require depends on the problem under investigation –
no general statement is possible. 433

Summary trapezoidal rule for numerical integration

• Aim: to find an approximation of

I =
b∫
a

f(x)dx

• Simple trapezoidal method:
• approximate f(x) by a simpler (linear) function p(x) and
• integrate the approximation p(x) exactly.

• Composite trapezoidal method:
• divides the interval [a,b] into n equal subintervals
• employs the simple trapezoidal method for each
subinterval

• has an error term of order h2.

434

Numerical Integration II

Overview

• Newton-Cotes formulae
• Adaptive methods
• Numerical integration in standard packages
• An interesting idea: Monte-Carlo methods

435

Simpson’s rule [p2]

Aim: integrate
b∫
a
f(x)dx

• approximate f(x) with polynomial p2(x) of degree 2 (i.e. a
parabola)

• Need 3 points, choose a = 0, x1 = b+a
2 = 1, b = 2:

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
approximation Simpson’s rule

• This defines a0, a1 and a2 in p2(x) = a0 + a1x+ a2x2.
436

Simpson’s rule [p2]

• Integrate polynomial p2(x)

A =

b∫
a

p2(x)dx =
b∫
a

a0 + a1x+ a2x2dx = . . .

• substitute in a0,a1 and a2
• a0,a1 and a2 depend on a, x1,b, f(a), f(x1), f(b)
• assume we know what they are
(→ Lagrange interpolation polynomial)

• After expanding and summarising we find:

. . . =
b− a
6
(
f(a) + 4f(x1) + f(b)

)
• The rule of Simpson: assume f(x) ≈ p2(x)

I =
b∫
a

f(x)dx ≈
b∫
a

p2(x)dx =
b− a
6
(
f(a) + 4f(x1) + f(b)

)
437

Comparison trapezoidal rule / Simpson’s rule

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1
f(x) = exp(-x2)
trapezoidal approximation

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
approximation Simpson’s rule

• Trapezoidal rule (left)
• approximate f(x) with a polynomial of degree 1

(i.e. a linear function)
• need 2 function evaluations (at a and b)

• Simpson’s rule (right)
• approximate f(x) with a polynomial of degree 2

(i.e. a parabolic function)
• need 3 function evaluations (at a and b and at (b− a)/2)

• Simpson’s rule can be shown to be (much) more accurate
438

Newton’s rule [p3]

Aim: integrate
b∫
a
f(x)dx

• approximate f(x) with polynomial p3(x) of degree 3
• Need 4 equidistant points
a, x1 = a+ (b−a)

3 , x2 = a+ 2 (b−a)3 ,b

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
approximation Newtons rule

• Newton’s rule:

A =

b∫
a

p3(x)dx =
b− a
8

(
f(a) + 3f(x1) + 3f(x2) + f(b)

)
439

Bode’s rule

Aim: integrate
b∫
a
f(x)dx

• approximate f(x) with polynomial p4(x) of degree 4
• Need 5 equidistant points a, x1 = a+ (b−a)

4 ,
x2 = a+ 2 (b−a)4 , x3 = a+ 3 (b−a)4 , b

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
Newton-Cotes, 4th-order polynomial

• Bode’s rule:

A =

b∫
a

p3(x)dx

=
b− a
90

(
7f(a) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(b)

)
440

Newton-Cotes formulae

Aim: integrate I =
b∫
a
f(x)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
approximation Simpson’s rule

• evaluate f(x) at k+ 1 equidistant points between a and b
• approximate f(x) by polynomial pk(x) of degree k
• integrate pk(x) exactly to approximate I
• Examples

• k=1: trapezoidal rule (linear approximation p1(x))
• k=2: Simpson’s rule (parabolic approximation p2(x))
• k=3: Newton’s rule (cubic approximation p3(x))
• k=4: Bode’s rule (quartic approximation p4(x))

441

Error of composite Newton-Cotes formulae

Name approximate f(x) with error term
trapezoidal p1(x) O(h2)
Simpson’s p2(x) O(h4)
Newton’s p3(x) O(h4)
Bode’s p4(x) O(h6)
? p5(x) O(h6)

• Interesting behaviour of error terms (need further
mathematics to understand this)

• Composite Simpson’s rule is commonly used
• fairly simple
• but already O(h4)

442

Summary Newton-Cotes formulae

• closed
• trapezoidal rule (p1)
• Simpson’s rule (p2)
• Newton’s rule (p3)
• Bode’s rule (p4)

• open
• midpoint-rule

• composite versions

443

Adaptive integration

-10 -5 0 5 10
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
f(x) = 1+exp(-x2)
adaptive trapezoidal
integration

• can improve efficiency of numerical integration by
• using a small step size h where f(x) varies quickly
• using large steps h where f(x) varies slowly

• requires the ability to estimate the error in each step

444

Numerical integration in standard packages

• Numerical integration available, for example in Matlab,
Scientific Python, Maple, …

• Often, the command is called quad. (quad stands for
QUADrature — a (old) term for integration.)

• For example, Matlab’s quad command is based on a
• composite
• Simpson rule with
• adaptive step size.

• The available integration methods are usually very
sophisticated and sufficient for our needs

• You can integrate functions in Python using
scipy.integrate.quad().

445

Monte-Carlo Integration

• Strategy: Use random numbers to estimate an area underneath a function
• create many random points in rectangle
• compute area R of rectangle (simple)
• compute fraction f of points being underneath the curve
• approximate integral with fR.

• Example: 1000 points, 461 underneath curve, R = 2⇒ A ≈ 0.92 (relative
error of 5%)

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)

• Use Monte-Carlo integration
• for high dimensional integrals

∫∫∫
f(x, y, z)dxdydz

• for computing the volume of complex shapes

446

Summary Integration 2

• Newton-Cotes formulae, simple and composite
• trapezoidal and Simpson’s rule

• adaptive integration
• numerical integration in standard packages
• Monte-Carlo integration

Tricks we have seen
• can’t integrate f(x)? → Then approximate f(x) with simple
function and integrate approximation

• parts of a function may change slowly, other parts rapidly→
adaptive integration

• can use a completely different approach→ Monte-Carlo
integration

Header: /mnt/cvs/sot/soton/teaching/sesa2006/python/sesa2006/lectures/integration/integration2.tex,v 1.2

2005/01/28 18:08:57 fangohr Exp

447

Ordinary Differential Equations
(ODEs)

Ordinary Differential Equations

• Many processes, in particular time-dependent processes,
can be described as Ordinary Differential Equations
(ODEs), such as dynamics of engineering systems,
quantum physics, chemical reactions, biological systems
modelling, and population dynamics.

• ODEs have exactly one independent variable t (often, but
not always representing time).

• The simplest ODE has one degree of freedom y.
• The solution of the ODE is the function y(t). Examples:

• temperature as a function of time
• distance a car has moved as function of time
• population of species as function time

448

Ordinary Differential Equations

• We are typically being given
• an initial value y0 of y(t) at some time t0 and
• the ODE itself which relates the change of y with t to some
function f(t, y), i.e.

dy
dt = f(t, y) (9)

• Example: looking for solution y(t) from t0 = 0 to t = 2 of

dy
dt = −2y with y0 = y(t0) = 17

The exact solution is y(t) = 17 exp(−2t).

• In general, a vector y with k components can depend on
the independent variable t: this is a system of ordinary
differential equations with k degrees of freedom.

449

Principle of finding numerical solution to ODE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
y0

y1

y2

y3
y4 y5 y6 y7 y8

yi + 1 = yi + y′(ti) t = yi + f(yi, ti) t

exact solution y(t)
numerical solution yi(ti)

450

Interface solve_ivp

• aim: solve
dy
dt = f(t, y)

• from scipy.integrate import solve_ivp

• solve_ivp has the following input and output parameters:

sol = solve_ivp(f, t_span, y0)

Input:
• f is function f(t, y) that returns the right-hand side
• t_span is a tuple (t0, tf) describing the span of t for
which we search the solution

• y0 is the initial value of the solution at time t0 (i.e.
y0 = y(t0))

Output:
• sol is a OdeResult object that contains the solution 451

Using solve_ivp – example 1

Require solution y(t) from t = 0 to t = 2 of
dy
dt

= −2y with y(0) = 17

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def f(t, y):
"""this is the rhs of the ODE to integrate, i.e. dy/dt=f(y,t)"""
return -2 * y

y0 = [17] # initial value y0=y(t0)
t0 = 0 # integration limits for t: start at t=0
tf = 2 # and finish at t=2
t_eval = np.linspace(t0, tf, 21)

sol = solve_ivp(fun=f, t_span=[t0, tf], y0=y0, t_eval=t_eval)

fig, ax = plt.subplots()
ax.plot(sol.t, sol.y[0], "o-"); ax.set_xlabel("t"); 452

Using solve_ivp – example 1, solution

Solution:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y(
t)

453

Using solve_ivp – example 2

Require solution y(t) from t = 0 to t = 2 of
dy
dt = − 1

100y+ sin(10πt) with y(0) = −2

import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def f(t, y):
return -0.01 * y + math.sin(10 * math.pi * t)

ts = np.arange(0, 2.01, 0.01)
y0 = [-2]
sol = solve_ivp(f, t_span=(0, 2), y0=y0,

t_eval=ts, atol=1e-8, rtol=1e-8)

fig, ax = plt.subplots()
ax.plot(sol.t, sol.y[0])
ax.set_xlabel("t"); ax.set_ylabel("y(t)")
fig.savefig("odeintexample2.pdf") 454

Using solve_ivp – example 2, solution

Solution:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

2.00

1.98

1.96

1.94

1.92

1.90

y(
t)

455

2nd order ODE

• Any second order ODE can be re-written as two coupled
first order ODE

• Example: Harmonic Oscillator (HO)
• Differential equation d2r

dt2 = −ω
2r or short r′′ = −ω2r

• Introduce v = r′
• rewrite equation as two first order equations

r′′ = −ω2r −→ v′ = −ω2r
r′ = v

• General strategy:
• convert higher order ODE into a set of (coupled) first order
ODE

• use computer to solve set of 1st order ODEs

456

2nd order ODE – using solve_ivp

• One 2nd order ODE→ 2 coupled 1st order ODEs
• Integration of system of 1st order ODEs:

• “pretty much like integrating one 1st order ODE” but
• y is now a vector (and so is f):

dy
dt = f(t, y) ⇐⇒

(
dy1
dt
dy2
dt

)
=

(
f1(t, y)
f2(t, y)

)
• need to pack and unpack variables into the state vector y:
• Example harmonic oscillator:

• decide to use this packing: y = (r, v)
• then f needs to return f =

(dr
dt ,

dv
dt
)

• the sol object returned by solve_ivp has an attribute
sol.y which contains a vector y for every time step

• need to extract results for r and v from that matrix→ see
next slide

457

2nd order ODE – Python solution harmonic oscillator (HO)

from numpy import array, arange
from scipy.integrate import solve_ivp

def f(t, y): # right hand side, takes array(!) y
omega = 1
r = y[0] # extract r from array y
v = y[1] # extract v from array y
drdt = v # compute right hand side
dvdt = -omega ** 2 * r
return array([drdt, dvdt]) # return array

ts = arange(0, 20, 0.1) # required times for solution
r0 = 1 # initial r
v0 = 0 # initial v
y0 = [r0, v0] # combine r and v into y

sol = solve_ivp(f, (0, 20), y0, t_eval=ts) # solve ODEs

rs = sol.y[0] # extract result: r(t)
vs = sol.y[1] # extract result: v(t)

458

2nd order ODE – result

Solution

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

r(t)
v(t)

459

Summary 2nd order system

• Strategy:
• transform one 2nd order ODE into 2 (coupled) first order
ODEs

• solve both first order ODEs simultaneously

• Need to use vectors (typically “arrays”) in to pass state
vector to right-hand-side function.

• Use example on previous slides as guidance.

460

2 Coupled ODEs: Predator-Prey problem

• Predator and prey. Let
• p1(t) be the number of rabbits
• p2(t) be the number of foxes

• Time dependence of p1 and p2:
• Assume that rabbits proliferate at a rate a. Per unit time a
number ap1 of rabbits is born.

• Number of rabbits is reduced by collisions with foxes. Per
unit time cp1p2 rabbits are eaten.

• Assume that birth rate of foxes depends only on food
intake in form of rabbits.

• Assume that foxes die a natural death at a rate b.
• Numbers

• rabbit birth rate a = 0.7

461

2 Coupled ODEs: Predator-Prey problem

• rabbit-fox-collision rate c = 0.007
• fox death rate b = 1

• Put all together in predator-prey ODEs

p′1 = ap1 − cp1p2
p′2 = cp1p2 − bp2

• Solve for p1(0) = 70 and p2(0) = 50 for 30 units of time:

462

2 Coupled ODEs: Predator-Prey problem

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.integrate import solve_ivp
4

5 def rhs(t, y):
6 a = 0.7
7 c = 0.007
8 b = 1
9 p1 = y[0]

10 p2 = y[1]
11

12 dp1dt = a * p1 - c * p1 * p2
13 dp2dt = c * p1 * p2 - b * p2
14

15 return np.array([dp1dt, dp2dt])
16

17 p0 = [70, 50] # initial condition
18 t0 = 0
19 tfinal = 30
20 ts = np.arange(t0, tfinal, 0.1)

463

2 Coupled ODEs: Predator-Prey problem

21

22 sol = solve_ivp(rhs, [t0, tfinal], p0, t_eval=ts)
23

24 p1 = sol.y[0] # extract p1 and
25 p2 = sol.y[1] # p2
26

27 fig, ax = plt.subplots()
28 ax.plot(sol.t, p1, label='rabbits')
29 ax.plot(sol.t, p2, '-og', label='foxes')
30 ax.legend()
31 ax.set_xlabel('t')
32 fig.savefig('predprey.pdf')

464

2 Coupled ODEs: Predator-Prey problem

0 5 10 15 20 25 30
t

50

100

150

200

250

300 rabbits
foxes

465

Outlook

Suppose we want to solve a (vector) ODE based on Newton’s equation of
motion in three dimensions:

d2r
dt2 =

F(r, v, t)
m

Rewrite as two first order (vector) ODEs:
dv
dt =

F(r, v, t)
m

dr
dt = v

Need to pack 6 variables into “y”: for example

y = (rx, ry, rz, vx, vy, vz)

Right-hand-side function f(y, t) needs to return:

f =
(

drx
dt ,

dry
dt ,

drz
dt ,

dvx
dt ,

dvy
dt ,

dvz
dt

)
(10)

466

Outlook examples

• Example: Molecular dynamics simulations have one set of 6 degrees of
freedom as in equation (10) for every atom in their simulations.

• Example: Material simulations discretise space into finite elements,
and for dynamic simulations the number of degrees of freedom are
proportional to the number of nodes in the mesh.

• Very sophisticated time integration schemes for ODEs available (such
as ”sundials” suite).

• The tools in scipy.integrate are pretty useful already (solve_ivp
has multiple solvers - we have only used the default Runge Kutta 45
solver.).

467

Symbolic Python (sympy)

Symbolic Python (sympy)

What?

• symbolic algebra - computing with variables not numbers
(like Mathematica, SageMath, Wolfram Alpha, other, ...)

Why?

• Use symbolic computation before moving to numerical
calculations to avoid mistakes

• and to simplify expression as much as possible.
• Write computer code (or LaTeX) automatically from sympy
• Or use from Python using sympy.lambdify

468

Why symbolic python?

• sympy is not the only option - other packages may well be
faster/know more mathematics, but

• sympy connects well to Python ecosystem of
computational science tools

• free and open source
• scriptable: can integrate into automatic workflows
• very powerful

469

Symbolic Python - basics

>>> import sympy
>>> x = sympy.Symbol('x') # define symbolic
>>> y = sympy.Symbol('y') # variables
>>> x + x
2*x
>>> t = (x + y)**2
>>> print(t)
(x + y)**2
>>> sympy.expand(t)
x**2 + 2*x*y + y**2
>>> sympy.pprint(t) # PrettyPRINT

2
(x + y)
>>> sympy.printing.latex(t) # Latex export
'\\left(x + y\\right)^{2}'

470

Substituting values and numerical evalution

>>> t
(x + y)**2
>>> t.subs(x, 3) # substituting variables
(y + 3)**2 # or values
>>> t.subs(x, 3).subs(y, 1)
16
>>> n = t.subs(x, 3).subs(y, sympy.pi)
>>> print(n)
(3 + pi)**2
>>> n.evalf() # EVALuate to Float
37.7191603226281
>>> p = sympy.pi
>>> p
pi
>>> p.evalf()
3.14159265358979
>>> p.evalf(47) # request 47 digits
3.1415926535897932384626433832795028841971693993 471

Working with infinity

>>> from sympy import limit, sin, oo
>>> limit(1/x, x, 50) # what is 1/x if x --> 50
1/50
>>> limit(1/x, x, oo) # oo is infinity
0
>>> limit(sin(x) / x, x, 0)
1
>>> limit(sin(x)**2 / x, x, 0)
0
>>> limit(sin(x) / x**2, x, 0)
oo

472

Taylor series

>>> from sympy import series
>>> taylorseries = series(sin(x), x, 0)
>>> taylorseries
x - x**3/6 + x**5/120 + O(x**6)
>>> sympy.pprint(taylorseries)

3 5
x x

x - -- + --- + O(x**6)
6 120

>>> taylorseries = series(sin(x), x, 0, n=10)
>>> sympy.pprint(taylorseries)

3 5 7 9
x x x x

x - -- + --- - ---- + ------ + O(x**10)
6 120 5040 362880

473

Integration

>>> from sympy import integrate
>>> a, b = sympy.symbols('a, b')
>>> integrate(2*x, (x, a, b))
-a**2 + b**2
>>> integrate(2*x, (x, 0.1, b))
b**2 - 0.01
>>> integrate(2*x, (x, 0.1, 2))
3.99000000000000

474

Solving equations

Finally, we can solve non-linear equations, for example:

>>> (x + 2)*(x - 3) # define quadratic equation
with roots x=-2, x=3

(x - 3)*(x + 2)
>>> r = (x + 2)*(x - 3)
>>> r.expand()
x**2 - x - 6
>>> sympy.solve(r, x) # solve r = 0
[-2, 3] # solution is x = -2, 3

475

Lambdify sympy expressions

>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> symb = sin(x) + cos(x)
>>> symb
sin(x) + cos(x)
>>> f = lambdify(x, symb, 'numpy')
>>> f(0)
1.0
>>> f(np.linspace(0, 1, 10))
array([1. , 1.10471614, 1.19580783, 1.27215164,
1.33280603, 1.37702295, 1.40425706, 1.4141725 ,
1.40664697, 1.38177329])

Workflow: Create sympy expressions, then lambdify them to execute faster.

476

Sympy summary

• Sympy is purely Python based
• fairly powerful (although better open source tools are
available if required)

• we should use computers for symbolic calculations
routinely alongside pen and paper, and numerical
calculations

• can produce LATEX output
• can produce C and Fortran code (and wrap this up as a
Python function automatically (“autowrap”))

477

APPENDIX

Practical computational science
recommendations

Research software development

• use version control
• start in Python
• use tests
• keep it simple
• make it readable
• use notebooks for examples -> documentation (sphinx)
• if you need to change/extend/rewrite software

• automatic tests are your friend
• continuous integration
• we can also test documentation (nbval, doctest)

478

Software too slow?

• Identify where it is slow (”Profiling”)
• move execution of ’slow’ operations to compiled code
where necessary

• through use of numpy
• through use of Cython
• through linking to compiled code (ctypes, cython, swig,
boost, f2py, ...) to talk to C, C++, Fortran, Rust, OCaml, ...

• Parallelise through use of libraries that can execute in
parallel

• mkl numpy
• dask
• numba
• pytorch, cupy, jax, ...

Includes use of GPUs.

479

Good practice Computational Science

• use notebooks to document computational work
• use version control (for software, reports and papers)
• archive software and notebooks (publicly if you can)
• in particular for (more reproducible) publications [1]:

• publish git repo with paper (Zenodo?)
• document your software environment
• if you can create it automatically, this is best
• consider making your repo binder-enabled ()

[1] Beg, Fangohr, etal: Using Jupyter for reproducible scientific workflows,
Computing in Science and Engineering 23, 36-46 10.1109/MCSE.2021.3052101
(2021)

480

http://mybinder.org
https://doi.org/10.1109/MCSE.2021.3052101

Give back to the community where you can

• Contribute to the open source tools you are using, for
example

• provide bug reports
• suggest improvements to documentation
• make feature requests
• helping other users
• ...

• Cite software that is important for your work in your
papers: many packages suggest what to cite if you use
them

481

Useful tools

Black — The Uncompromising Code Formatter

“one style, as long as it is this one”

• leave formatting to black
• focus on content (rather than formatting)
• makes code review easier
• compatible with PEP8

Usage:

• Check if file.py sticks to Black standard:

black --check file.py

• Autoformat file.py:

black file.py

• Can be used by editors (e.g. Spyder) and tools (e.g.
pre-commit)

482

mypy and pytype — static type checking

Code with type annotations (see slide 339) can be analysed
statically (i.e. without being executed).

Important tools:

• mypy https://mypy-lang.org/

• pytype https://github.com/google/pytype

Pytype can also infer types (to some degree) and merge to
source.

A gentle introduction to the topic in Talk Python to Me podcast,
episode 151.

483

https://mypy-lang.org/
https://github.com/google/pytype
https://talkpython.fm/episodes/show/151/gradual-typing-of-production-applications
https://talkpython.fm/episodes/show/151/gradual-typing-of-production-applications

∗Integer division in Python 2 and 3

Python 2: Integer division

Dividing two integers in Python 1 and 2 returns an integer:

>>> 1 / 2
0 # might have expected 0.5, not 0

We find the same behaviour in Java, C, Fortran, and many other
programming languages.

Solutions:

• change (at least) one of the integer numbers into a
floating point number (i.e. 1→ 1.0).

484

Python 2: Integer division

>>> 1.0 / 2
0.5

• Or use float function to convert variable to float

>>> a = 1
>>> b = 2
>>> 1 / float(b)
0.5

485

Python 2: Integer division

• Or make use of Python’s future division:

>>> from __future__ import division
>>> 1 / 2
0.5

486

Python 3: Integer division

In Python 3:

>>> 1 / 2
0.5

Dividing 2 integers returns a float:

>>> 4 / 2
2.0
>>> type(4 / 2)
<class float>

487

Python 3: Integer division

If we want integer division (i.e. an operation that returns an
integer, and/or which replicates the default behaviour of
Python 2), we use //:

>>> 1 // 2
0

488

Legacy string formatting

String formatting method overview

“f-strings”: most convenient and recommended method (2016,
see slide 163):

>>> value = 42
>>> f"the value is {value}"
'the value is 42'

“new style” or “advanced” string formatting (Python 3, 2006):

>>> "the value is {}".format(value)
'the value is 42'

“% operator” (Python 1 and 2):

>>> "the value is %s" % value
'the value is 42' 489

String formatting overview history

• 1. 1991: % operator (Python 1 and 2)

• 2. 2006: str.format() “new style“ or “advanced” string
formatting (Python 3)

• 3. 2016: f-strings (Python 3.6)

490

1. String formatting: the percentage (%) operator

% operator syntax
Syntax: A % B
where A is a string, and B a Python object, or a tuple of

Python objects.

The format string A needs to contain k format specifiers if the
tuple has length k. The operation returns a string.

Example: basic formatting of one number

491

1. String formatting: the percentage (%) operator

>>> import math
>>> p = math.pi
>>> "%f" % p # format p as float (%f)
'3.141593' # returns string
>>> "%d" % p # format p as integer (%d)
'3'
>>> "%e" % p # format p in exponential style
'3.141593e+00'
>>> "%g" % p # format using fewer characters
'3.14159'

492

1. String formatting: the percentage (%) operator

The format specifiers can be combined with arbitrary
characters in string:

>>> 'the value of pi is approx %f' % p
'the value of pi is approx 3.141593'
>>> '%d is my preferred number' % 42
'42 is my preferred number'

Combining multiple objects

493

1. String formatting: the percentage (%) operator

>>> "%d times %d is %d" % (10, 42, 10 * 42)
'10 times 42 is 420'
>>> "pi=%f and 3*pi=%f is approx 10" % (p, 3*p)
'pi=3.141593 and 3*pi=9.424778 is approx 10'

494

Fixing width and/or precision of resulting string

495

Fixing width and/or precision of resulting string

>>> '%f' % 3.14 # default width and precision
'3.140000'

>>> '%10f' % 3.14 # 10 characters long
' 3.140000'

>>> '%10.2f' % 3.14 # 10 long, 2 post-dec digits
' 3.14'

>>> '%.2f' % 3.14 # 2 post-decimal digits
'3.14'

>>> '%.14f' % 3.14 # 14 post-decimal digits
'3.14000000000000'

There is also the format specifier %s that expects a string, or
an object that can provide its own string representation.

Combined with a width specifier, this can be used to align
columns of strings in tables:

>>> "%10s" % "apple"
' apple'
>>> "%10s" % "banana"
' banana'

496

Common formatting specifiers

A list of common formatting specifiers, with example output
for the astronomical unit (AU) which is the distance from Earth
to Sun [in metres]:

>>> AU = 149597870700 # astronomical unit [m]
>>> "%f" % AU # line 1 in table
'149597870700.000000'

specifier style Example output for AU
%f floating point 149597870700.000000
%e exponential notation 1.495979e+11
%g shorter of %e or %f 1.49598e+11
%d integer 149597870700
%s str() 149597870700
%r repr() 149597870700 497

Summary %-operator for printing

Create string using the %-operator, then pass the string to the
print function. Typically done in the same line:

>>> import math
>>> print("My pi = %.2f." % math.pi)
My pi = 3.14.

Print multiple values:

>>> print("a=%d b=%d" % (10, 20))
a=10 b=20

498

Summary %-operator for printing

Very similar syntax exists in other languages, for example C
and Matlab, for formatted data output to screen and files.

499

2. New style string formatting (format method)

A new(er) system of built-in formatting has been proposed
(PEP3101), titled Advanced String Formatting and is available in
Python 3.

Basic ideas in examples:

• Pairs of curly braces are the placeholders.

>>> "{} owns {} bikes".format('Peter', 4)
'Peter owns 4 bikes'

500

https://www.python.org/dev/peps/pep-3101/

2. New style string formatting (format method)

• Formatting behaviour of %f can be achieved through {:f},
(same for %d, %e, etc)

>>> "Pi is approx {:f}.".format(math.pi)
'Pi is approx 3.141593.'

• Width and post decimal digits can be specified as before:

>>> "Pi is approx {:6.2f}.".format(math.pi)
'Pi is approx 3.14.'
>>> "Pi is approx {:.2f}.".format(math.pi)
'Pi is approx 3.14.'

501

2. New style string formatting (format method)

Further Reading

• Examples
http://docs.python.org/library/string.html#format-
examples

• Python Enhancement Proposal 3101

502

http://docs.python.org/library/string.html#format-examples
http://docs.python.org/library/string.html#format-examples
http://www.python.org/dev/peps/pep-3101/

3. f-strings (formatted string literals)

• Introduced in Python 3.6
• Described in PEP498
https://www.python.org/dev/peps/pep-0498/

• combines with str.format syntax

503

https://www.python.org/dev/peps/pep-0498/

f-strings examples

>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
>>> value = 12.34567
>>> f"result: {value}"
'result: 12.34567'

504

f-strings re-use new style syntax

We can combine f-strings with new format specifiers:

505

f-strings re-use new style syntax

>>> value = 12.34567
>>> f"result: {value:10}" # 10 spaces
'result: 12.34567'
>>> f"result: {value:e}" # %e behaviour
'result: 1.234567e+01'
>>> f"result: {value:f}" # %f behaviour
'result: 12.345670'
>>> f"result: {value:.4f}" # 4 post-decimal digits
'result: 12.3457'
>>> f"result: {value:.4}" # 4 digits precision
'result: 12.35'

506

Expressions in f-strings are evaluated at run time

We can evaluate Python expressions in the f-strings:

>>> import math
>>> f"The diagonal has length {math.sqrt(2)}."
'The diagonal has length 1.4142135623730951.'

(Advanced:) Precision specifier can be variables:

>>> width = 10
>>> precision = 4
>>> f"{math.pi:{width}.{precision}}"
' 3.142'

507

Show variable name and value with {name=}

Convenient short cut for debugging print statements:

>>> a = 10
>>> b = 20
>>> c = math.sqrt(a**2 + b**2)
>>> f"State: {a=} {b=} {c=}"
'State: a=10 b=20 c=22.360679774997898'

508

Comparison string formatting generations 1 (repeat slide)

Example 1

>>> value = 42
>>> "the value is %s" % value
'the value is 42'

>>> "the value is {}".format(value)
'the value is 42'

>>> f"the value is {value}"
'the value is 42'

509

Comparison string formatting generations 2

Example 2
>>> import math
>>> x = math.pi

conventional:
>>> "x is %f and x^2 is approx %.1f" % (x, x**2)
'x is 3.141593 and x^2 is approx 9.9'

new-style:
>>> "x is {:f} and x^2 is approx {:.1f}".format(x, x**2)
'x is 3.141593 and x^2 is approx 9.9'

f-strings:
>>> f"x is {x:f} and x^2 is approx {x**2:.1f}"
'x is 3.141593 and x^2 is approx 9.9'
>>> f"{x=:f} and {x**2=:.1f}" # alternative simplification
'x=3.141593 and x**2=9.9'

510

What formatting should I use?

• use f-strings if you can
• The .format method more elegant and versatile than %
• % operator style okay, links to Matlab, C, ...
• Choice partly a matter of taste, history and existing code

• do your collaborators know the method you use?
• Should be aware (in a passive sense) of different possible
styles (so we can read code from others)

511

Random other things

Changes from Python 2 to Python 3: print

One (maybe the most obvious) change going from Python 2 to
Python 3 is that the print command loses its special status. In
Python 2, we could print ”Hello World” using

print "Hello World" # allowed in Python 2

Effectively, we call the function print with the argument
"Hello World". All other functions in Python are called such
that the argument is enclosed in parentheses, i.e.

print("Hello World") # required in Python 3

This is the new convention required in Python 3 (and allowed
for recent version of Python 2.x.)

512

commit ade29e25ca763e88f5797fc69a7a31744a06e202
Author: Hans Fangohr <fangohr@users.noreply.github.com>
Date: Mon Feb 17 17:53:59 2025 +0100

review integration and ODE sections

512

	Python for Computational Science
	Part 1
	First steps with Python
	Introspection (dir)
	Defining functions
	About Python
	Using modules
	Conditionals, if-else
	Raising exceptions
	Sequences
	Loops
	Style guide for Python code
	Reading and writing files
	Writing modules
	Name spaces, global and local variables
	Plotting data from csv file
	Catching exceptions
	Print
	String formatting
	Dictionary
	Default function arguments
	Keyword function arguments
	Python installation
	Virtual Environments venv
	Installing python packages with pip
	Numpy
	IPython, Jupyter, Editors and IDEs
	Matplotlib
	Testing
	Numpy usage examples
	Pandas
	Part 2
	Higher Order Functions
	Iterators
	Testing
	Variables, equality and identity
	Recursion
	str, repr and eval
	List comprehension
	Object Oriented (OO) Programming
	Typing
	Interpolation
	Closures
	Common Computational Tasks
	Curve fitting
	Optimisation
	Optimisation
	FIFO example and Object Oriented Programming (OOP)
	Functional tools: lambda, map, filter, reduce
	Scientific Python
	Root finding
	Computing derivatives numerically
	Numerical Integration of (math) functions
	Numerical Integration
	Ordinary Differential Equations (ODEs)
	Symbolic Python (sympy)
	APPENDIX
	Practical computational science recommendations
	Useful tools
	*Integer division in Python 2 and 3
	Legacy string formatting
	Random other things

