{ "cells": [ { "cell_type": "markdown", "id": "085592f2", "metadata": {}, "source": [ "# Explore the NOAA global temperature data set with pandas" ] }, { "cell_type": "markdown", "id": "89d115a2", "metadata": {}, "source": [ "Data from \n", "https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series\n", "\n", "Every month:\n", "\n", "Download csv file from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/land_ocean/all/12/1850-2023/data.csv\n", "\n", "One data point per year, average over 12 months, data from December:\n", "Webpage: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/land_ocean/12/12/1850-2023\n", "\n", "CSV:\n", "https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/land_ocean/12/12/1850-2023/data.csv\n" ] }, { "cell_type": "code", "execution_count": 11, "id": "6952b9ae", "metadata": {}, "outputs": [], "source": [ "%config InlineBackend.figure_formats = ['svg']" ] }, { "cell_type": "code", "execution_count": 12, "id": "c76199bf", "metadata": {}, "outputs": [], "source": [ "import math\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "id": "40928944", "metadata": {}, "outputs": [], "source": [ "!wget https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/land_ocean/12/12/1850-2023/data.csv\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "aa1b2626", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Global Land and Ocean January - December Temperature Anomalies\r\n", "Units: Degrees Celsius\r\n", "Base Period: 1901-2000\r\n", "Missing: -999\r\n", "Year,Anomaly\r\n", "1850,-0.17\r\n", "1851,-0.09\r\n", "1852,-0.10\r\n", "1853,-0.12\r\n", "1854,-0.11\r\n" ] } ], "source": [ "!head data.csv" ] }, { "cell_type": "code", "execution_count": 14, "id": "499f079a", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"data.csv\", skiprows=4, index_col=0)" ] }, { "cell_type": "code", "execution_count": 15, "id": "5b4a1090", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Anomaly | \n", "
---|---|
Year | \n", "\n", " |
1850 | \n", "-0.17 | \n", "
1851 | \n", "-0.09 | \n", "
1852 | \n", "-0.10 | \n", "
1853 | \n", "-0.12 | \n", "
1854 | \n", "-0.11 | \n", "
... | \n", "... | \n", "
2019 | \n", "0.98 | \n", "
2020 | \n", "1.01 | \n", "
2021 | \n", "0.86 | \n", "
2022 | \n", "0.91 | \n", "
2023 | \n", "1.18 | \n", "
174 rows × 1 columns
\n", "