
Python for Computational Science

Hans Fangohr

January 26, 2024

https://fangohr.github.io
@ProfCompMod@fosstodon.org

1

https://fangohr.github.io
https://fosstodon.org/@ProfCompMod

Outline

1. Python for Computational Science

2. Python prompt

3. Functions
4. About Python

5. Style guide for Python code

6. Conditionals, if-else

7. Sequences

8. Loops

9. Some things revisited

10. Reading and Writing files

11. Exceptions

12. Printing

2

13. Higher Order Functions

14. Modules
15. Default arguments
16. Namespaces

17. IPython, Jupyter, Editors and IDEs

18. List comprehension

19. Dictionaries
20. Recursion
21. Common Computational Tasks

22. Root finding

23. Derivatives
24. Numpy

25. Higher Order Functions 2: Functional tools

26. Numerical Integration

27. Numpy usage examples

3

28. Closures

29. Scientific Python

30. FIFO example and Object Oriented Programming (OOP)

31. Environments and Python Package Index

32. ODEs

33. Sympy

34. Testing

35. Object Oriented Programming

36. Pandas

37. Practical computational science recommendations

38. What to learn next?

39. Typing

40. Useful tools

4

Python for Computational Science

Computational Science

• use of computers to support research and operation in
science, engineering, industry and services

• applications include
• computer simulations
• analysis of data / data science / data analitics
• virtual design optimisation
• symbolic mathematics
• artificial intelligence/machine learning

5

Computational science examples

• Molecular Dynamics (https://physics.weber.edu/
schroeder/software/demos/MDv0.html)

• Imaging at European X-Ray Free Electron Laser (European
XFEL)

• large data sets (data creation up to 1000TB per week)
• Computational modelling to extract structure of sample

6

https://physics.weber.edu/schroeder/software/demos/MDv0.html
https://physics.weber.edu/schroeder/software/demos/MDv0.html

Is computational science important?

From a study of the Software Sustainability Institute (UK):

• 92% of academics use research software
• 69% say that their research would not be practical without
it

• 56% develop their own software

[1] https://www.software.ac.uk/blog/

2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers

7

https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers

Computational Science — a new domain

. . .
BiologyMathematics

Computer
Science

Engineering

Chemistry

Physics

Computational
Science

Computational science (and data science):
an enabling methodology, like literacy and mathematics

8

Computational Science — a new domain

• Computational Science is not Computer Science
• specific skill set required: application domain knowledge
and computational science

• often scientists who learn the computational side
• no clear career path: neither scientist nor software
engineer

• growing movement to establish such roles in academia:
Research Software Engineer

• https://www.software.ac.uk
• https://www.de-rse.org

• “better software, better research”
9

https://www.software.ac.uk
https://www.de-rse.org

This course: Why Python?

• Python is relatively easy to learn [1]
• high efficiency: a few lines of code achieve a lot of
computation

• growing use in (open source) academia and industry, thus
• many relevant libraries available
• minimises the time of the programmer
• but: (naive) Python in general much slower execution than
compiled languages (such as Fortran, C, C++, Rust, …).

[1] https:
//link.springer.com/chapter/10.1007/978-3-540-25944-2_157

10

https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157
https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

This course: Introduction to Python for Computational Science

• introduces the foundations of computational science and
data science

• Python programming language
• focus on parts of the Python programming language
relevant to computational science

• computational science methodology
• research software engineering
• enable self-directed learning in the future

11

This course: learning methods

• daily lectures
• daily laboratory sessions (think computer laboratory)

• opportunity to start and complete self-paced exercises,
and to ask for any other clarification.

• automatic feedback on submitted exercises
• teaching materials and lectures are designed to support
practical exercises

12

This course: practicalities

Source of information:
http://www.desy.de/~fangohr/teaching/py4cs2024

• time table
• laboratory exercises
• pdf files of these slides (may change)
• additional textbook
• further materials

Remote learning brings extra challenges! Let’s try to make this
informal and interactive (Zoom & Zulip)

13

http://www.desy.de/~fangohr/teaching/py4cs2024

Python prompt

The Python prompt

• Spyder (or IDLE, or python or python.exe from
shell/Terminal/MS-Dos prompt, or IPython)

• Python prompt waits for input:
>>>

• Interactive Python prompt waits for input:
In [1]:

• Read, Evaluate, Print, Loop→ REPL

16

Hello World program

Standard greeting:

print("Hello World")

Entered interactively in Python prompt:

>>> print("Hello World")
Hello World

Or in IPython prompt:

In [1]: print("Hello world")
Hello world

17

A calculator

>>> 2 + 3
5
>>> 42 - 15.3
26.7
>>> 100 * 11
1100
>>> 2400 / 20
120
>>> 2 ** 3 # 2 to the power of 3
8
>>> 9 ** 0.5 # sqrt of 9
3.0

18

Create variables through assignment

>>> a = 10
>>> b = 20
>>> a
10
>>> b
20
>>> a + b
30
>>> ab2 = (a + b) / 2
>>> ab2
15

19

Important data types / type()

>>> a = 1
>>> type(a)
<class int> # integer

>>> b = 1.0
>>> type(b)
<class float> # float

>>> c = '1.0'
>>> type(c)
<class str> # string

>>> d = 1 + 3j
>>> type(d)
<class complex> # complex number

20

Summary useful commands (introspection)

• print(x) to display the object x
• type(x) to determine the type of object x
• help(x) to obtain the documentation string
• dir(x) to display the methods and members of object x,
or the current name space (dir()).

Example:

>>> help("abs")
Help on built-in function abs:

abs(...)
abs(number) -> number

Return the absolute value of the argument.

21

Interactive documentation, introspection

>>> word = 'test'
>>> print(word)
test
>>> type(word)
<class str>
>>> dir(word)
['__add__', '__class__', '__contains__', ...,
'__doc__', ..., 'capitalize', <snip>,
'endswith', ..., 'upper', 'zfill']
>>> word.upper()
'TEST'
>>> word.capitalize()
'Test'
>>> word.endswith('st')
True
>>> word.endswith('a')
False

22

Functions

First use of functions

Example 1:

def mysum(a, b):
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

23

Functions should be documented

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

Can now use the help function for our new function:

>>> help(mysum)
Help on function mysum in module __main__:

mysum(a, b)
Return the sum of parameters a and b.

24

Function documentation strings

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

Essential information for documentation string:

• What inputs does the function expect?
• What does the function do?
• What does it return

Desirable:

• Examples
• Notes on algorithm (if relevant)
• exceptions that might be raised
• [Author, date, contact details: not needed if version control is used]

LAB1

Advanced: Recommendations for documentation string style are numpydoc style or PEP257 docstring conventions.

25

https://numpydoc.readthedocs.io/en/latest/format.html
http://www.python.org/dev/peps/pep-0257/

Function documentation string example 1

def mysum(a, b):
"""Return the sum of parameters a and b.

Parameters

a : numeric

first input
b : numeric

second input

Returns

a+b : numeric

returns the sum (using the + operator) of a and b. The return type will
depend on the types of `a` and `b`, and what the plus operator returns.

Examples

>>> mysum(10, 20)
30
>>> mysum(1.5, -4)
-2.5

Notes

History: example first created 2002, last modified 2013
Hans Fangohr, fangohr@soton.ac.uk,
"""
return a + b

26

Function documentation string example 2

def factorial(n):
"""Compute the factorial.

Parameters

n : int

Natural number `n` > 0 for which the factorial is computed.

Returns

n! : int

Returns n * (n-1) * (n-2) * ... * 2 * 1

Examples

>>> factorial(1)
1
>>> factorial(3)
6
>>> factorial(10)
3628800
>>> factorial(20)
2432902008176640000
"""
assert n > 0

if n == 1:
return 1

else:
return n * factorial(n - 1)

27

Function terminology

x = -1.5
y = abs(x)

• x is the argument given to the function (also called input
or parameter)

• y is the return value (the result of the function’s
computation)

• Functions may expect zero, one or more arguments
• Not all functions (seem to) return a value. (If no return
keyword is used, the special object None is returned.)

28

Function example

def plus42(n):
"""Add 42 to n and return""" # docstring

result = n + 42 # body of
return result # function

main program follows
a = 8
b = plus42(a)

After execution, b carries the value 50 (and a = 8).

29

Summary functions

• Functions provide (black boxes of) functionality: crucial
building blocks that hide complexity

• interaction (input, output) through input arguments and
return values (printing and returning values is not the
same!)

• docstring provides the specification (contract) of the
function’s input, output and behaviour

• a function should (normally) not modify input arguments
(watch out for lists, dicts, more complex data structures as
input arguments)

30

Functions printing vs returning values

Given the following two function definitions:

def print42():
print(42)

def return42():
return 42

we use the Python prompt to explore the difference:

31

>>> b = return42() # return 42, is assigned
>>> print(b) # to b
42

>>> a = print42() # return None, and
42 # print 42 to screen
>>> print(a)
None # special object None

32

If we use IPython, it shows whether a function returns
something (i.e. not None) through the Out [] token:

In [1]: return42()
Out[1]: 42 # Return value of 42

In [2]: print42()
42 # No 'Out []', so no

returned value

33

33

About Python

Python

What is Python?

• High level programming language
• interpreted
• supports three main programming styles
(imperative=procedural, object-oriented, functional)

• General purpose tool, yet good for numeric work with
extension libraries

Availability

• Python is free
• Python is platform independent (works on Windows,
Linux/Unix, Mac OS, …)

• Python is open source
34

Python documentation

There is lots of documentation that you should learn to use:

• Teaching materials on website, including these slides and
a text-book like document

• Online documentation, for example
• Python home page (http://www.python.org)
• Matplotlib (publication figures)
• Numpy (fast vectors and matrices, (NUMerical PYthon)
• SciPy (scientific algorithms, solve_ivp)
• SymPy (Symbolic calculation)

• interactive documentation

35

https://fangohr.github.io/teaching/python/book.html
http://www.python.org
https://matplotlib.org/
https://numpy.org/
https://scipy.org/
https://sympy.org/

Which Python version

• There are currently two versions of Python:
• Python 2.7 and
• Python 3.x

• We will use version 3.9 or later
• Python 2.x and 3.x are incompatible although the changes
only affect very few commands.

• Write new programs in Python 3.
• You may have to read / work with Python 2 code at some
point.

36

The math module (import math)

>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> dir(math) #attributes of 'math' object
['__doc__', '__file__', < snip >
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'copysign', 'cos', 'e', 'erf',
'exp', <snip>, 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(math.sqrt) # ask for help on sqrt
sqrt(...)

sqrt(x)
Return the square root of x.

37

Name spaces and modules

Three (good) options to access a module:

1. use the full name:
import math
print(math.sin(0.5))

2. use some abbreviation
import math as m
print(m.sin(0.5))
print(m.pi)

3. import all objects we need explicitly
from math import sin, pi
print(sin(0.5))
print(pi)

38

Python 2: Integer division

Dividing two integers in Python 1 and 2 returns an integer:

>>> 1 / 2
0 # might have expected 0.5, not 0

We find the same behaviour in Java, C, Fortran, and many other
programming languages.

Solutions:

• change (at least) one of the integer numbers into a
floating point number (i.e. 1→ 1.0).
>>> 1.0 / 2
0.5

39

• Or use float function to convert variable to float
>>> a = 1
>>> b = 2
>>> 1 / float(b)
0.5

• Or make use of Python’s future division:
>>> from __future__ import division
>>> 1 / 2
0.5

40

Python 3: Integer division

In Python 3:

>>> 1 / 2
0.5

Dividing 2 integers returns a float:

>>> 4 / 2
2.0
>>> type(4 / 2)
<class float>

41

If we want integer division (i.e. an operation that returns an
integer, and/or which replicates the default behaviour of
Python 2), we use //:

>>> 1 // 2
0

42

Style guide for Python code

Syntax versus style

• Python programs must follow Python syntax.
• Python programs should follow Python style guide,
because

• readability is key (debugging, documentation, team effort)
• conventions improve effectiveness

43

Common style guide: PEP8

From http://www.python.org/dev/peps/pep-0008/:

• This document gives coding conventions for the Python code […]

• This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by
changes in the language itself.

• Many projects have their own coding style guidelines. In the
event of any conflicts, such project-specific guides take
precedence for that project.

• One of Guido van Rossum’s key insights is that code is read
much more often than it is written. The guidelines provided
here are intended to improve the readability of code and make
it consistent across the wide spectrum of Python code.
”Readability counts”.

44

http://www.python.org/dev/peps/pep-0008/

PEP8 Style guide

• Indentation: use 4 spaces
• One space around assignment operator (=) operator:
c = 5 and not c=5.

• Spaces around arithmetic operators can vary. Both
x = 3*a + 4*b and x = 3 * a + 4 * b are okay.

• No space before and after parentheses:
x = sin(x) but not x = sin(x)

• A space after comma: range(5, 10) and not
range(5,10).

• No whitespace at end of line
• No whitespace in empty line

45

• One or no empty line between statements within function
• Two empty lines between functions
• One import statement per line
• import first standard Python library (such as math), then
third-party packages (numpy, scipy, ...), then our own
modules

• no spaces around = when used in keyword arguments:
"Hello World".split(sep=' ') but not
"Hello World".split(sep = ' ')

46

PEP8 Style Summary

• Try to follow PEP8 guide, in particular for new code.
• Use tools to help us, for example Spyder editor can show
PEP8 violations.
Similar tools/plugins are available for other editors.
editors.

• pycodestyle program available to check source code
from command line (used to be called pep8 in the past).
To check file myfile.py for PEP8 compliance:
pycodestyle myfile.py

47

Style conventions for documentation strings

• Python documentation strings (pydoc) conventions:
• PEP257 docstring style (from 2001), basis for both
• numpydoc style (science) and
• Google pydoc style

• Examples on slide 26 and 27 are compatible with all
conventions

• Editors can highlight deviations
• Program to check documentation string style compliance
in file myfile.py:

• pydocstyle --convention=pep257 myfile.py
• pydocstyle --convention=numpy myfile.py
• pydocstyle --convention=google myfile.py

48

http://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

Conditionals, if-else

Truth values

The python values True and False are special inbuilt objects:

>>> a = True
>>> print(a)
True
>>> type(a)
<class bool>
>>> b = False
>>> print(b)
False
>>> type(b)
<class bool>

49

We can operate with these two logical values using boolean
logic, for example the logical and operation (and):

>>> True and True # logical and operation
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

50

There is also logical or (or) and the negation (not):

>>> True or False
True
>>> not True
False
>>> not False
True
>>> True and not False
True

51

In computer code, we often need to evaluate some expression
that is either true or false (sometimes called a “predicate”). For
example:

>>> x = 30 # assign 30 to x
>>> x >= 30 # is x greater than or equal to 30?
True
>>> x > 15 # is x greater than 15
True
>>> x > 30
False
>>> x == 30 # is x the same as 30?
True
>>> not x == 42 # is x not the same as 42?
True
>>> x != 42 # is x not the same as 42?
True

52

if-then-else

The if-else command allows to branch the execution path
depending on a condition. For example:

>>> x = 30 # assign 30 to x
>>> if x > 30: # predicate: is x > 30
... print("Yes") # if True, do this
... else:
... print("No") # if False, do this
...
No

53

The general structure of the if-else statement is

if A:
B

else:
C

where A is the predicate.

• If A evaluates to True, then all commands B are carried
out (and C is skipped).

• If A evaluates to False, then all commands C are carried
out (and B) is skipped.

• if and else are Python keywords.

A and B can each consist of multiple lines, and are grouped
through indentation as usual in Python.

54

if-else example

def slength1(s):
"""Returns a string describing the
length of the sequence s"""
if len(s) > 10:

ans = 'very long'
else:

ans = 'normal'

return ans

>>> slength1("Hello")
'normal'
>>> slength1("HelloHello")
'normal'
>>> slength1("Hello again")
'very long'

55

if-elif-else example

If more cases need to be distinguished, we can use the
keyword elif (standing for ELse IF) as many times as desired:

def slength2(s):
if len(s) == 0:

ans = 'empty'
elif len(s) > 10:

ans = 'very long'
elif len(s) > 7:

ans = 'normal'
else:

ans = 'short'

return ans

56

>>> slength2("")
'empty'
>>> slength2("Good Morning")
'very long'
>>> slength2("Greetings")
'normal'
>>> slength2("Hi")
'short'

LAB2

57

Sequences

Sequences overview

Different types of sequences

• strings
• lists (mutable)
• tuples (immutable)
• arrays (mutable, part of numpy)

They share common behaviour.

58

Strings

>>> a = "Hello World"
>>> type(a)
<class str>
>>> len(a)
11
>>> print(a)
Hello World
Different possibilities to limit strings:

'A string'
"Another string"
"A string with a ' in the middle"
"""A string with triple quotes can
extend over several
lines"""

59

Strings 2 (exercise)

• Define a, b and c at the Python prompt:
>>> a = "One"
>>> b = "Two"
>>> c = "Three"

• Exercise: What do the following expressions evaluate to?
1. d = a + b + c
2. 5 * d
3. d[0], d[1], d[2] (indexing)
4. d[-1]
5. d[4:] (slicing)

60

Strings 3 (exercise)

>>> s="""My first look at Python was an
... accident, and I didn't much like what
... I saw at the time."""

For the string s:

• count the number of (i) letters ’e’ and (ii) substrings ’an’
• replace all letters ’a’ with ’0’
• make all letters uppercase
• make all capital letters lowercase, and all lower case
letters to capitals

61

Lists

[] # the empty list
[42] # a 1-element list
[5, 'hello', 17.3] # a 3-element list
[[1, 2], [3, 4], [5, 6]] # a list of lists

• Lists store an ordered sequence of Python objects
• Access through index (and slicing) as for strings.
• use help(), often used list methods is append()

(In general computer science terminology, vector or array might be better name as the

actual implementation is not a linked list, but direct O(1) access through the index is

possible.)

62

Example program: using lists

>>> a = [] # creates a list
>>> a.append('dog') # appends string 'dog'
>>> a.append('cat') # ...
>>> a.append('mouse')
>>> print(a)
['dog', 'cat', 'mouse']
>>> print(a[0]) # access first element
dog # (with index 0)
>>> print(a[1]) # ...
cat
>>> print(a[2])
mouse
>>> print(a[-1]) # access last element
mouse
>>> print(a[-2]) # second last
cat

63

Example program: lists containing a list

>>> a = ['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a
['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a[0]
dog
>>> a[3]
[1, 10, 100, 1000]
>>> max(a[3])
1000
>>> min(a[3])
1
>>> a[3][0]
1
>>> a[3][1]
10
>>> a[3][3]
1000

64

Sequences – more examples

>>> a = "hello world"
>>> a[4]
'o'
>>> a[4:7]
'o w'
>>> len(a)
11
>>> 'd' in a
True
>>> 'x' in a
False
>>> a + a
'hello worldhello world'
>>> 3 * a
'hello worldhello worldhello world'

65

Tuples

• tuples are very similar to lists
• tuples are immutable (unchangeable) whereas lists are
mutable (changeable)

• tuples are usually written using parentheses (↔ “round
brackets”):
>>> t = (3, 4, 50) # t for Tuple
>>> t
(3, 4, 50)
>>> type(t)
<class tuple>

>>> l = [3, 4, 50] # compare with l for List

66

>>> l
[3, 4, 50]
>>> type(l)
<class list>

67

Tuples are defined by comma

• tuples are defined by the comma (!), not the parenthesis
>>> a = 10, 20, 30
>>> type(a)
<class tuple>

• the parentheses are usually optional (but should be
written anyway):
>>> a = (10, 20, 30)
>>> type(a)
<class tuple>

68

Tuples are sequences

• normal indexing and slicing (because tuple is a sequence)
>>> t[1]
4
>>> t[:-1]
(3, 4)

69

Why do we need tuples (in addition to lists)?

1. use tuples if you want to make sure that a set of objects
doesn’t change.

2. Using tuples, we can assign several variables in one line
(known as tuple packing and unpacking)
x, y, z = 0, 0, 1
This allows “instantaneous swap” of values:

a, b = b, a

Strictly: “tuple packing” on right hand side and “sequence unpacking” on left.

70

3. functions return tuples if they return more than one object
def f(x):

return x**2, x**3

a, b = f(x)

4. tuples can be used as keys for dictionaries as they are
immutable

71

(Im)mutables

• Strings — like tuples — are immutable:
>>> a = 'hello world' # String example
>>> a[3] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object does not support item assignment
• strings can only be ’changed’ by creating a new string, for
example:
>>> a = a[0:3] + 'x' + a[4:]
>>> a
'helxo world'

72

Summary sequences

• lists, strings and tuples (and arrays) are sequences.
• sequences share the following operations

a[i] returns element with index i of a
a[i:j] returns elements i up to j− 1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
x in a returns True if x is element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In the table above, a and b are sequences, i, j and n are
integers, x is an element.

73

Conversions

• We can convert any sequence into a tuple using the tuple
function:
>>> tuple([1, 4, "dog"])
(1, 4, 'dog')

• Similarly, the list function, converts sequences into lists:
>>> list((10, 20, 30))
[10, 20, 30]

• Looking ahead to iterators, we note that list and tuple can
also convert from iterators:
>>> list(range(5))
[0, 1, 2, 3, 4]
And if you ever need to create an iterator from a sequence, the
iter function can this:
>>> iter([1, 2, 3])
<list_iterator object at 0x1013f1fd0> 74

Loops

Introduction loops

Computers are good at repeating tasks (often the same task for
many different sets of data).

Loops are the way to execute the same (or very similar) tasks
repeatedly (“in a loop”).

Python provides the “for loop” and the “while loop”.

75

Example program: for-loop

animals = ['dog', 'cat', 'mouse']

for animal in animals:
print(f"This is the {animal}!")

produces

This is the dog!
This is the cat!
This is the mouse!

The for-loop iterates through the sequence animals and
assigns the values in the sequence subsequently to the name
animal.

76

Iterating over integers

Often we need to iterate over a sequence of integers:

for i in [0, 1, 2, 3, 4, 5]:
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

77

Iterating over integers with range

The range(n) object is used to iterate over a sequence of
increasing integer values up to (but not including) n:

for i in range(6):
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

78

The range object

• range is used to iterate over integer sequences
• (Advanced:) range has its own type:
>>> type(range(6))
<class range>

• We can use the range object in for loops:
>>> for i in range(3):
... print(f"i={i}")
i=0
i=1
i=2

• We can convert it to a list:

79

>>> list(range(6))
[0, 1, 2, 3, 4, 5]

• This conversion to list is useful to understand what
sequences the range object would provide if used in a for
loop:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(range(0, 6))
[0, 1, 2, 3, 4, 5]
>>> list(range(3, 6))
[3, 4, 5]
>>> list(range(-3, 0))
[-3, -2, -1]

80

Summary range

range
range([start,] stop [,step]) iterates over integers
from start to stop (but not including stop) in steps of
step.
start defaults to 0 and step defaults to 1.

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 4))
[] # no iterations

range objects are lazy sequences (Python range is not an iterator)

81

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

Iterating over sequences with for-loop

• for loop iterates over iterables.
• Sequences are iterable.
• Examples
for i in [0, 3, 4, 19]:

print(i)

for animal in ['dog', 'cat', 'mouse']:
print(animal)

for letter in "Hello World": # strings are
print(letter) # sequences

for i in range(5): # range objects
print(i) # are sequences

82

Reminder: If-then-else

• Example 1 (if-then-else)
a = 42
if a > 0:

print("a is positive")
else:

print("a is negative or zero")

83

Another iteration example

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

84

https://en.wikipedia.org/wiki/Thirteenth_floor

Another iteration example 2

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
result = []
for k in range(a, b):

if k == 13:
continue # jump to next iteration

result.append(k)
return result

85

https://en.wikipedia.org/wiki/Thirteenth_floor

Exercise range_double

Write a function range_double(n) that generates a list of
numbers similar to list(range(n)). In contrast to
list(range(n)), each value in the list should be multiplied
by 2. For example:

>>> range_double(4)
[0, 2, 4, 6]
>>> range_double(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

For comparison the behaviour of range:

>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] LAB3 86

For loop summary

• for-loop to iterate over sequences
• can use range to generate sequences of integers
• special keywords:

• continue - skip remainder of body of statements and
continue with next iteration

• break - leave for-loop immediately
• Advanced:

• can iterate over any iterable
• we can create our own iterables
• See summary Socratica on Iterators, Iterables, and Itertools

87

https://youtu.be/WR7mO_jYN9g

Exercise: First In First Out (FIFO) queue

Write a First-In-First-Out queue implementation, with
functions:

• add(name) to add a customer with name name (call this
when a new customer arrives)

• next() to be called when the next customer will be
served. This function returns the name of the customer

• show() to print all names of customers that are currently
waiting

• length() to return the number of currently waiting
customers

Suggest to use a global variable q and define this in the first
line of the file by assigning an empty list: q = [].

88

While loops

• Reminder: a for loop iterates over a given sequence or
iterator

• A while loop iterates while a condition is fulfilled
• x = 64
while x > 10:

x = x // 2
print(x)

produces
32
16
8

89

While loop example 2 *

Determine ϵ:

eps = 1.0

while eps + 1 > 1:
eps = eps / 2.0

print(f"epsilon is {eps}")

Output:

epsilon is 1.11022302463e-16

90

Iterables and iterators (advanced)

• an object is iterable if the for-loop can iterate over it
• an iterator has a __next()__ method, i.e. can be used
with next(). The iterator is iterable.

>>> i = iter(["dog", "cat"]) # create iterator
from list

>>> next(i)
'dog'
>>> next(i)
'cat'
>>> next(i) # reached end
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

91

Generators (advanced)

• Generators are functions defined using yield instead of
return

• When called, a generator returns an object that behaves
like an iterator: it has a next method.

>>> def squares(n):
... for i in range(n):
... yield i**2
...
>>> s = squares(3)
>>> next(s)
0

92

>>> next(s)
1
>>> next(s)
4
>>> next(s)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

The execution flow returns at the yield keyword (similar to
return), but the flow continues after the yield when the next
method is called the next time.

A more detailed example demonstrates this:

93

def squares(n):
print("begin squares()")
for i in range(n):

print(f" before yield i={i}")
yield i**2
print(f" after yield i={i}")

>>> g = squares(3)
>>> next(g)
begin squares()
before yield i= 0

0
>>> next(g)
after yield i= 0
before yield i= 1

94

1
>>> next(g)
after yield i= 1
before yield i= 2

4
>>> next(g)
after yield i= 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

See also Socratica on Iterators, Iterables, and Itertools

95

https://youtu.be/WR7mO_jYN9g

95

Some things revisited

What are variables?

In Python, variables are references to (or names of) objects.
This is why in the following example, a and b represent the
same list: a and b are two different references to the same
object:

>>> a = [0, 2, 4, 6] # bind name 'a' to list
>>> a # object [0,2,4,6].
[0, 2, 4, 6]
>>> b = a # bind name 'b' to the same
>>> b # list object.
[0, 2, 4, 6]
>>> b[1] # show second element in list
2 # object.
>>> b[1] = 10 # modify 2nd elememnt (via b).
>>> b # show b.
[0, 10, 4, 6]
>>> a # show a.
[0, 10, 4, 6] 96

id, == and is

• Two objects a and b are the same object if they live in the
same place in memory.

• Python provides the id function that returns the identity
of an object. (It is the memory address.)

• We check with id(a) == id(b) or a is b wether a
and b are the same object.

• Two different objects can have the same value. We check
with == See “Equality and identity“, section 3.5

97

Example 1

>>> a = 1
>>> b = 1.0
>>> id(a); id(b)
4298187624 # not in the same place
4298197712 # in memory
>>> a is b # i.e. not the same objects
False
>>> a == b # but carry the same value
True

98

Example 2

>>> a = [1, 2, 3]
>>> b = a # b is reference to object of a
>>> a is b # thus they are the same
True
>>> a == b # the value is (of course) the same
True

99

Functions – side effect

If we carry out some activity A, and this has an (unexpected)
effect on something else, we speak about side effects. Example:

def sum(xs):
s = 0
for i in range(len(xs)):

s = s + xs.pop()
return s

xs = [10, 20, 30]
print(f"xs = {xs}; ", end='')
print(f"sum(xs)={sum(xs)}; ", end='')
print(f"xs = {xs}")

Output:

xs = [10, 20, 30]; sum(xs)=60; xs = []
100

Functions - side effect 2

Better ways to compute the sum of a list xs (or sequence in
general)

• use in-built command sum(xs)
• use indices to iterate over list

def sum(xs):
s=0
for i in range(len(xs)):

s = s + xs[i]
return s

• or (better): iterate over list elements directly
def sum(xs):

s=0
for elem in xs

s = s + elem
return s

101

To print or to return?

• A function that returns the control flow through the
return keyword, will return the object given after
return.

• A function that does not use the return keyword, returns
the special object None.

• Generally, functions should return a value
• Generally, functions should not print anything
• Calling functions from the prompt can cause some
confusion here: if the function returns a value and the
value is not assigned, it will be printed.

• See slide 31.

102

Reading and Writing files

File input/output

It is a (surprisingly) common task to

• read some input data file
• do some calculation/filtering/processing with the data
• write some output data file with results

Python distinguishes between

• text files ('t')
• binary files 'b')

If we don’t specify the file type, Python assumes we mean text
files.

103

Writing a text file

>>> f = open('test.txt', 'wt') # Write Textfile
>>> f.write("first line\nsecond line")
22 # returns number of chars written
>>> f.close()

creates a file test.txt that reads

first line
second line

104

• To write data, we need to open the file with 'w' mode:
f = open('test.txt', 'w')

By default, Python assumes we mean text files. However,
we can be explicit and say that we want to create a Text
file for Writing:

f = open('test.txt', 'wt')
• If the file exists, it will be overridden with an empty file
when the open command is executed.

• The file object f has a method f.write which takes a
string as in input argument.

• Must close file at the end of writing process using
f.close().

105

Reading a text file

We create a file object f using

>>> f = open('test.txt', 'rt') # Read Textfile

and have different ways of reading the data:

1. f.readlines() returns a list of strings (each being one
line)
>>> f = open('test.txt', 'rt')
>>> lines = f.readlines()
>>> f.close()
>>> lines
['first line\n', 'second line']

106

2. f.read() returns one long string for the whole file
>>> f = open('test.txt', 'rt')
>>> data = f.read()
>>> f.close()
>>> data
'first line\nsecond line'

3. Use text file f as an iterable object: process one line in
each iteration (important for large files):
>>> f = open('test.txt', 'rt')
>>> for line in f:
... print(line, end='')
...
first line

107

second line
>>> f.close()

108

Opening and automatic file closing through context manager

Python provides context managers that we use using with. For
the file access:

>>> with open('test.txt', 'rt') as f:
... data = f.read()
...
>>> data
'first line\nsecond line'

If we use the file context manager, it will close the file
automatically (when the control flows leaves the indented
block).

Once you are familiar with file access, we recommend you use
this method.

109

Use case: Reading a file, iterating over lines

• Often we want to process line by line. Typical code
fragment:

f = open('myfile.txt', 'rt')
lines = f.readlines()
f.close()
some processing of the lines object

• It is good practice to close a file as soon as possible.

• Better: using the context manager:
with open('myfile.txt', 'rt') as f:

lines = f.readlines()
some processing of the lines object

110

Splitting a string

• We often need to split a string into smaller parts: use
string method split():
(try help("".split) at the Python prompt for more
info)

Example:

>>> c = 'This is my string'
>>> c.split()
['This', 'is', 'my', 'string']
>>> c.split('i')
['Th', 's ', 's my str', 'ng']

111

Exercise: Shopping list

Given a list

bread 1 1.39
tomatoes 6 0.26
milk 3 1.45
coffee 3 2.99

Write program that computes total cost per item, and writes to
shopping_cost.txt:

bread 1.39
tomatoes 1.56
milk 4.35
coffee 8.97

112

One solution

One solution is shopping_cost.py

fin = open('shopping.txt', 'tr') # INput File
lines = fin.readlines()
fin.close() # close file as soon as possible

fout = open('shopping_cost.txt', 'tw') # OUTput File
for line in lines:

words = line.split()
itemname = words[0]
number = int(words[1])
cost = float(words[2])
totalcost = number * cost
fout.write(f"{itemname:20} {totalcost}\n")

fout.close()

113

Exercise

Write function print_line_sum_of_file(filename) that
reads a file of name filename containing numbers separated
by spaces, and which computes and prints the sum for each
line. A data file might look like

1 2 4 67 -34 340
0 45 3 2
17

LAB4

114

Binary files 1

• Files that store binary data are opened using the 'b' flag
(instead of 't' for Text):

f = open('data.dat', 'br')
• For text files, we read and write str objects. For binary
files, use the bytes type instead.

• By default, store data in text files. Text files are human
readable (that’s good) but take more disk space than
binary files.

• Reading and writing binary data is outside the scope of
this introductory module. If you read arbitrary binary data,
you may need the struct module.

• For large/complex scientific data, consider HDF5.

115

HDF5 files

• If you need to store large and/or complex data, consider
the use of HDF5 files: https:
//portal.hdfgroup.org/display/HDF5/HDF5

• Python interface: https://www.h5py.org (import
h5py)

• hdf5 files
• provide a hierarchical structure (like subdirectories and
files)

• can compress data on the fly
• supported by many tools
• standard in some areas of science
• optimised for large volume of data and effective access

116

https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.h5py.org

HDF5 files: Example data European XFEL

[fangohr@max-display001]/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002% ls -lh
total 756G
-r--r----- 1 xmpldaq exfel 7.5G Feb 12 18:50 RAW-R0034-AGIPD00-S00000.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 18:51 RAW-R0034-AGIPD00-S00001.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 18:52 RAW-R0034-AGIPD00-S00002.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 19:13 RAW-R0034-AGIPD02-S00003.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 19:14 RAW-R0034-AGIPD02-S00004.h5
-r--r----- 1 xmpldaq exfel 7.4G Feb 12 19:15 RAW-R0034-AGIPD02-S00005.h5
-r--r----- 1 xmpldaq exfel 194K Feb 12 19:15 RAW-R0034-AGIPD02-S00006.h5
-r--r----- 1 xmpldaq exfel 7.5G Feb 12 18:02 RAW-R0034-AGIPD03-S00000.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 18:03 RAW-R0034-AGIPD03-S00001.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 18:04 RAW-R0034-AGIPD03-S00002.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 18:05 RAW-R0034-AGIPD03-S00003.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 18:06 RAW-R0034-AGIPD03-S00004.h5
-r--r----- 1 xmpldaq exfel 7.5G Feb 12 18:07 RAW-R0034-AGIPD03-S00005.h5
-r--r----- 1 xmpldaq exfel 194K Feb 12 18:07 RAW-R0034-AGIPD03-S00006.h5
-r--r----- 1 xmpldaq exfel 7.5G Feb 12 19:28 RAW-R0034-AGIPD04-S00000.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 19:30 RAW-R0034-AGIPD04-S00001.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 19:31 RAW-R0034-AGIPD04-S00002.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 19:32 RAW-R0034-AGIPD04-S00003.h5
-r--r----- 1 xmpldaq exfel 8.1G Feb 12 19:33 RAW-R0034-AGIPD04-S00004.h5
-r--r----- 1 xmpldaq exfel 7.5G Feb 12 19:34 RAW-R0034-AGIPD04-S00005.h5
-r--r----- 1 xmpldaq exfel 194K Feb 12 19:34 RAW-R0034-AGIPD04-S00006.h5

117

HDF5 files: Example data European XFEL

[fangohr@max-display001]/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002% lsxfel
r0002 : Run directory

of trains: 3392
Duration: 0:05:39.100000
First train ID: 79726751
Last train ID: 79730142

16 detector modules (SPB_DET_AGIPD1M-1)
e.g. module SPB_DET_AGIPD1M-1 0 : 512 x 128 pixels
64 frames per train, 191872 total frames

3 instrument sources (excluding detectors):
- SA1_XTD2_XGM/XGM/DOOCS:output
- SPB_IRU_SIDEMIC_CAM:daqOutput
- SPB_XTD9_XGM/XGM/DOOCS:output

13 control sources:
- ACC_SYS_DOOCS/CTRL/BEAMCONDITIONS
- SA1_XTD2_XGM/XGM/DOOCS
- SPB_IRU_AGIPD1M/PSC/HV
- SPB_IRU_AGIPD1M/TSENS/H1_T_EXTHOUS
- SPB_IRU_AGIPD1M/TSENS/H2_T_EXTHOUS
- SPB_IRU_AGIPD1M/TSENS/Q1_T_BLOCK
- SPB_IRU_AGIPD1M/TSENS/Q2_T_BLOCK
- SPB_IRU_AGIPD1M/TSENS/Q3_T_BLOCK
- SPB_IRU_AGIPD1M/TSENS/Q4_T_BLOCK
- SPB_IRU_AGIPD1M1/CTRL/MC1 118

118

Exceptions

Exceptions

• Errors arising during the execution of a program result in
“exceptions” being ’raised’ (or ’thrown’).

• We have seen exceptions before, for example when
dividing by zero:
>>> 4.5 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: float division by zero
or when we try to access an undefined variable:

119

>>> print(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined
• Exceptions are a modern way of dealing with error
situations

• We will now see
• what exceptions are coming with Python
• how we can “catch” exceptions
• how we can raise (“throw”) exceptions in our code

120

In-built Python exceptions

Python’s in-built exceptions (from
https://docs.python.org/3/library/exceptions.html)

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError

121

https://docs.python.org/3/library/exceptions.html

+-- ImportError
| +-- ModuleNotFoundError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError

122

| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning

123

+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

Somewhat advanced use of Python: We can provide our own
exception classes (by inheriting from Exception).

124

Exceptions example

• suppose we try to read data from a file:
f = open('myfilename.dat', 'r')
for line in f.readlines():

print(line)
• If the file doesn’t exist, then the open() function raises
the FileNotFoundError exception:
FileNotFoundError: [Errno 2] No such file

or directory: 'myfilename.txt↪→

125

Catching exceptions

• We can modify our code to ’catch’ this error:
1 try:
2 f = open('xmyfilename.txt', 'r')
3 except FileNotFoundError:
4 print("The file couldn't be found.")
5 else:
6 # this is executed if no exception is raised
7 for line in f:
8 print(line)
9 f.close()

which produces this message:
The file couldn't be found.

• The try branch (line 3) will be executed.

126

• Should an FileNotFoundError exception be raised, then the except
branch (starting line 5) will be executed.

• Should no exception be raised in the try branch, then the except
branch is ignored, and the program carries on starting in line 9.

• the sys.exit(n) function call stops the program, and returns the
value of the integer n to the operating system as an error code.

127

Slight extension to print more detailed error message:
1 try:
2 f = open('myfilename.txt', 'r')
3 except FileNotFoundError as error:
4 print("The file couldn't be found.")
5 print(f"Error message: {error}")
6 else:
7 # this is executed if no exception is raised
8 for line in f:
9 print(line)

10 f.close()
Output:
The file couldn't be found.
Error message: [Errno 2] No such file or directory:

'myfilename.txt'↪→

128

Catching exceptions summary

• Catching exceptions allows us to take action on errors that
occur

• For the file-reading example, we could ask the user to
provide another file name if the file can’t be opened.

• Catching an exception once an error has occurred may be
easier than checking beforehand whether a problem will
occur (“It is easier to ask forgiveness than get permission”.)

129

Overview try-except-else-finally

try:
statement that might raise an exception
pass

except SomeError:
deal with error
pass

else:
code to execute if no error is raised
pass

finally:
code that must always be executed
(for example closing a file)
pass

130

try-except example

From Python documentation

try:
f = open("myfile.txt")
s = f.readline()
i = int(s.strip())

except OSError as err:
print("OS error:", err)

except ValueError:
print("Could not convert data to an integer.")

except Exception as err:
print(f"Unexpected {err=}, {type(err)=}")
raise

The last raise re-raises the last exception as if it wasn’t caught before.

131

https://docs.python.org/3/tutorial/errors.html

Raising exceptions

• Because exceptions are Python’s way of dealing with
runtime errors, we should use exceptions to report errors
that occur in our own code.

• To raise a ValueError exception, we use
raise ValueError("Message")
and can attach a message "Message" (of type string) to
that exception which can be seen when the exception is
reported or caught:
>>> raise ValueError("Some problem occurred")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Some problem occurred

132

Raising NotImplementedError Example

Often used is the NotImplementedError in incremental
software development:

def my_complicated_function(x):
message = f"Called with x={x}"
raise NotImplementedError(message)

If we call the function:

>>> my_complicated_function(42)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_complicated_function

NotImplementedError: Called with x=42

133

Exercise

Extend print_line_sum_of_file(filename) so that if
the data file contains non-numbers (i.e. strings), these
evaluate to the value 0. For example

1 2 4 -> 7
1 cat 4 -> 5
coffee -> 0

LAB5

134

134

Printing

Printing basics

• the print function sends content to the “standard
output” (usually the screen)

• print() prints an empty line:
>>> print()

• Given a single string argument, this is printed, followed by
a new line character:
>>> print("Hello")
Hello

135

• Given another object (not a string), the print function
will ask the object for its preferred way to be represented
as a string (via the __str__ method):
>>> print(42)
42

• Given multiple objects separated by commas, they will be
printed separated by a space character:
>>> print("dog", "cat", 42)
dog cat 42

• To supress printing of a new line, use the end='' option:
>>> print("Dog", end=''); print("Cat")
DogCat
>>>

136

• Or customise the token added at the end of the string.
>>> print("Dog", end=' [bark]\n')
Dog [bark]

• We can also redirect printing into file objects:
>>> with open("test.txt", "tw") as f:
... print("Hello World", file=f)
...
>>> with open("test.txt") as f:
... f.read()
...
'Hello World\n'

137

Common strategy for the print command

• Construct some string s, then print this string using the
print function
>>> s = "I am the string to be printed"
>>> print(s)
I am the string to be printed

• The question is, how can we construct the string s? We
talk about string formatting.

138

String formatting overview

Example 1

>>> value = 42
>>> "the value is %s" % value
'the value is 42'

>>> "the value is {}".format(value)
'the value is 42'

>>> f"the value is {value}"
'the value is 42'

139

String formatting overview history

• 1. 1991: % operator (Python 1 and 2)
• 2. 2006: str.format() “new style“ or “advanced” string
formatting (Python 3)

• 3. 2016: f-strings (Python 3.6)

140

1. String formatting: the percentage (%) operator

% operator syntax
Syntax: A % B
where A is a string, and B a Python object, or a tuple of

Python objects.

The format string A needs to contain k format specifiers if the
tuple has length k. The operation returns a string.

Example: basic formatting of one number

141

>>> import math
>>> p = math.pi
>>> "%f" % p # format p as float (%f)
'3.141593' # returns string
>>> "%d" % p # format p as integer (%d)
'3'
>>> "%e" % p # format p in exponential style
'3.141593e+00'
>>> "%g" % p # format using fewer characters
'3.14159'

The format specifiers can be combined with arbitrary
characters in string:

142

>>> 'the value of pi is approx %f' % p
'the value of pi is approx 3.141593'
>>> '%d is my preferred number' % 42
'42 is my preferred number'

Combining multiple objects

>>> "%d times %d is %d" % (10, 42, 10 * 42)
'10 times 42 is 420'
>>> "pi=%f and 3*pi=%f is approx 10" % (p, 3*p)
'pi=3.141593 and 3*pi=9.424778 is approx 10'

143

Fixing width and/or precision of resulting string

>>> '%f' % 3.14 # default width and precision
'3.140000'

>>> '%10f' % 3.14 # 10 characters long
' 3.140000'

>>> '%10.2f' % 3.14 # 10 long, 2 post-dec digits
' 3.14'

>>> '%.2f' % 3.14 # 2 post-decimal digits
'3.14'

144

>>> '%.14f' % 3.14 # 14 post-decimal digits
'3.14000000000000'

There is also the format specifier %s that expects a string, or
an object that can provide its own string representation.

Combined with a width specifier, this can be used to align
columns of strings in tables:

>>> "%10s" % "apple"
' apple'
>>> "%10s" % "banana"
' banana'

145

Common formatting specifiers

A list of common formatting specifiers, with example output for
the astronomical unit (AU) which is the distance from Earth to
Sun [in metres]:

>>> AU = 149597870700 # astronomical unit [m]
>>> "%f" % AU # line 1 in table
'149597870700.000000'
specifier style Example output for AU
%f floating point 149597870700.000000
%e exponential notation 1.495979e+11
%g shorter of %e or %f 1.49598e+11
%d integer 149597870700
%s str() 149597870700
%r repr() 149597870700

146

Summary %-operator for printing

Create string using the %-operator, then pass the string to the
print function. Typically done in the same line:

>>> import math
>>> print("My pi = %.2f." % math.pi)
My pi = 3.14.

Print multiple values:

>>> print("a=%d b=%d" % (10, 20))
a=10 b=20

Very similar syntax exists in other languages, for example C
and Matlab, for formatted data output to screen and files.

147

2. New style string formatting (format method)

A new(er) system of built-in formatting has been proposed
(PEP3101), titled Advanced String Formatting and is available in
Python 3.

Basic ideas in examples:

• Pairs of curly braces are the placeholders.
>>> "{} owns {} bikes".format('Peter', 4)
'Peter owns 4 bikes'

• Formatting behaviour of %f can be achieved through
{:f}, (same for %d, %e, etc)
>>> "Pi is approx {:f}.".format(math.pi)
'Pi is approx 3.141593.'

148

https://www.python.org/dev/peps/pep-3101/

• Width and post decimal digits can be specified as before:
>>> "Pi is approx {:6.2f}.".format(math.pi)
'Pi is approx 3.14.'
>>> "Pi is approx {:.2f}.".format(math.pi)
'Pi is approx 3.14.'

Further Reading

• Examples
http://docs.python.org/library/string.html#format-
examples

• Python Enhancement Proposal 3101

149

http://docs.python.org/library/string.html#format-examples
http://docs.python.org/library/string.html#format-examples
http://www.python.org/dev/peps/pep-3101/

3. f-strings (formatted string literals)

• Introduced in Python 3.6
• Described in PEP498
https://www.python.org/dev/peps/pep-0498/

• combines with str.format syntax

150

https://www.python.org/dev/peps/pep-0498/

f-strings examples

>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
>>> value = 12.34567
>>> f"result: {value}"
'result: 12.34567'

151

f-strings re-use new style syntax

We can combine f-strings with new format specifiers:

>>> value = 12.34567
>>> f"result: {value:10}" # 10 spaces
'result: 12.34567'
>>> f"result: {value:e}" # %e behaviour
'result: 1.234567e+01'
>>> f"result: {value:f}" # %f behaviour
'result: 12.345670'
>>> f"result: {value:.4f}" # 4 post-decimal digits
'result: 12.3457'
>>> f"result: {value:.4}" # 4 digits precision
'result: 12.35'

152

Expressions in f-strings are evaluated at run time

We can evaluate Python expressions in the f-strings:

>>> import math
>>> f"The diagonal has length {math.sqrt(2)}."
'The diagonal has length 1.4142135623730951.'

(Advanced:) Precision specifier can be variables:

>>> width = 10
>>> precision = 4
>>> f"{math.pi:{width}.{precision}}"
' 3.142'

153

Show variable name and value with {name=}

Convenient short cut for debugging print statements:

>>> a = 10
>>> b = 20
>>> c = math.sqrt(a**2 + b**2)
>>> f"State: {a=} {b=} {c=}"
'State: a=10 b=20 c=22.360679774997898'

154

Comparison string formatting generations 1 (repeat slide)

Example 1

>>> value = 42
>>> "the value is %s" % value
'the value is 42'

>>> "the value is {}".format(value)
'the value is 42'

>>> f"the value is {value}"
'the value is 42'

155

Comparison string formatting generations 2

Example 2

>>> import math
>>> x = math.pi

conventional:
>>> "x is %f and x^2 is approx %.1f" % (x, x**2)
'x is 3.141593 and x^2 is approx 9.9'

new-style:
>>> "x is {:f} and x^2 is approx {:.1f}".format(x, x**2)
'x is 3.141593 and x^2 is approx 9.9'

f-strings:
>>> f"x is {x:f} and x^2 is approx {x**2:.1f}"
'x is 3.141593 and x^2 is approx 9.9'
>>> f"{x=:f} and {x**2=:.1f}" # alternative simplification
'x=3.141593 and x**2=9.9' 156

What formatting should I use?

• use f-strings if you can
• The .format method more elegant and versatile than %
• % operator style okay, links to Matlab, C, ...
• Choice partly a matter of taste, history and existing code

• do your collaborators know the method you use?
• Should be aware (in a passive sense) of different possible
styles (so we can read code from others)

157

Changes from Python 2 to Python 3: print

One (maybe the most obvious) change going from Python 2 to
Python 3 is that the print command loses its special status.
In Python 2, we could print ”Hello World” using

print "Hello World" # allowed in Python 2

Effectively, we call the function print with the argument
"Hello World". All other functions in Python are called
such that the argument is enclosed in parentheses, i.e.

print("Hello World") # required in Python 3

This is the new convention required in Python 3 (and allowed
for recent version of Python 2.x.)

158

The str function and __str__ method

All objects in Python should provide a method __str__ which
returns an informal string representation of the object.
This method a.__str__ is called when we apply the str
function to object a:
>>> a = 3.14
>>> a.__str__()
'3.14'
>>> str(a)
'3.14'

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> str(now)
'2022-01-13 13:44:56.392268'

159

Implicit calling of str function

The string method x.__str__ of object x is called implicitly, when we

• use the ”%s” format specifier in %-operator formatting to print x
• use the ”{}” format specifier in .format to print x
• use the ”{x}” notation in f-strings
• pass the object x directly to the print command

>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> "%s" % now
'2022-01-13 13:44:56.392268'
>>> "{}".format(now)
'2022-01-13 13:44:56.392268'
>>> f"{now}"
'2022-01-13 13:44:56.392268'
>>> print(now)
2022-01-13 13:44:56.392268 160

The repr function and __repr__ method

• The repr function should convert a given object into an
as accurate as possible string representation

• The repr function will generally provide a more detailed
string than str.

• Applying repr to the object x will attempt to call
x.__repr__().

• The python (and IPython) prompt uses repr to ’display’
objects.

161

Example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> str(t)
'2022-01-13 13:55:39.158456'
>>> repr(t)
'datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)'
>>> t
datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)

For many objects, str(x) and repr(x) return the same
string.

162

The eval function

The eval function accepts a string, and evaluates the string
(as if it was entered at the Python prompt):

>>> x = 1
>>> eval('x + 1')
2
>>> s = "[10, 20, 30]"
>>> type(s)
<class str>
>>> eval(s)
[10, 20, 30]
>>> type(eval(s))
<class list>

163

The repr and eval function

Given an accurate representation of an object as a string, we
can convert that string into the object using the eval function.

>>> i = 42
>>> type(i)
<class int>
>>> repr(i)
'42'
>>> type(repr(i))
<class str>
>>> eval(repr(i))
42
>>> type(eval(repr(i)))
<class int>

The datetime example:

164

>>> import datetime
>>> t = datetime.datetime.now()
>>> t_as_string = repr(t)
>>> t_as_string
'datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)'
>>> t2 = eval(t_as_string)
>>> t2
datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)
>>> type(t2)
<class datetime.datetime>
>>> t == t2
True

165

Higher Order Functions

Motivational exercise: function tables

• Write a function print_x2_table() that prints a table
of values of f(x) = x2 for x = 0, 0.5, 1.0, ..2.5, i.e.

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

• Then do the same for f(x) = x3

• Then do the same for f(x) = sin(x)

166

Can we avoid code duplication?

Idea: Pass function f(x) to tabulate to tabulating function

Example: (print_f_table.py)

def print_f_table(f):
for i in range(6):

x = i * 0.5
fx = f(x)
print(f"{x} {fx}")

def square(x):
return x ** 2

167

print_f_table(square)

produces

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

168

Can we avoid code duplication (2)?

def print_f_table(f):
for i in range(6):

x = i * 0.5
fx = f(x)
print(f"{x} {fx}")

def square(x):
return x ** 2

def cubic(x):
return x ** 3

169

print("Square"); print_f_table(square)
print("Cubic"); print_f_table(cubic)

produces:

Square
0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

Cubic
0.0 0.0
0.5 0.125
1.0 1.0
1.5 3.375
2.0 8.0
2.5 15.625

170

Example: iterating over functions

• Example (trigtable.py):
import math
funcs = [math.sin, math.cos]
for f in funcs:

fname = f.__name__
for x in [0, math.pi/2]:

fx = f(x)
print(f"{fname}({x:.3f}) = {fx:.3f}")

produces
sin(0.000) = 0.000
sin(1.571) = 1.000
cos(0.000) = 1.000
cos(1.571) = 0.000

171

Higher order functions / are first class objects

Functions are ’just’ objects in Python. Related terminology:

• Functions are first class objects↔ functions can be given
to other functions as arguments

• Higher order functions accept (or return) functions as
arguments.

172

http://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/Higher-order_function

Modules

Writing module files

• Motivation: it is useful to bundle functions that are used
repeatedly and belong to the same subject area into one
module file (also called “library”)

• This allows to re-use the functions in multiple Python
applications.

• Every Python file can be imported as a module.
• If the module file contains commands (other than class
and function definitions) then these are executed when
the file is imported. This can be desired but sometimes it
is not.

173

The internal __name__ variable (1)

• Here is an example of a module file saved as module1.py:
def someusefulfunction():

pass

print(f"My name is {__name__}")
We can execute this module file, and the output is

My name is __main__

• The internal variable __name__ takes the (string) value
"__main__" if the program file module1.py is executed.

174

• On the other hand, we can import module1.py in another file,
for example like this:

import module1

The output is now:

My name is module1

• We see that __name__ inside a module takes the value of the
module name if the file is imported.

175

if __name__ == __main__ …

module2.py:
1 def someusefulfunction():
2 pass
3

4 if __name__ == "__main__":
5 print("I am the top level")
6 else:
7 print(f"I am imported as a library '{__name__}'")

• Line 5 is only executed when the module is executed as the top
level (for example as python module2.py, or pressing F5 in
Spyder when editing the dile module2.py).

• __name__ allows conditional execution of code when top-level
or imported.

176

Application file example

def useful_function():
Core function in this app.
Could be useful in other apps.
pass

def main():
Main functionality of this app in here.
x = useful_function()
...

if __name__ == "__main__":
main() # start main application

else:
get here if the file is imported
pass

177

Library file example

def useful_function():
core functionality of library here
pass

def test_for_useful_function():
print("Running self test ...")

if __name__ == "__main__":
test_for_useful_function()

else:
print("Setting up library")
initialisation code that might be needed
if imported as a library

178

Default arguments

Default argument values

• Motivation:
• suppose we need to compute the area of rectangles and
• we know the side lengths a and b.
• Most of the time, b=1 but sometimes b can take other
values.

• Solution 1:
def area(a, b):

return a * b

print(f"The area is {area(3, 1)}")
print(f"The area is {area(2.5, 1)}")
print(f"The area is {area(2.5, 2)}")

179

• We can make the function more user friendly by providing
a default value for b. We then only have to specify b if it is
different from this default value:

• Solution 2 (with default value for argument b):
def area(a, b=1):

return a * b

print(f"The area is {area(3)}")
print(f"The area is {area(2.5)}")
print(f"The area is {area(2.5, 2)}")

• If a default value is defined, then this parameter (here b)
is optional when the function is called.

• Default parameters have to be at the end of the argument
list in the function definition.

180

Default argument values

You may have met default arguments in use before, for
example

• the print function uses end='\n' as a default value
• the list.pop method uses index=-1 as a default

LAB6

181

Keyword argument values

• We can call functions with a “keyword” and a value. (The
keyword is the name of the variable in the function
definition.)

• Here is an example
def f(a, b, c):

print(f"{a=} {b=} {c=}")

f(1, 2, 3)
f(c=3, a=1, b=2)
f(1, c=3, b=2)
which produces this output:

182

a=1 b=2 c=3
a=1 b=2 c=3
a=1 b=2 c=3

• If we use only keyword arguments in the function call,
then we do not need to know the order of the arguments.
(This is good.)

• Choosing meaningful variable names in the function
definition makes the function more user friendly.

183

Combining keyword arguments with default argument values

• Can combine default value arguments and keyword
arguments

• Example: Imagine for a numerical integration routine we
use 100 subdivisions unless the user provides a number
def trapez(function, a, b, subdivisions=100):

code missing here
pass

import math
int1 = trapez(a=0, b=10, function=math.sin)
int2 = trapez(b=0, function=math.exp,

subdivisions=1000, a=-0.5)

184

Advanced: disallow or enforce keyword argument use

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

See https:
//www.python.org/dev/peps/pep-0570/#how-to-teach-this

185

https://www.python.org/dev/peps/pep-0570/#how-to-teach-this
https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

def standard_arg(arg):
print(arg)

def pos_only_arg(arg, /):
print(arg)

def kwd_only_arg(*, arg):
print(arg)

def combined_example(pos_only, /, standard, *, kwd_only):
print(pos_only, standard, kwd_only)

186

186

Namespaces

Name spaces — what can be seen where?

We distinguish between

• global variables (defined in main program) and

• local variables (defined for example in functions)

• built-in functions

187

Python’s look up rule

Python’s look up rule for Names
When coming across an identifier, Python looks for this in the
following order in

• the local name space (L)
• (if appropriate in the next higher level local name space),
(L2, L3, …)

• the global name space (G)
• the set of built-in commands (B)

This is summarised as “LGB” or “LnGB”.

If the identifier cannot be found, a NameError is raised.

188

Local names shadow global names

• This means, we can read global variables from functions.
Example:
def f():

print(x)

x = 'I am global'
f()
Output:
I am global

189

• but local variables “shadow” global variables:
def f():

y = 'I am local y'
print(x)
print(y)

x = 'I am global x'
y = 'I am global y'
f()
print("back in main:")
print(y)
Output:
I am global x
I am local y
back in main:
I am global y

190

• To modify global variables within a local namespace, we
need to use the global keyword.
(This is not recommended so we won’t explain it. See also next slide.)

191

Why should I care about global variables?

• Generally, the use of global variables is not recommended:

• functions should take all necessary input as arguments and
• return all relevant output.
• This makes the functions work as independent units which
is good engineering practice and essential to control
complexity of software.

• However, sometimes the same constant or variable (such
as the mass of an object) is required throughout a
program:

• it is not good practice to define this variable more than
once (it is likely that we assign different values and get
inconsistent results)

192

• in this case — in small programs — the use of (read-only)
global variables may be acceptable.

• Object Oriented Programming provides a somewhat neater
solution to this.

193

IPython, Jupyter, Editors and IDEs

IPython (interactive python)

• Interactive Python (ipython) prompt
• command history (across sessions), auto completion
• special commands:

• %run myfile will execute file myfile.py in current
name space

• %reset can delete all objects if required
• use range? instead of help(range)
• %logstart will log your session
• %prun will profile code
• %timeit can measure execution time
• %load loads file for editing (also from URL)
• %debug start debugger after error
• %pdb automatic calling of debugger

• Much more (read at http://ipython.org)

196

http://ipython.org

Jupyter Notebook useful for research and data science

• Used to be the IPython Notebook, but now supports many
more languages (JUlia, PYThon, ER→ JUPYTER)

• Notebook is executable document hosted in web browser.
• Home page http://jupyter.org

Great value for research
• Fangohr etal: Data Exploration and Analysis with Jupyter Notebooks
10.18429/JACoW-ICALEPCS2019-TUCPR02 (2020)

• Granger and Perez: Thinking and Storytelling with Jupyter,
10.1109/MCSE.2021.3059263 (2021)

• Fangohr, Di Pierro and Kluyver: Jupyter in Computational Science,
10.1109/MCSE.2021.3059494 (2021)

• Beg, Fangohr, etal: Using Jupyter for reproducible scientific workflows,
Computing in Science and Engineering 23, 36-46
10.1109/MCSE.2021.3052101 (2021)

• Blog entry: Jupyter for Computational Science and Data Science (2022) 197

http://jupyter.org
https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPR02
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059494
https://doi.org/10.1109/MCSE.2021.3052101
https://fangohr.github.io/blog/jupyter-for-computational-science-and-data-science.html

Integrated Development Environments (IDEs) and editors

Including

• Spyder
• PyCharm (commercial)
• Visual studio code
• Emacs
• vim and Emacs→ Spacemacs
• vim (vi)
• Sublime Text (commercial)
• …

198

https://www.spacemacs.org

List comprehension

List comprehension

• List comprehension follows the mathematical “set builder
notation”

• Convenient way to process a list into another list (without
for-loop).

Examples

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> [x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

199

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation
http://en.wikipedia.org/wiki/Set-builder_notation

List comprehension structure

Structure of list comprehension:

[EXPRESSION(OBJECT) for OBJECT in SEQUENCE]

where EXPRESSION, OBJECT, and SEQUENCE can vary.
Examples:

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> import math
>>> [math.sqrt(x) for x in [1, 4, 9, 16]]
[1.0, 2.0, 3.0, 4.0]

>>> [s.capitalize() for s in ["dog", "cat", "mouse"]]
['Dog', 'Cat', 'Mouse']

200

List comprehension example 1 and 2

Can be useful to populate lists with numbers quickly

• Example 1:

>>> ys = [x**2 for x in range(10)]
>>> ys
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

• Example 2:

>>> import math
>>> xs = [0.1 * i for i in range(5)]
>>> xs
[0.0, 0.1, 0.2, 0.3, 0.4]
>>> ys = [math.exp(x) for x in xs]
>>> ys
[1.0, 1.1051709180756477, 1.2214027581601699,
1.3498588075760032, 1.4918246976412703]

201

List comprehension with filter

[EXPRESSION(OBJECT) for OBJECT in SEQUENCE
if CONDITION(OBJECT)]

• include OBJECT only if CONDITION(OBJECT) is True.
• Example:
>>> [i for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [i for i in range(10) if i > 5]
[6, 7, 8, 9]

>>> [i for i in range(10) if i**2 > 5]
[3, 4, 5, 6, 7, 8, 9]

202

Dictionary comprehension

In addition to list comprehension there is also dictionary
comprehension available:

>>> {x: x**2 for x in range(5)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> {word: len(word) for word in ["dog", "bird", "mouse"]}
{'dog': 3, 'bird': 4, 'mouse': 5}

203

Generator comprehension (advanced)

Generators (see slide 92) can also be created using a
comprehension syntax:

>>> gen = (x**2 for x in range(5))
>>> type(gen)
<class 'generator'>
>>> for item in gen:
... print(item)
...
0
1
4
9
16
>>> list((x**2 for x in range(5)))
[0, 1, 4, 9, 16]
>>>

204

Dictionaries

Dictionaries

• Python provides another data type: the dictionary.
Dictionaries are also called “associative arrays” and “hash tables”.

• Dictionaries are unordered sets of key-value pairs.
Starting from Python 3.7, dictionaries preserve insertion order.

• An empty dictionary can be created using curly braces:
>>> d = {}

• Keyword-value pairs can be added like this:
>>> d['today'] = '22 deg C' # 'today' is key

'22 deg C' is value
>>> d['yesterday'] = '19 deg C'

• We can retrieve values by using the keyword as the index:
>>> d['today']
"22 deg C"

205

• d.keys() returns all keys:
>>> d.keys()
['today', 'yesterday']

• d.values() returns all values:
>>> d.values()
['22 deg C', '19 deg C']

• Check if key is in dictionary:
>>> 'today' in d.keys()
True
Equivalent to
>>> 'today' in d
True

206

Dictionary example 1

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Half pint of beer'
order['Mary'] = 'Gin tonic'

deliver order at bar
for person in order.keys():

print(f"{person} requests {order[person]}")

which produces this output:

Peter requests sparkling water
Paul requests Half pint of beer
Mary requests Gin tonic

207

Dictionary

Some more technicalities:

• The dictionary key can be any immutable Python object.
This includes:

• numbers
• strings
• tuples.

• dictionaries are very fast in retrieving values (when given
the key)

208

Dictionary use case

keys are names of people
values are the room numbers
room = {} # better name: room by person
room["Andy"] = 1031
room["Barbara"] = 1027
room["Charles"] = 1033

for person in room.keys():
print(f"{person} works in {room[person]}")

Output:

Andy works in 1031
Barbara works in 1027
Charles works in 1033

209

Without dictionary:

people = ["Andy", "Barbara", "Charles"]
rooms = [1031, 1027, 1033]
possible inconsistency here since we have two lists
if not len(people) == len(rooms):

raise ValueError("people and rooms differ in length")

for i in range(len(rooms)):
print(f"{people[i]} works in room {rooms[i]}")

Output:

Andy works in room 1031
Barbara works in room 1027
Charles works in room 1033

210

Iterating over dictionaries

Iterating over the dictionary itself is equivalent to iterating over the
keys. Example:

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Half pint of beer'
order['Mary'] = 'Gin tonic'

iterating over keys:
for person in order.keys():

print(f"{person} requests {order[person]}")

is equivalent to iterating over the dictionary:
for person in order:

print(f"{person} requests {order[person]}")
211

Summary dictionaries

What to remember:

• Python provides dictionaries
• very powerful construct
• a bit like a data base (and values can be dictionary
objects)

• fast to retrieve value
• likely to be useful if you are dealing with two lists at the
same time (possibly one of them contains the keyword
and the other the value)

• useful if you have a data set that needs to be indexed by
strings or tuples (or other immutable objects)

212

212

Recursion

Recursion

Recursion in a screen recording program, where the smaller
window contains a snapshot of the entire screen. Source:
http://en.wikipedia.org/wiki/Recursion

213

http://en.wikipedia.org/wiki/Recursion

Recursion example: factorial

• Computing the factorial (i.e. n!) can be done by computing
(n− 1)!n, i.e. we reduce the problem of size n to a problem
of size n− 1.

• For recursive problems, we always need a base case. For
the factorial we know that 0! = 1.

• For n = 4:

4! = 3! · 4 (1)
= 2! · 3 · 4 (2)
= 1! · 2 · 3 · 4 (3)
= 0! · 1 · 2 · 3 · 4 (4)
= 1 · 1 · 2 · 3 · 4 (5)
= 24. (6) 214

Recursion example

Python code to compute the factorial recursively:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)

Usage output:

>>> factorial(0)
factorial(0)
1
>>> factorial(2)
2
>>> factorial(4)
24

215

Recursion example Fibonacci numbers

Defined (recursively) as f(n) = f(n− 1) + f(n− 2) for integers n,
and n > 0, and f(1) = 0 and f(2) = 1

Python implementation (fibonacci.py):

def f(n):
if n == 1:

return 0
elif n == 2:

return 1
else:

return f(n - 2) + f(n - 1)

216

Recursion exercises

1. Write a function recsum(n) that sums the numbers from
1 to n recursively

2. Study the recursive Fibonacci function from slide 216:
• what is the largest number n for which we can reasonable
compute f(n) within a minute?

• Can you write faster versions of the Fibonacci function?
(There are faster versions with and without recursion.)

217

Common Computational Tasks

Overview common computational tasks

• Data file processing, python & numpy (array)
• Random number generation and Fourier transforms
(numpy)

• Linear algebra (numpy)
• Interpolation of data (scipy.interpolate.interp)
• Fitting a curve to data (scipy.optimize.curve_fit)
• Integrating a function numerically
(scipy.integrate.quad)

• Integrating a ordinary differential equation numerically
(scipy.integrate.solve_ivp)

218

• Finding the root of a function
(scipy.optimize.fsolve,
scipy.optimize.brentq)

• Minimising a function (scipy.optimize.fmin)
• Symbolic manipulation of terms, including integration,
differentiation and code generation (sympy)

• Data science, processing, cleaning and analysing data,
tabular data (pandas)

219

Overview working with functions and data

differentiation

integration

root finding

optimisation

interpolation

curve fitting

quad

brentq, solve

fmin

Interp1d

curve fitting 220

Root finding

Rootfinding

Root finding
Given a function f(x), we are searching an x0 so f(x0) = 0. We
call x0 a root of f(x).

Why?

• Often need to know when a particular function reaches a
value, for example the water temperature T(t) reaching
373 K. In that case, we define

f(t) = T(t)− 373

and search the root t0 for f(t)

We introduce two methods:

• Bisection method
• Newton method 220

The bisection algorithm

• Function: bisect(f, a, b)
• Assumptions:

• Given: a (float)
• Given: b (float)
• Given: f(x), continuous with single root in [a,b], i.e.
f(a)f(b) < 0

• Given: ftol (float), for example ftol = 10−6

The bisection method returns x so that |f(x)| < ftol.

1. x = (a+ b)/2
2. while |f(x)| > ftol do

• if f(x)f(a) > 0
then a← x # throw away left half
else b← x # throw away right half

• x = (a+ b)/2
3. return x 221

The bisection algorithm

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
f(x

)=
x2 (

x
2)

f(a0)

a0
f(b0)

b0

f(x0)

iteration 0

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)

f(a1)

a1 f(b1) b1

f(x1)

iteration 1

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)

f(a2)

a2

f(b2)

b2

f(x2)

iteration 2

1.00 1.25 1.50 1.75 2.00 2.25 2.50
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)=

x2 (
x

2)
f(a3)

a3

f(b3)

b3

f(x3)

iteration 3

222

The bisection function from scipy

• Scientific Python provides an interface to the “Minpack”
library. One of the functions is

• scipy.optimize.bisect(f, a, b[, xtol])
• f is the function for which we search x such that f(x) = 0
• a is the lower limit of the bracket [a,b] around the root
• b is the upper limit of the bracket [a,b] around the root
• xtol is an optional parameter that can be used to modify
the default accuracy of xtol = 10−12

• the bisect function stops ’bisecting’ the interval around
the root when |b−a| <xtol.

223

Example

• Find root of function f(x) = x2(x− 2)
• f has a double root at x = 0, and a single root at x = 2.
• Ask algorithm to find single root at x = 2.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

3

2

1

0

1

2

3

f(x
)=

x3
2x

2
=

x2 (
x

2)

224

Using bisection algorithm from scipy

from scipy.optimize import bisect

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = bisect(f, a=1.5, b=3, xtol=1e-6)

print(f"Root is approx {x}.")
print(f"The exact error is {x-2}.")
print(f"Error is less than 1e-6: {abs(x-2)<1e-6}")

produces

Root is approx 2.000000238418579.
The exact error is 2.384185791015625e-07.
Error is less than 1e-6: True 225

The Newton method

• Newton method for root finding: find xroot so that
f(xroot) = 0.

• Idea: close to the root, the tangent of f(x) is likely to point
to the root. Make use of this information.

• Algorithm:
while |f(x)| >ftol, do

xn+1 = xn −
f(xn)
f′(xn)

where f′(x) = df
dx(x).

• Much better convergence than bisection method
• but not guaranteed to converge.
• Need a good initial guess x0 for the root.
• Need a way to compute (approximate) f′ ≡ df

dx(x).

226

The Newton method (tol=1e-15)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

f(x
)=

x2 (
x

2)
=

x3
2x

2

f(x0)

f(x1)

f(x2)

f(x3)

x0 = 1.600000000000000; f(x0) = -1.024000000000000
x1 = 2.399999999999999; f(x1) = 2.303999999999997
x2 = 2.100000000000000; f(x2) = 0.440999999999999
x3 = 2.008695652173913; f(x3) = 0.035085723678803
x4 = 2.000074640791193; f(x4) = 0.000298585450178
x5 = 2.000000005570624; f(x5) = 0.000000022282496
x6 = 2.000000000000000; f(x6) = 0.000000000000000

227

Using Newton algorithm from scipy

from scipy.optimize import newton

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = newton(f, x0=1.6, tol=1e-6)

print(f"Root is approx {x}.")
print(f"The exact error is {2-x}.")

produces

Root is approx 1.9999999999999902.
The exact error is 9.769962616701378e-15.

Uses Secant method as f′ is not known (and not passed to newton). 228

$https://en.wikipedia.org/wiki/Secant_method

Comparison Bisection & Newton method

Bisection method
• Requires root in bracket
[a,b]

• guaranteed to converge
(for single roots)

• Library function:
scipy.optimize.bisect

Newton method
• Requires good initial guess
x for root x0

• may never converge
• but if it does, it is quicker
than the bisection method

• Library function:
scipy.optimize.newton

229

Root finding summary

• Given the function f(x), applications for root finding
include:

• to find x1 so that f(x1) = y for a given y (this is equivalent to
computing the inverse of the function f).

• to find crossing point xc of two functions f1(x) and f2(x) (by
finding root of difference function g(x) = f1(x)− f2(x))

• Recommended method: scipy.optimize.brentq
which combines the safe feature of the bisect method
with the speed of the Newton method.

• For multi-dimensional functions f(x), use
scipy.optimize.fsolve.

230

Using BrentQ algorithm from scipy

from scipy.optimize import brentq

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = brentq(f, a=1.5, b=3, xtol=1e-6)

print(f"Root is approx {x}.")
print(f"The exact error is {2-x}.")

produces:

Root is approx 2.0000000189582865.
The exact error is -1.8958286496228993e-08.

231

Using fsolve for multi-dimensional optimisation problem

from scipy.optimize import fsolve # multidimensional solver

def f(v):
"""Return f(x, y) = (x^3, y). Trivial example with
root at x=0 and y=-1"""
x, y = v
return x**3, y+1

x, y = fsolve(f, x0=[2, 2]) # start search from x=2, y=2
print(f"Root is approx. {x=} {y=}")

produces:

Root is approx. x=2.2748231592544493e-17 y=-1.0

232

233

Derivatives

Overview

• Motivation:
• We need derivatives of functions for some optimisation
and root finding algorithms

• Not always is the function analytically known (but we are
usually able to compute the function numerically)

• The material presented here forms the basis of the
finite-difference technique that is commonly used to solve
ordinary and partial differential equations.

• The following slides show
• the forward difference technique,
• the backward difference technique and the
• central difference technique to approximate the derivative
of a function.

• We also derive the accuracy of each of these methods.

234

The 1st derivative

• (Possible) Definition of the derivative (or “differential
operator” d

dx)

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x)
h

• Use difference operator to approximate differential
operator

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x)
h ≈ f(x+ h)− f(x)

h
• ⇒ can now compute an approximation of f ′ simply by
evaluating f.

• This is called the forward difference because we use f(x)
and f(x+ h).

• Important question: How accurate is this approximation?

235

The forward difference method, geometric representation

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

forward difference
(h=0.5)

f(x) = x2

Computing f ′(x) at x = 0 using the forward difference method.
236

Example 1: forward difference

Using forward difference to estimate the derivative of
f(x) = exp(x)

f ′(x) ≈ f(x+ h)− f(x)
h =

exp(x+ h)− exp(x)
h

Numerical example:

• h = 0.1, x = 1
• f ′(1.0) ≈ exp(1.1)−exp(1)

0.1 = 2.8588
• Exact answers is f ′(1.0) = exp(1.0) = 2.7182
• error is 2.8588-2.7182 = 0.1406 (relative error is about 5%).

237

Example (1): forward difference

Comparison: forward difference and exact derivative of exp(x)

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25
f(x) = exp(x)

x

exact derivative
forward differences

238

Accuracy of the forward difference

• Formal derivation using the Taylor series of f around x

f(x+ h) =
∞∑
n=0

hn f
(n)(x)
n!

= f(x) + hf ′(x) + h2 f
′′(x)
2! + h3 f

′′′(x)
3! + . . .

• Rearranging for f ′(x)

hf ′(x) = f(x+ h)− f(x)− h2 f
′′(x)
2! − h3 f

′′′(x)
3! − . . .

f ′(x) =
1
h

(
f(x+ h)− f(x)− h2 f

′′(x)
2! − h3 f

′′′(x)
3! − . . .

)
=

f(x+ h)− f(x)
h −

h2 f
′′(x)
2! − h

3 f ′′′(x)
3!

h − . . .

=
f(x+ h)− f(x)

h − hf
′′(x)
2! − h2 f

′′′(x)
3! − . . .

239

Accuracy of the forward difference (2)

f ′(x) =
f(x+ h)− f(x)

h − hf
′′(x)
2! − h

2 f ′′′(x)
3! − . . .︸ ︷︷ ︸

Eforw(h)

f ′(x) =
f(x+ h)− f(x)

h + Eforw(h)

• Therefore, the error term Eforw(h) is

Eforw(h) = −h
f ′′(x)
2! − h

2 f ′′′(x)
3! − . . .

• Can also be expressed as

f ′(x) = f(x+ h)− f(x)
h +O(h)

240

The 1st derivative using the backward difference

• Another definition of the derivative (or “differential
operator” d

dx)

df
dx(x) = lim

h→0

f(x)− f(x− h)
h

• Use difference operator to approximate differential
operator

df
dx(x) = lim

h→0

f(x)− f(x− h)
h ≈ f(x)− f(x− h)

h

• This is called the backward difference because we use f(x)
and f(x− h).

• How accurate is the backward difference?

241

Accuracy of the backward difference

• Formal derivation using the Taylor Series of f around x

f(x− h) = f(x)− hf ′(x) + h2 f
′′(x)
2! − h

3 f ′′′(x)
3! + . . .

• Rearranging for f ′(x)

hf ′(x) = f(x)− f(x− h) + h2 f
′′(x)
2! − h3 f

′′′(x)
3! − . . .

f ′(x) =
1
h

(
f(x)− f(x− h) + h2 f

′′(x)
2! − h3 f

′′′(x)
3! − . . .

)
=

f(x)− f(x− h)
h +

h2 f
′′(x)
2! − h

3 f ′′′(x)
3!

h − . . .

=
f(x)− f(x− h)

h + hf
′′(x)
2! − h2 f

′′′(x)
3! − . . .

242

Accuracy of the backward difference (2)

f ′(x) =
f(x)− f(x− h)

h + hf
′′(x)
2! − h

2 f ′′′(x)
3! − . . .︸ ︷︷ ︸

Eback(h)

f ′(x) =
f(x)− f(x− h)

h + Eback(h) (7)

• Therefore, the error term Eback(h) is

Eback(h) = hf
′′(x)
2! − h

2 f ′′′(x)
3! − . . .

• Can also be expressed as

f ′(x) = f(x)− f(x− h)
h +O(h)

243

Combining backward and forward differences (1)

The approximations are

• forward:
f ′(x) = f(x+ h)− f(x)

h + Eforw(h) (8)

• backward

f ′(x) = f(x)− f(x− h)
h + Eback(h) (9)

Eforw(h) = −hf
′′(x)
2! − h2 f

′′′(x)
3! − h3 f

′′′′(x)
4! − h4 f

′′′′′(x)
5! − . . .

Eback(h) = hf
′′(x)
2! − h2 f

′′′(x)
3! + h3 f

′′′′(x)
4! − h4 f

′′′′′(x)
5! + . . .

⇒ Add equations (8) and (9) together, then the error cancels
partly.

244

Combining backward and forward differences (2)

Add these lines together

f ′(x) =
f(x+ h)− f(x)

h + Eforw(h)

f ′(x) =
f(x)− f(x− h)

h + Eback(h)

2f ′(x) =
f(x+ h)− f(x− h)

h + Eforw(h) + Eback(h)

Adding the error terms:

Eforw(h) + Eback(h) = −2h2
f ′′′(x)
3! − 2h4 f

′′′′′(x)
5! − . . .

The combined (central) difference operator is

f ′(x) = f(x+ h)− f(x− h)
2h + Ecent(h)

with
Ecent(h) = −h2

f ′′′(x)
3! − h4 f

′′′′′(x)
5! − . . . 245

Central difference

• Can be derived (as on previous slides) by adding forward
and backward difference

• Can also be interpreted geometrically by defining the
differential operator as

df
dx(x) = lim

h→0

f(x+ h)− f(x− h)
2h

and taking the finite difference form
df
dx(x) ≈

f(x+ h)− f(x− h)
2h

• Error of the central difference is only O(h2), i.e. better
than forward or backward difference

It is generally the case that symmetric differences
are more accurate than asymmetric expressions.

246

Forward, backward and central differences

• Can approximate derivatives of f numerically
• need only function evaluations of f
• central differences is most accurate

name formula error

forward f ′(x) = f(x+h)−f(x)
h O(h)

backward f ′(x) = f(x)−f(x−h)
h O(h)

central f ′(x) = f(x+h)−f(x−h)
2h O(h2)

247

Geometric representations

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

1.5

central difference

f(x) = x2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

forward difference
(h=0.5)

backward difference
 (h=0.5)

central difference
 (h=0.25)

f(x) = x2

• Central
differences

• Forward,
backward
and central
differences
combined

248

Example 2: spacing h in central differences

def f(x):
"""Return x^3/3. (Derivative is x^2)."""
return x**3 / 3

print("Change x, h=1e-6 is fixed =================")
h = 1e-6
print(" x Numer.Derivative abs. Error")
for x in range(0, 5):

fprime = (f(x+h) - f(x-h)) / (2 * h)
print(f"{x:8} {fprime:20.15f} {abs(fprime-x**2):10.6g}")

print("\nChange h, x=2 is fixed ===================")
x = 2
print(" h Numer.Derivative abs. Error")
for h in [1e-1, 1e-3, 1e-6, 1e-7, 1e-9, 1e-12, 1e-15]:

fprime = (f(x+h) - f(x-h)) / (2 * h)
print(f"{h:8g} {fprime:20.15f} {abs(fprime-x**2):10.6g}")

249

Example 2 output

Change x, h=1e-6 is fixed =================
x Numer.Derivative abs. Error
0 0.000000000000333 3.33333e-13
1 0.999999999973245 2.67555e-11
2 4.000000000115023 1.15023e-10
3 9.000000002146180 2.14618e-09
4 16.000000002236447 2.23645e-09

Change h, x=2 is fixed ===================
h Numer.Derivative abs. Error

0.1 4.003333333333337 0.00333333
0.001 4.000000333332698 3.33333e-07
1e-06 4.000000000115023 1.15023e-10
1e-07 3.999999997894577 2.10542e-09
1e-09 4.000000330961484 3.30961e-07
1e-12 4.000355602329364 0.000355602
1e-15 3.996802888650563 0.00319711

→ too large h:
inaccurate
approximation
of derivative

→ too small h:
floating point
representation
errors

250

Summary

• Can approximate derivatives of f numerically
• need only function evaluations of f
• central differences is most accurate

name formula error

forward f ′(x) = f(x+h)−f(x)
h O(h)

backward f ′(x) = f(x)−f(x−h)
h O(h)

central f ′(x) = f(x+h)−f(x−h)
2h O(h2)

• central difference is most accurate

LAB7

251

∗Note: Euler’s (integration) method — derivation using finite dif-
ference operator

• Use forward difference operator to approximate
differential operator

dy
dx(x) = lim

h→0

y(x+ h)− y(x)
h ≈ y(x+ h)− y(x)

h

• Change differential to difference operator in dy
dx = f(x, y)

f(x, y) = dy
dx ≈ y(x+ h)− y(x)

h
hf(x, y) ≈ y(x+ h)− y(x)
=⇒ yi+1 = yi + hf(xi, yi)

• ⇒ Euler’s method (for ODEs) can be derived from the
forward difference operator.

252

∗Note: Newton’s (root finding) method — derivation from Taylor
series

• We are looking for a root, i.e. we are looking for a x so that
f(x) = 0.

• We have an initial guess x0 which we refine in subsequent
iterations:

xi+1 = xi − hi where hi =
f(xi)
f ′(xi)

. (10)
.

• This equation can be derived from the Taylor series of f around
x. Suppose we guess the root to be at x and x+ h is the actual
location of the root (so h is unknown and f(x+ h) = 0):

f(x+ h) = f(x) + hf ′(x) + . . .

0 = f(x) + hf ′(x) + . . .

=⇒ 0 ≈ f(x) + hf ′(x)

⇐⇒ h ≈ − f(x)
f ′(x) . (11)

253

Numpy

numpy

numpy

• is an interface to high performance linear algebra libraries
(such as BLAS, LAPACK, ATLAS, MKL, BLIS)

• provides
• the array object (strictly ndarray type)
• fast mathematical operations over arrays
• linear algebra, Fourier transforms, random number
generation

• Numpy is not part of the Python standard library.

254

numpy 1d-arrays (vectors)

• An (1d) array is a sequence of objects
• all objects in one array are of the same type

>>> import numpy as np # widely used convention
>>> a = np.array([1, 4, 10])
>>> a
array([1, 4, 10])
>>> type(a)
<class numpy.ndarray>
>>> a + 100
array([101, 104, 110])
>>> a**2
array([1, 16, 100])
>>> np.sqrt(a)
array([1. , 2. , 3.16227766])
>>> a > 3
array([False, True, True], dtype=bool)

255

Array creation 1: from iterable

• 1d-array (vector) from iterable
>>> import numpy as np
>>> a = np.array([1, 4, 10]) # from list
>>> a
array([1, 4, 10])
>>> print(a)
[1 4 10]

• 2d-array (matrix) from nested sequences
>>> B = np.array([[0, 1.5], [10, 12]]) # from nested list
>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> print(B)
[[0. 1.5]
[10. 12.]]

256

Array type

• All elements in an array must be of the same type
• For existing array, the type is the dtype attribute
>>> a.dtype
dtype('int64')
>>> B.dtype
dtype('float64')

• We can fix the type of the array when we create the array, for
example:
>>> a2 = array([1, 4, 10], float)
>>> a2
array([1., 4., 10.])
>>> a2.dtype
dtype('float64')

257

Important array types

• For numerical calculations, we normally use double floats
which are known as float64 or short float:
>>> a2 = array([1, 4, 10], float)
>>> a2.dtype
dtype('float64')

• This is also the default type for zeros and ones.
• A full list is available at
http://docs.scipy.org/doc/numpy/user/basics.types.html

258

http://docs.scipy.org/doc/numpy/user/basics.types.html

Array size

The total number of elements is given through the size attribute:

>>> a.size
3
>>> B.size
4

The number of bytes per item:

>>> a.itemsize # dtype is int64
8
>>> B.itemsize # dtype is float64
8

259

The total number of bytes used is given through the nbytes
attribute:

>>> a.nbytes
24
>>> B.nbytes
32

260

Diving in with numpy.info

>>> z = np.arange(0, 12, 1).reshape(3, 4)
>>> z
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> z.dtype
dtype('int64')
>>> np.info(z)
class: ndarray
shape: (3, 4)
strides: (32, 8) # 32 bytes from row to row
itemsize: 8
aligned: True
contiguous: True
fortran: False
data pointer: 0x6000012dc060
byteorder: little
byteswap: False
type: int64
>>> z.nbytes
96 261

Array creation 2: arange and linspace

• arange([start,] stop[, step,]) is inspired by range: create
array from start up to but not including stop
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(10, dtype=float)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(0, 1, 0.1)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

• linspace(start, stop, num=50) provides num points linearly
spaced between start and stop (including stop):
>>> np.linspace(0, 10, 11)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
>>> np.linspace(0, 1, 11)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

262

Array shape

The shape is a tuple that describes

• (i) the dimensionality of the array (that is the length of the
shape tuple) and

• (ii) the number of elements for each dimension (“axis”)

Example:

>>> a.shape
(3,) # 1d array with 3 elements
>>> B.shape
(2, 2) # 2d array with 2 x 2 elements

Can use shape attribute to change shape:

263

>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> B.shape
(2, 2)
>>> B.shape = (4,)
>>> B
array([0. , 1.5, 10. , 12.])

Number of dimension also available in attribute ndim:

>>> B.ndim
2
>>> len(B.shape) # same as B.ndim
2

264

Array indexing (1d arrays)

>>> x = np.arange(0, 10, 2)
>>> x
array([0, 2, 4, 6, 8])
>>> x[3]
6
>>> x[4]
8
>>> x[-1] # last element
8

265

Array indexing (2d arrays)

>>> C = np.arange(12)
>>> C
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> C.shape = (3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, 0] # first index for rows, second for columns
0
>>> C[2, 0]
8
>>> C[2, -1] # row 3, last column
11
>>> C[-1, -1] # last row, last column
11 266

Array slicing (1d arrays)

Double colon operator ::
Read as START:END:INDEXSTEP
If either START or END are omitted, the respective ends of the
array are used. INDEXSTEP defaults to 1.

Examples:

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y[0:5] # slicing (default step is 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:1] # equivalent (step 1)

267

array([0, 1, 2, 3, 4])
>>> y[0:5:2] # slicing with index step 2
array([0, 2, 4])
>>> y[:5:2] # from the beginning
array([0, 2, 4])
>>> y[0:5:-1] # negative index step size
array([], dtype=int64)
>>> y[5:0:-1] # from end to beginning
array([5, 4, 3, 2, 1])
>>> y[5:0:-2] # in steps of two
array([5, 3, 1])
>>> y[::-1] # reverses array elements
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

[Double colon operator works for all sequences.]

268

Array slicing (2d)

Slicing for 2d (or higher dimensional arrays) is analog to 1-d
slicing, but applied to each component. Common operations
include extraction of a particular row or column from a matrix:

>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, :] # row with index 0
array([0, 1, 2, 3])
>>> C[:, 1] # column with index 1

(i.e. 2nd col)
array([1, 5, 9])

269

Array creation 3: zeros and ones

Other useful methods are zeros and ones which accept a
desired matrix shape as the input:

>>> np.zeros((2, 4)) # two rows, 4 cols
array([[0., 0., 0., 0.],

[0., 0., 0., 0.]])
>>> np.zeros((4,)) # (4,) is tuple
array([0., 0., 0., 0.])
>>> np.zeros(4) # 4 works as well
array([0., 0., 0., 0.])

>>> np.ones((2, 7))
array([[1., 1., 1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1., 1., 1.]])

270

Array creation 4: eye and diag

Create Identity matrix eye (name from capital I used in
equations):

>>> np.eye(2)
array([[1., 0.],

[0., 1.]])

Create diagonal matrix diag:

>>> np.diag([10, 20, 30])
array([[10, 0, 0],

[0, 20, 0],
[0, 0, 30]])

271

Views of numpy arrays

Slicing a numpy array results in a view of the data (not a copy).

>>> C = np.arange(12).reshape(3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> view_C = C[0, :]
>>> view_C
array([0, 1, 2, 3])
>>> C[0, 0] = 42
>>> view_C
array([42, 1, 2, 3])

Often, this is desired — in particular when the arrays are large.

272

array.base points to the view’s data

• x.base == None means x is not a view.
• x.base is y means x is a view of y.

Example:

>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(x.base)
None
>>> y = x[::2] # create a view with every 2nd element
>>> print(y.base)
[0 1 2 3 4 5 6 7 8 9]
>>> y.base is x
True
>>> np.shares_memory(x, y) # check if x and y share memory
True 273

Creating copies of numpy arrays

Create copy of 1d array:

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> copy_y = y.copy()
>>> y[0] = 42
>>> copy_y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(copy_y.base)
None
>>> np.shares_memory(y, copy_y)
False

274

Solving linear systems of equations

np.linealg.solve(A, b) solves Ax = b for a square
matrix A and given vector b, and returns the solution vector x.
Example:

Ax =

(
1 0
0 2

)(
x0
x1

)
=

(
1
4

)
= b

>>> A = np.array([[1, 0], [0, 2]])
>>> b = np.array([1, 4])
>>> from np.linalg import solve
>>> x = solve(A, b)
>>> x
array([1., 2.])
>>> np.dot(A, x) # Computing A*x
array([1., 4.]) # this should be b

275

Other linear algebra tools

help(np.linalg) provides an overview, including

• det to compute the determinant
• eig to compute eigenvalues and eigenvectors
• pinv to compute the (pseudo) inverse of a matrix
• svd to compute a singular value decomposition

276

numpy performance optimisation

• fast if number of elements is large: for an array with one
element, np.sqrt will be slower than math.sqrt

• avoid loops (formulate instead as matrix operation)
• avoid copies of data (i.e. use views)
• numpy can be up to ∼100 times faster than naive Python

277

Summary

• numpy provides fast array operations (comparable to
Matlab’s matrices)

• elements in the array have the same type (typically a
numerical type)

• data is stored contiguously in memory (if possible)

278

Further reading for numpy

• Consult Numpy documentation if used outside this course.
Start here:

• Basics: https://numpy.org/doc/stable/user/
absolute_beginners.html

• Quickstart: https:
//numpy.org/doc/stable/user/quickstart.html

• Matlab users may want to read Numpy for Matlab Users

279

http://www.numpy.org
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/quickstart.html
https://numpy.org/doc/stable/user/quickstart.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html

Preview: plotting data in arrays with matplotlib

import matplotlib.pyplot as plt
import numpy as np

compute data
t = np.linspace(0, 10 * np.pi, 300)
y = np.cos(t)

create plot
fig, ax = plt.subplots() # default: one plot
ax.plot(t, y)
ax.set_xlabel("t")
ax.set_ylabel("y(t)")

save figure to pdf
fig.savefig("plotting-array-matplotlib.pdf")

280

0 5 10 15 20 25 30
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y(

t)

281

Matplotlib

• Matplotlib tries to make easy things easy and hard things
possible

• Matplotlib is a 2D plotting library which produces
publication quality figures (increasingly also 3d)

• Matplotlib can be fully scripted but interactive interface
available

• Two application interfaces: pylab and
matplotlib.pyplot

282

Matplotlib in IPython QTConsole and Notebook

Within the IPython console (for example in Spyder) and the
Jupyter Notebook, use

• %matplotlib inline to see plots inside the console
window, and

• %matplotlib qt to create pop-up windows with the
plot. (May need to call matplotlib.show().) We can
manipulate the view interactively in that window.

• In Spyder, the plots appear by default in the “plots” pane.
• Within the Jupyter notebook, you can use %matplotlib
notebook which embeds an interactive window in the
note book.

283

Pylab interface

Pylab
Pylab is a Matlab-like (state-driven) plotting interface (and
comes with matplotlib).

• Convenient for “simple and fast” plots. (In particular if you
like Matlab.)

• Make use of help(pylab.plot) to remind you of line
styles, symbols etc.

284

Plotting arrays with pylab (Matlab style)

Plot example (Matlab style)
import pylab
import numpy as np

t = np.arange(0, 10 * np.pi, 0.01)
y = np.cos(t)

pylab.plot(t, y)
pylab.xlabel("t")
pylab.ylabel("y(t)")
pylab.show()

285

0 5 10 15 20 25 30 35
t

-1

-0.5

0

0.5

1
y
(t

)

286

Matplotlib.pyplot interface

• Matplotlib.pyplot is an object oriented plotting interface
• Very fine grained control over plots
• recommended to use

287

matplotlib.pyplot - example 1

import math
import matplotlib.pyplot as plt

create some data
xs = [0.1*xi for xi in range(100)]
ys = [math.sin(x) for x in xs]

create plot
fig, ax = plt.subplots()
ax.plot(xs, ys)

0 2 4 6 8 10
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

288

matplotlib.pyplot - example 2

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(xs, ys, 'x-', linewidth=2, color='orange')

ax.grid('on')
ax.set_xlabel('x')
ax.set_ylabel('y=f(x)')
fig.savefig("pyplot-demo2.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y=
f(x

)

289

matplotlib.pyplot - references

Matplotlib.pyplot
Matplotlib.pyplot is an object oriented plotting interface.

• prefer this over pylab
• Check gallery at https:
//matplotlib.org/stable/gallery/index.html

• Try Matplotlib notebook (on module’s home page) as an
introduction and useful reference

• Nicolas Rougier. Scientific Visualization: Python +
Matplotlib. Nicolas P. Rougier. 2021, 978-2- 9579901-0-8.
hal-03427242, online at https://github.com/
rougier/scientific-visualization-book

LAB8
290

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
http://www.desy.de/~fangohr/teaching/py4cs2023/notebooks/Matplotlib.html
https://github.com/rougier/scientific-visualization-book
https://github.com/rougier/scientific-visualization-book

Higher Order Functions 2: Functional
tools

More list processing and functional programming

• So far, have processed lists by iterating through them
using for-loop

• perceived to be conceptually simple (by most learners) but
• not as compact as possible and not always as fast as
possible

• Alternatives:
• list comprehension
• map, filter, reduce, often used with lambda

291

Anonymous function lambda

• lambda: anonymous function (function literal)
• Useful to define a small helper function that is only
needed once
>>> lambda a: a
<function <lambda> at 0x319c70>
>>> lambda a: 2 * a
<function <lambda> at 0x319af0>
>>> (lambda a: 2 * a)
<function <lambda> at 0x319c70>
>>> (lambda a: 2 * a)(10)
20
>>> (lambda a: 2 * a)(20)
40

292

>>> (lambda x, y: x + y)(10, 20)
30
>>> (lambda x, y, z: (x + y) * z)(10, 20, 2)
60
>>> type(lambda x, y: x + y)
<type 'function'>

293

Lambda usage example 1

Integrate f(x) = x2 from 0 to 2 (numerically):

• Without lambda (lambda1.py):
from scipy.integrate import quad
def f(x):

return x * x

y, abserr = quad(f, a=0, b=2)
print(f"value is {y:f} +- {abserr:g}")

• With lambda (lambda1b.py):
from scipy.integrate import quad
y, abserr = quad(lambda x: x * x, a=0, b=2)
print(f"value is {y:f} +- {abserr:g}")

Output (same for both programs):

value is 2.666667 +- 2.96059e-14 294

Higher order functions

Roughly: “Functions that take or return functions” (see for
example Wikipedia entry)

Rough summary (check help(COMMAND) for details)

• map(function, iterable)→ iterable:
apply function to all elements in iterable

• filter(function, iterable)→ iterable:
return items of iterable for which function(item) is
true.

• reduce(function, iterable, initial)→ value:
apply function(x,y) from left to right to reduce iterable to a
single value.

Note that sequences are iterables.

295

http://en.wikipedia.org/wiki/Higher-order_function

Map

• map(function, iterable) → iterable:
apply function to all elements in sequence

• Example:
>>> def f(x):
... return x ** 2
>>> map(f, [0, 1, 2, 3, 4])
<map object at 0x1026a52e8> # this is iterable
>>> list(map(f, [0, 1, 2, 3, 4])) # convert to list
[0, 1, 4, 9, 16]

• lambda converts an expression (x ** 2) to a function:
>>> list(map(lambda x: x ** 2, [0, 1, 2, 3, 4]))
[0, 1, 4, 9, 16]

• Equivalent operation using list comprehension:
>>> [x ** 2 for x in [0, 1, 2, 3, 4]]
[0, 1, 4, 9, 16]

296

Examples map

• Example (maths):
>>> import math
>>> list(map(math.exp, [0, 0.1, 1.]))
[1.0, 1.1051709180756477, 2.718281828459045]

• Example (slug):
>>> news="Python programming occasionally \
... more fun than expected"
>>> slug = "-".join(map(
... lambda w: w[0:6], news.split()))
>>> slug
'Python-progra-occasi-more-fun-than-expect'
Equivalent list comprehension expression:
>>> slug = "-".join([w[0:6] for w in news.split()])

297

Filter

filter(function, iterable)→ iterable:
return items of iterable for which function(item) is true:

>>> def is_positive(n): # returns True for positive n
... return n > 0
>>> list(filter(is_positive,
... [-3, -2, -1, 0, 1, 2, 3, 4]))
[1, 2, 3, 4]
>>> list(filter(lambda n: n > 0,
... [-3, -2, -1, 0, 1, 2, 3, 4]))
[1, 2, 3, 4]

List comprehension equivalent:

>>> [n for n in [-3, -2, -1, 0, 1, 2, 3, 4] if n > 0]
[1, 2, 3, 4]

298

Examples filter

>>> c = "The quick brown fox jumps".split()
>>> print(c)
['The', 'quick', 'brown', 'fox', 'jumps']
>>> def len_gr_4(s): # return True if s has >4 letters
... return len(s) > 4
>>> list(map(len_gr_4, c))
[False, True, True, False, True]
>>> filter(len_gr_4, c)
<filter object at 0x10522e5c0>
>>> list(filter(len_gr_4, c))
['quick', 'brown', 'jumps']
>>> list(filter(lambda s: len(s) > 4, c)
['quick', 'brown', 'jumps']

299

Equivalent operation using list comprehension:

>>> [s for s in c if len(s) > 4]
['quick', 'brown', 'jumps']

300

Reduce

• functools.reduce(function, iterable, initial) →
value:
apply function(x, y) from left to right to reduce iterable to a single value.

• Examples:

>>> from functools import reduce
>>> def f(x, y):
... print(f"Called with {x=}, {y=}")
... return x + y
...
>>> reduce(f, [1, 3, 5], 0)
Called with x=0, y=1
Called with x=1, y=3
Called with x=4, y=5
9

301

>>> reduce(f, [1, 3, 5], 100)
Called with x=100, y=1
Called with x=101, y=3
Called with x=104, y=5
109
>>> reduce(f,"test","")
Called with x=, y=t
Called with x=t, y=e
Called with x=te, y=s
Called with x=tes, y=t
'test'
>>> reduce(f,"test","FIRST")
Called with x=FIRST, y=t
Called with x=FIRSTt, y=e
Called with x=FIRSTte, y=s
Called with x=FIRSTtes, y=t
'FIRSTtest'

302

*Operator module

• operator module contains functions which are typically
accessed not by name, but via some symbols or special
syntax.

• For example 3 + 4 is equivalent to operator.add(3,
4). Thus:
def f(x, y): return x + y
reduce(f, range(10), 0)
can also be written as:
reduce(operator.add, range(10), 0)
Note: could also use:
reduce(lambda x, y: x + y, range(10), 0)
but use of operator module is preferred (often faster).

303

Functional programming

• Functions like map, reduce and filter are found in just
about any lanugage supporting functional programming.

• provide functional abstraction for commonly written loops
• Use those (and/or list comprehension) instead of writing
loops, because

• Writing loops by hand is quite tedious and error-prone.
• The functional version is often clearer to read.
• The functional version can result in faster code (if you can
avoid lambda)

304

What command to use when?

• lambda allows to define a (usually simple) function ”in-place”.
We need this to convert an expression into a function.

• map transforms a sequence to another sequence (of same
length) using a function

• filter filters a sequence (reduces number of elements) using
a function

• list comprehension transforms a list (can include filtering)
using an expression

• if you need to use a lambda in a map, you are probably better off using
list comprehension.

• if you have a function to apply, map is more compact than a list
comprehension.

• reduce carries out an operation that ”collects” information
(sum, product, ...), for example reducing the sequence to a
single number.

305

Example: squaring elements in list with expression x**2

Some alternatives:

>>> res = []
>>> for x in range(5):
... res.append(x ** 2)
...
>>> res
[0, 1, 4, 9, 16]

>>> [x ** 2 for x in range(5)]
[0, 1, 4, 9, 16]

>>> list(map(lambda x: x ** 2, range(5)))
[0, 1, 4, 9, 16]

306

Example: squaring elements in list with function f

>>> def f(x):
... return x**2

>>> res = []
>>> for x in range(5):
... res.append(f(x))
...
>>> res
[0, 1, 4, 9, 16]

>>> [f(x) for x in range(5)]
[0, 1, 4, 9, 16]

>>> list(map(f, range(5)))
[0, 1, 4, 9, 16]

307

307

Numerical Integration

Numerical Integration 1— Overview

Different situations where we use integration:

(A) solving (definite) integrals
(B) solving (ordinary) differential equations

• more complicated than (A)
• Euler’s method, Runge-Kutta methods

Both (A) and (B) are important.

We begin with the numeric computation of integrals (A).

308

(A) Definite Integrals

Often written as

I =
b∫
a

f(x)dx (12)

• example: I =
2∫
0
exp(−x2)dx

• solution is I ∈ R (i.e. a number)
• right hand side f(x) depends only on x
• if f(x) > 0 ∀x ∈ [a,b], then we can visualise I as the area
underneath f(x)

• Note that the integral is not necessarily the same as the
area enclosed by f(x) and the x-axis:

•
2π∫
0
sin(x)dx = 0

•
1∫
0
(−1)dx = −1

309

(B) Ordinary Differential Equations (ODE)

Often written as
y ′ ≡ dy

dx = f(x, y) (13)

• example: dv
dt =

1
m(g− cv

2)

• solution is y(x) : R→ R
x 7→ y(x)

(i.e. a function)

• right hand side f(x, y) depends on x and on solution y
• Can write (13) formally as y =

∫ dy
dxdx =

∫
f(x, y)dx. That’s why we

“integrate differential equations” to solve them.

310

Numeric computation of definite integrals

Example:

I =
2∫
0

exp(−x2)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)

311

Simple trapezoidal rule

• Approximate function by straight line

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
trapezoidal approximation

312

Simple trapezoidal rule

• Compute area underneath straight line p(x)

f(a)+f(b)
 2

ba

f(b)

f(a)

• Result

A =

b∫
a

p(x)dx = (b− a) f(a) + f(b)
2

313

Example: Simple trapezoidal rule

• Integrate f(x) = x2

I =
2∫
0

x2dx

• What is the (correct) analytical answer? Integrating

polynomials: I =
b∫
a
xkdx =

[
1

k+1x
k+1
]b
a

• for a = 0 and b = 2 and k = 2

I =
[

1
2+ 1x

2+1
]2
0
=
1
32

3 =
8
3 ≈ 2.6667

314

• Using the trapezoidal rule

A = (b− a) f(a) + f(b)
2 = 20+ 4

2 = 4

• The correct answer is I = 8/3 and the approximation is A = 4.
We thus overestimate I by A−I

I ≈ 50%.

• Plotting f(x) = x2 together with the approximation reveals why we
overestimate I

0 0.5 1 1.5 2
x

0

1

2

3

4
f(x) = x^2
trapezoidal approximation p(x)

• The linear approximation, p(x), overestimates f(x) everywhere (except
at x = a and x = b).

315

Composite trapezoidal rule

Example f(x) = exp(−x2):

I =
2∫
0

f(x)dx =
2∫
0

exp(−x2)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
composite trapezoidal
approximation (n=4)

I =
0.5∫
0

f(x)dx+
1∫

0.5

f(x)dx+
1.5∫
1

f(x)dx+
2∫

1.5

f(x)dx

316

General composite trapezoidal rule

For n subintervals the formulae for the composite trapezoidal
rule are

h =
b− a
n

xi = a+ ih with i = 1, . . . ,n− 1

A =
h
2

(
f(a) + 2f(x1) + 2f(x2) + . . .

+2f(xn−2) + 2f(xn−1) + f(b)
)

=
h
2

(
f(a) +

n−1∑
i=1

2f(xi) + f(b)
)

317

Error of composite trapezoidal rule

How accurate is the approximation?

We would like to know how much the error decreases when we
decrease h (by increasing the number of subintervals, n).
For the composite trapezoidal rule it can be shown that:

b∫
a

f(x)dx = h
2

(
f(a) + f(b) + 2

n−1∑
i=1

f(xi)
)

+O(h2)

The symbol O(h2) means that the error term is (smaller or
equal to an upper bound which is) proportional to h2:

• If we take 10 times as many subintervals then h becomes
10 times smaller (because h = b−a

n) and the error becomes
100 times smaller (because 1

102 =
1
100). 318

Error of composite trapezoidal rule, example

• The table below shows how the error of the approximation, A, decreases with
increasing n for

I =
2∫
0

x2dx.

n h A I ∆ = A–I rel.err.=∆/I
1 2.000000 4.000000 2.666667 1.333333 50.0000%
2 1.000000 3.000000 2.666667 0.333333 12.5000%
3 0.666667 2.814815 2.666667 0.148148 5.5556%
4 0.500000 2.750000 2.666667 0.083333 3.1250%
5 0.400000 2.720000 2.666667 0.053333 2.0000%
6 0.333333 2.703704 2.666667 0.037037 1.3889%
7 0.285714 2.693878 2.666667 0.027211 1.0204%
8 0.250000 2.687500 2.666667 0.020833 0.7813%
9 0.222222 2.683128 2.666667 0.016461 0.6173%
10 0.200000 2.680000 2.666667 0.013333 0.5000%
50 0.040000 2.667200 2.666667 0.000533 0.0200%
100 0.020000 2.666800 2.666667 0.000133 0.0050%

• The accuracy we actually require depends on the problem under investigation –
no general statement is possible. 319

Summary trapezoidal rule for numerical integration

• Aim: to find an approximation of

I =
b∫
a

f(x)dx

• Simple trapezoidal method:
• approximate f(x) by a simpler (linear) function p(x) and
• integrate the approximation p(x) exactly.

• Composite trapezoidal method:
• divides the interval [a,b] into n equal subintervals
• employs the simple trapezoidal method for each
subinterval

• has an error term of order h2.

320

Numpy usage examples

Making calculations fast with numpy

• Calculations using numpy are faster (∼ 100 times) than
using pure Python (see example next slide).

• Imagine we need to compute the mexican hat function
with many points

4 2 0 2 4

0.5

0.0

0.5

1.0

1.5 Mexican hat function

321

Making calculations fast with numpy

"""Demo: practical use of numpy (mexhat-numpy.py)"""
import time
import math
import matplotlib.pyplot as plt
import numpy as np

N = 100000

def mexhat_py(t, sigma=1):
"""Computes Mexican hat shape, see
http://en.wikipedia.org/wiki/Mexican_hat_wavelet for
equation (13 Dec 2011)"""
c = 2.0 / math.sqrt(3 * sigma) * math.pi**0.25
return c * (1 - t**2 / sigma**2) * math.exp(

-(t**2) / (2 * sigma**2))

def mexhat_np(t, sigma=1):

322

"""Computes Mexican hat shape using numpy, see
http://en.wikipedia.org/wiki/Mexican_hat_wavelet for
equation (13 Dec 2011)"""
c = 2.0 / math.sqrt(3 * sigma) * math.pi**0.25
return c * (1 - t**2 / sigma**2) * np.exp(

-(t**2) / (2 * sigma**2))

def test_is_really_the_same():
"""Checking whether mexhat_np and mexhat_py produce
the same results."""
xs1, ys1 = loop1()
xs2, ys2 = loop2()
deviation = math.sqrt(sum((ys1 - ys2) ** 2))
print("error:", deviation)
assert deviation < 1e-14

def loop1():
"""Compute arrays xs and ys with mexican hat function
in ys(xs), returns tuple (xs,ys)"""
xs = np.linspace(-5, 5, N)
ys = []

323

for x in xs:
ys.append(mexhat_py(x))

return xs, ys

def loop2():
"""As loop1, but uses numpy to be faster."""
xs = np.linspace(-5, 5, N)
return xs, mexhat_np(xs)

def time_this(f):
"""Call f, measure and return number of seconds
execution of f() takes"""
starttime = time.time()
f()
stoptime = time.time()
return stoptime - starttime

def make_plot(filenameroot):
fig, ax = plt.subplots()
xs, ys = loop2()
ax.plot(xs, ys, label="Mexican hat function")

324

ax.legend()
fig.savefig(filenameroot + ".png")
fig.savefig(filenameroot + ".pdf")

def main():
test_is_really_the_same()
make_plot("mexhat1d")
time1 = time_this(loop1)
time2 = time_this(loop2)
print(f"Numpy version is {time1 / time2:.1f} times faster")

if __name__ == "__main__":
main()

Produces this output:

error: 1.1410712297602934e-15
Numpy version is 119.8 times faster

325

A lot of the source code above is focussed on measuring the
execution time.

Within IPython, we could just have used %timeit loop1() and
%timeit loop2() to get to the same timing information.

326

arrays with only one item convert to python scalars

>>> b = np.array([4])
>>> b.shape
(1,)
>>> type(b)
numpy.ndarray
>>> float(b)
4.0
>>> a = np.array([4])
>>> type(a)
numpy.ndarray
>>> a.shape
(1,)
>>> float(a)

327

4.0
>>> import math; math.sqrt(a)
2.0

This allows us to write functions f(x) that can take an input
argument x which can either be a numpy.array or a scalar. The
mexhat_np(t) function is such an example:

>>> a = mexhat_np(0); print(f"{a=}, {type(a)=}")
a=1.537293661343647, type(a)=<class 'numpy.float64'>

>>> a = mexhat_np(np.array([0])); print(f"{a=}, {type(a)=}")
a=array([1.53729366]), type(a)=<class 'numpy.ndarray'>

>>> a = mexhat_np(np.linspace(0, 1, 3)); print(f"{a=}, {type(a)=}")
a=array([1.53729366, 1.01749267, 0.]), type(a)=<class 'numpy.ndarray'>

328

Closures

Returning function objects

We have seen that we can pass function objects as arguments
to a function. Now we look at functions that return function
objects.

Example (closure_adder42.py):

def make_add42():
def add42(x):

return x + 42
return add42

add42 = make_add42()
print(add42(2)) # output is '44'

329

Closures

A closure (Wikipedia) is a function with bound variables. We often
create closures by calling a function that returns a (specialised)
function. For example (closure_adder.py):

import math

def make_adder(y):
def adder(x):

return x + y
return adder

add42 = make_adder(42)
addpi = make_adder(math.pi)
print(add42(2)) # output is 44
print(addpi(-3)) # output is 0.14159265359

330

http://en.wikipedia.org/wiki/Closure_(computer_science)

Scientific Python

SciPy (SCIentific PYthon)

(Partial) output of help(scipy):

cluster --- Vector Quantization / Kmeans
fft --- Discrete Fourier transforms
fftpack --- Legacy discrete Fourier transforms
integrate --- Integration routines
interpolate --- Interpolation Tools
io --- Data input and output
linalg --- Linear algebra routines
linalg.blas --- Wrappers to BLAS library
linalg.lapack --- Wrappers to LAPACK library
misc --- Various utilities that don't have

another home.
ndimage --- N-D image package
odr --- Orthogonal Distance Regression

331

optimize --- Optimization Tools
signal --- Signal Processing Tools
signal.window --- Window functions
sparse --- Sparse Matrices
sparse.linalg --- Sparse Linear Algebra
spatial --- Spatial data structures and algorithms
special --- Special functions
stats --- Statistical Functions

332

Interpolation of discrete data points

Piecewise constant interpolation

Linear interpolation

Polynomial interpolation
Source: https://en.wikipedia.org/wiki/Interpolation

333

https://en.wikipedia.org/wiki/Interpolation

Interpolation of data

Given a set of N points (xi, yi) with i = 1, 2, . . .N, we sometimes
need a function f(x) which returns yi = f(xi) and interpolates
the data between the xi.

• → y0 = scipy.interpolate.interp1d(x, y)
provides this interpolation

• interp1d returns a callable y0 which interpolates the
x-y data for any given x when called as y0(x).

• Data interpolation of yi = f(xi) may be useful to
• create smoother plots of f(x)
• find minima/maxima of f(x)
• find xc so that f(xc) = yc, provide inverse function x = f−1(y)
• integrate f(x)

334

Interpolation example

import matplotlib.pyplot as plt
import numpy as np
import scipy.interpolate

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.0
x = np.linspace(0, xmax, n)
y = -(x ** 2)
make y-data somewhat irregular
y += 1.5 * np.random.normal(size=len(x))
return x, y

main program
n = 10
x, y = create_data(n)

335

use finer and regular mesh for plot
xfine = np.linspace(0.1, 4.9, n * 100)
interpolate with piecewise constant function (p=0)
y0 = scipy.interpolate.interp1d(x, y, kind="nearest")
interpolate with piecewise linear func (p=1)
y1 = scipy.interpolate.interp1d(x, y, kind="linear")
interpolate with cubic spline
y2 = scipy.interpolate.interp1d(x, y, kind="cubic")

fig, ax = plt.subplots()
ax.plot(x, y, "o", label="data point")
ax.plot(xfine, y0(xfine), label="nearest")
ax.plot(xfine, y1(xfine), label="linear")
ax.plot(xfine, y2(xfine), label="cubic")
ax.legend()
ax.set_xlabel("x")
fig.savefig("interpolate.pdf")

336

0 1 2 3 4 5
x

30

25

20

15

10

5

0

5

data point
nearest
linear
cubic

337

Curve fitting

Given n data points (xi, yi), i = 1, . . . ,n, and a model y = f(x, p⃗),
with model parameters p⃗ = (p1,p2, ...), find coefficients p⃗ so
that yi = f(xi, p⃗) describes the data “best”.

0 1 2 3 4 5
x

2

3

4

5

6

7

8

y

Linear regression
data xi, yi

fit f(x) = ax + b with parameters a=1.012 b=1.977

Wikipedia: Curve fitting 338

https://en.wikipedia.org/wiki/Curve_fitting

Curve fitting example

import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.0
x = np.linspace(0, xmax, n)
y = -x**2
make y-data somewhat irregular
y += 1.5 * np.random.normal(size=len(x))
return x, y

def model(x, a, b, c): # Equation for fit
return a * x ** 2 + b * x + c

339

main program
n = 100
x, y = create_data(n)
do curve fit
p, pcov = scipy.optimize.curve_fit(model, x, y)
a, b, c = p
plot fit and data
xfine = np.linspace(0.1, 4.9, n * 5)
fig, ax = plt.subplots()
ax.plot(x, y, "o", label="data points")
label = fr"fit $f(x) = ax^2 + bx + c$ with {a=:.4} {b=:.4} {c=:.4}"
ax.plot(xfine, model(xfine, a, b, c), label=label)
ax.legend()
ax.set_xlabel("x")
fig.savefig("curvefit2.pdf")

340

0 1 2 3 4 5
x

25

20

15

10

5

0

data points
fit f(x) = ax2 + bx + c with a=-0.9037 b=-0.601 b=-0.601

341

Curve fitting: related libraries

Which model describes my data best? See also

• statsmodels at
https://www.statsmodels.org/stable/index.html

• scikit-learn at https://scikit-learn.org/

342

Function integration example

Aim: Compute I =
∫ b
a f(x)dx, with

a = −2,b = 2, f(x) = exp(−cos(2xπ)) + 3.2
from math import cos, exp, pi
from scipy.integrate import quad

function we want to integrate
def f(x):

return exp(cos(-2 * x * pi)) + 3.2

call quad to integrate f from -2 to 2
res, err = quad(f, -2, 2)

print(f"The numerical result is {res:f} (+-{err:g})")

which produces this output:

The numerical result is 17.864264 (+-1.55117e-11) LAB9, 10

343

Optimisation (Minimisation)

• Optimisation typically described as:
given a function f(x), find xm so that f(xm) is the (local)
minimum of f.

• To maximise f(x), create a second function g(x) = −f(x)
and minimise g(x).

• Optimisation algorithms need to be given a starting point
(initial guess x0 as close as possible to xm)

• Minimum position x obtained may be local (not global)
minimum

344

Optimisation example

import numpy as np
from scipy.optimize import fmin
import matplotlib.pyplot as plt

def f(x):
return np.cos(x) - 3 * np.exp(-((x - 0.2) ** 2))

find minima of f(x),
starting from 1.0 and 2.0 respectively
minimum1 = fmin(f, 1.0)
print("Start search at x=1., minimum is", minimum1)
minimum2 = fmin(f, 2.0)
print("Start search at x=2., minimum is", minimum2)

plot function

345

x = np.arange(-10, 10, 0.1)
y = f(x)
fig, ax = plt.subplots()
ax.plot(x, y, label=r"$\cos(x)-3e^{-(x-0.2)^2}$")
ax.set_xlabel("x")
ax.grid()
ax.axis([-5, 5, -2.2, 0.5])

add minimum1 to plot
ax.plot(minimum1, f(minimum1), "vr", label="minimum 1")
add start1 to plot
ax.plot(1.0, f(1.0), "or", label="start 1")

add minimum2 to plot
ax.plot(minimum2, f(minimum2), "vg", label="minimum 2")
add start2 to plot
ax.plot(2.0, f(2.0), "og", label="start 2")

346

ax.legend(loc="lower left")
fig.savefig("fmin1.pdf")

Code produces this output:

Optimization terminated successfully.
Current function value: -2.023866
Iterations: 16
Function evaluations: 32

Start search at x=1., minimum is [0.23964844]
Optimization terminated successfully.

Current function value: -1.000529
Iterations: 16
Function evaluations: 32

Start search at x=2., minimum is [3.13847656]

347

4 2 0 2 4
x

2.0

1.5

1.0

0.5

0.0

0.5

cos(x) 3e (x 0.2)2

minimum 1
start 1
minimum 2
start 2

LAB11

348

FIFO example and Object Oriented
Programming (OOP)

Object Orientation (OO) and Closures

Earlier, we did an exercise for a first-in-first-out queue. At the
time, we used a global variable to keep the state of the queue.
To compare different approaches, the following slides show:

1. the original FIFO-queue solution (using a global variable,
generally not good)

2. a modified version where the queue variable is passed to
every function (→ this is object oriented programming
without objects)

3. an object oriented version (where the queue data is part
of the queue object). Probably the best solution, see OO
programming for details.

4. a version based on closures (where the state is part of the
closures)

349

Original FIFO solution (fifoqueue.py)

queue = []
def length():

"""Returns number of waiting customers"""
return len(queue)

def show():
"""print list of customers, longest waiting customer at end."""
for name in queue:

print(f"waiting customer: {name}")

def add(name):
"""Customer with name 'name' joining the queue"""
queue.insert(0, name)

def next_():
"""Returns name of next to serve, removes customer from queue"""
return queue.pop()

add('Spearing'); add('Fangohr'); add('Takeda')
show(); next_()

350

Improved FIFO solution

Improved FIFO solution (fifoqueue2.py)

def length(queue):
return len(queue)

def show(queue):
for name in queue:

print(f"waiting customer: {name}")

def add(queue, name):
queue.insert(0, name)

def next_(queue):
return queue.pop()

q1 = []
q2 = []
add(q1, 'Spearing'); add(q1, 'Fangohr'); add(q1, 'Takeda')
add(q2, 'John'); add(q2, 'Peter')
print(f"{length(q1)} customers in queue1:"); show(q1)
print(f"{length(q2)} customers in queue2:"); show(q2) 351

Object-Oriented FIFO solution (fifoqueueOO.py)

class Fifoqueue:
def __init__(self):

self.queue = []

def length(self):
return len(self.queue)

def show(self):
for name in self.queue:

print(f"waiting customer: {name}")

def add(self, name):
self.queue.insert(0, name)

def next_(self):
return self.queue.pop()

q1 = Fifoqueue(); q2 = Fifoqueue()
q1.add('Spearing'); q1.add('Fangohr'); q1.add('Takeda')
q2.add('John'); q2.add('Peter')
print(f"{q1.length()} customers in queue1:"); q1.show() 352

*Functional (closure) FIFO solution (fifoqueue_closure.py)

def make_queue():
queue = []
def length():

return len(queue)

def show():
for name in queue: print(f"waiting customer: {name}")

def add(name):
queue.insert(0, name)

def next_():
return queue.pop()

return add, next_, show, length

q1_add, q1_next, q1_show, q1_length = make_queue()
q2_add, q2_next, q2_show, q2_length = make_queue()
q1_add('Spearing'); q1_add('Fangohr'); q1_add('Takeda')
q2_add('John'); q2_add('Peter')
print(f"{q1_length()} customers in queue1:"); q1_show()
print(f"{q2_length()} customers in queue2:"); q2_show() 353

*Advanced: Using double-ended-queue (deque)

Specialised double-ended-queue data structure deque [1] available in the
Collections module of python:

from collections import deque

def length(queue):
return len(queue)

def show(queue):
for name in queue:

print(f"waiting customer: {name}")

def add(queue, name):
queue.appendleft(name)

def next_(queue):
return queue.pop()

q1 = deque()
add(q1, 'Spearing'); add(q1, 'Fangohr'); add(q1, 'Takeda')

[1] https://docs.python.org/3/library/collections.html#collections.deque
354

https://docs.python.org/3/library/collections.html#collections.deque

Lessons (Object Orientation)

Object orientation (OO):

• one important idea is to combine data and functions
operating on data (in objects),

• objects contain data but
• access to data through interface (implementation details
irrelevant to user)

• can program in OO style without OO-programming
language:

• as in FIFO2 solution
• as in closure based approach

• OO mainstream programming paradigm (Java, C++, C#, ...)
• Python supports OO programming, and all things in
Python are objects (see also slides 444 pp)

355

Environments and Python Package
Index

Virtual environment

Why virtual environments?

• install multiple versions of the same library (in different
environments)

• good practice (reproducibility, managing different projects)

Given an installed Python interpreter, we can create virtual
environments:

python -m venv myvirtualenv

and activate that environment:

• linux/MacOS:
source myvirtualenv/bin/activate

• cmd.exe: myvirtualenv\Scripts\activate.bat
356

Activating virtual environments in different shells

From https://docs.python.org/3/library/venv.html:

357

https://docs.python.org/3/library/venv.html

PyPI

• The Python Package Index (PyPI) provides many python
packages (https://pypi.org)

• Can search the website for packages, and available
versions

• Install locally (in virtual environment) using pip

Example: install the python cowsay package:

pip install cowsay

Uninstall:

pip install cowsay

358

https://pypi.org

pip commands

• pip install cowsay
• pip install cowsay==3.0
– install version 3.0

• pip uninstall cowsay
• pip install -U cowsay
– upgrade cowsay

• pip show cowsay
- show information about installed package

• pip list
- list installed packages

• pip freeze
- list installed packages in machine readable format

359

Summary virtual environments and pip commands

Summary
• create virtual environment before installing packages
• Common names for virtual environments: env, venv,
.env, .venv

• use (at least) one virtual environment per project
• use
pip freeze
and
pip install -r requirements.txt
to maintain reproducible environments

See more detailed discussion at: https://fangohr.github.io/
introduction-to-python-for-computational-science-and-engineering/
18-environments.html 360

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html

*For Anaconda users: interaction conda and pip

Anaconda provides packages and (conda) environments
through conda.

• Avoid mixing pip installs with conda installs, i.e.
• if conda can install all the required packages, then use that

• if conda cannot install the required package, either
• first install all that is needed/available from conda
• then install the desired packages through pip that conda
cannot provide

• afterwards, do not use conda again to install more
packages.

or (if possible)
• install all packages from pip

See also https://www.anaconda.com/blog/using-pip-in-a-conda-environment

361

https://www.anaconda.com/blog/using-pip-in-a-conda-environment

ODEs

Ordinary Differential Equations

• Many processes, in particular time-dependent processes,
can be described as Ordinary Differential Equations
(ODEs), such as dynamics of engineering systems,
quantum physics, chemical reactions, biological systems
modelling, and population dynamics.

• ODEs have exactly one independent variable t (often, but
not always representing time).

• The simplest ODE has one degree of freedom y.
• The solution of the ODE is the function y(t). Examples:

• temperature as a function of time
• distance a car has moved as function of time
• population of species as function time

362

• We are typically being given
• an initial value y0 of y(t) at some time t0 and
• the ODE itself which relates the change of y with t to some
function f(t, y), i.e.

dy
dt = f(t, y) (14)

• Example: looking for solution y(t) from t0 = 0 to t = 2 of

dy
dt = −2y with y0 = y(t0) = 17

The exact solution is y(t) = 17 exp(−2t).

• In general, a vector y with k components can depend on
the independent variable t: this is a system of ordinary
differential equations with k degrees of freedom.

363

Principle of finding numerical solution to ODE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
y0

y1

y2

y3
y4 y5 y6 y7 y8

yi + 1 = yi + y′(ti) t = yi + f(yi, ti) t

exact solution y(t)
numerical solution yi(ti)

364

Interface solve_ivp

• aim: solve
dy
dt = f(t, y)

• from scipy.integrate import solve_ivp
• solve_ivp has the following input and output parameters:
sol = solve_ivp(f, t_span, y0)
Input:

• f is function f(t, y) that returns the right-hand side
• t_span is a tuple (t0, tf) describing the span of t for
which we search the solution

• y0 is the initial value of the solution at time t0 (i.e.
y0 = y(t0))

Output:
• sol is a OdeResult object that contains the solution

365

Using solve_ivp – example 1

Require solution y(t) from t = 0 to t = 2 of
dy
dt

= −2y with y(0) = 17

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def f(t, y):
"""this is the rhs of the ODE to integrate, i.e. dy/dt=f(y,t)"""
return -2 * y

y0 = [17] # initial value y0=y(t0)
t0 = 0 # integration limits for t: start at t=0
tf = 2 # and finish at t=2
t_eval = np.linspace(t0, tf, 21)

sol = solve_ivp(fun=f, t_span=[t0, tf], y0=y0, t_eval=t_eval)

fig, ax = plt.subplots()
ax.plot(sol.t, sol.y[0], "o-"); ax.set_xlabel("t"); 366

Using solve_ivp – example 1, solution

Solution:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y(
t)

367

Using solve_ivp – example 2

Require solution y(t) from t = 0 to t = 2 of
dy
dt = − 1

100y+ sin(10πt) with y(0) = −2

import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def f(t, y):
return -0.01 * y + math.sin(10 * math.pi * t)

ts = np.arange(0, 2.01, 0.01)
y0 = [-2]
sol = solve_ivp(f, (0, 2), y0, t_eval=ts, atol=1e-8, rtol=1e-8)

fig, ax = plt.subplots()
ax.plot(sol.t, sol.y[0])
ax.set_xlabel("t"); ax.set_ylabel("y(t)")
fig.savefig("odeintexample2.pdf")

368

Using solve_ivp – example 2, solution

Solution:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

2.00

1.98

1.96

1.94

1.92

1.90

369

2nd order ODE

• Any second order ODE can be re-written as two coupled
first order ODE

• Example: Harmonic Oscillator (HO)
• Differential equation d2r

dt2 = −ω
2r or short r′′ = −ω2r

• Introduce v = r′
• rewrite equation as two first order equations

r′′ = −ω2r −→ v′ = −ω2r
r′ = v

• General strategy:
• convert higher order ODE into a set of (coupled) first order
ODE

• use computer to solve set of 1st order ODEs

370

2nd order ODE – using solve_ivp

• One 2nd order ODE→ 2 coupled 1st order ODEs
• Integration of system of 1st order ODEs:

• “pretty much like integrating one 1st order ODE” but
• y is now a vector (and so is f):

dy
dt = f(t, y) ⇐⇒

(
dy1
dt
dy2
dt

)
=

(
f1(t, y)
f2(t, y)

)
• need to pack and unpack variables into the state vector y:
• Example harmonic oscillator:

• decide to use this packing: y = (r, v)
• then f needs to return f =

(dr
dt ,

dv
dt
)

• the sol object returned by solve_ivp has an attribute
sol.y which contains a vector y for every time step

• need to extract results for r and v from that matrix→ see
next slide

371

2nd order ODE – Python solution harmonic oscillator (HO)

from numpy import array, arange
from scipy.integrate import solve_ivp

def f(t, y): # right hand side, takes array(!) y
omega = 1
r = y[0] # extract r from array y
v = y[1] # extract v from array y
drdt = v # compute right hand side
dvdt = -omega ** 2 * r
return array([drdt, dvdt]) # return array

ts = arange(0, 20, 0.1) # required times for solution
r0 = 1 # initial r
v0 = 0 # initial v
y0 = [r0, v0] # combine r and v into y

sol = solve_ivp(f, (0, 20), y0, t_eval=ts) # solve ODEs

rs = sol.y[0] # extract result: r(t)
vs = sol.y[1] # extract result: v(t)

372

2nd order ODE – result

Solution

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

r(t)
v(t)

373

Summary 2nd order system

• Strategy:
• transform one 2nd order ODE into 2 (coupled) first order
ODEs

• solve both first order ODEs simultaneously

• Need to use vectors (typically “arrays”) in to pass state
vector to right-hand-side function.

• Use example on previous slides as guidance.

374

2 Coupled ODEs: Predator-Prey problem

• Predator and prey. Let
• p1(t) be the number of rabbits
• p2(t) be the number of foxes

• Time dependence of p1 and p2:
• Assume that rabbits proliferate at a rate a. Per unit time a
number ap1 of rabbits is born.

• Number of rabbits is reduced by collisions with foxes. Per
unit time cp1p2 rabbits are eaten.

• Assume that birth rate of foxes depends only on food
intake in form of rabbits.

• Assume that foxes die a natural death at a rate b.
• Numbers

• rabbit birth rate a = 0.7

375

• rabbit-fox-collision rate c = 0.007
• fox death rate b = 1

• Put all together in predator-prey ODEs

p′1 = ap1 − cp1p2
p′2 = cp1p2 − bp2

• Solve for p1(0) = 70 and p2(0) = 50 for 30 units of time:

376

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def rhs(t, y):
a = 0.7
c = 0.007
b = 1
p1 = y[0]
p2 = y[1]

dp1dt = a * p1 - c * p1 * p2
dp2dt = c * p1 * p2 - b * p2

return np.array([dp1dt, dp2dt])

p0 = [70, 50] # initial condition
t0 = 0
tfinal = 30
ts = np.arange(t0, tfinal, 0.1)

377

sol = solve_ivp(rhs, [t0, tfinal], p0, t_eval=ts)

p1 = sol.y[0] # extract p1 and
p2 = sol.y[1] # p2

fig, ax = plt.subplots()
ax.plot(sol.t, p1, label='rabbits')
ax.plot(sol.t, p2, '-og', label='foxes')
ax.legend()
ax.set_xlabel('t')
fig.savefig('predprey.pdf')

378

0 5 10 15 20 25 30
t

50

100

150

200

250

300 rabbits
foxes

379

Outlook

Suppose we want to solve a (vector) ODE based on Newton’s equation of
motion in three dimensions:

d2r
dt2 =

F(r, v, t)
m

Rewrite as two first order (vector) ODEs:
dv
dt =

F(r, v, t)
m

dr
dt = v

Need to pack 6 variables into “y”: for example

y = (rx, ry, rz, vx, vy, vz)

Right-hand-side function f(y, t) needs to return:

f =
(

drx
dt ,

dry
dt ,

drz
dt ,

dvx
dt ,

dvy
dt ,

dvz
dt

)
(15)

380

Outlook examples

• Example: Molecular dynamics simulations have one set of 6 degrees of
freedom as in equation (15) for every atom in their simulations.

• Example: Material simulations discretise space into finite elements,
and for dynamic simulations the number of degrees of freedom are
proportional to the number of nodes in the mesh.

• Very sophisticated time integration schemes for ODEs available (such
as ”sundials” suite).

• The tools in scipy.integrate are pretty useful already (solve_ivp
has multiple solvers - we have only used the default Runge Kutta 45
solver.).

381

Sympy

Symbolic Python

What?

• symbolic algebra - computing with variables not numbers
(like Mathematica, SageMath, Wolfram Alpha, other, ...)

Why?

• Use symbolic computation before moving to numerical
calculations to avoid mistakes

• and to simplify expression as much as possible.
• Write computer code (or LaTeX) automatically from sympy
• Or use from Python using sympy.lambdify

382

Why symbolic python?

• sympy is not the only option - other packages may well be
faster/know more mathematics, but

• sympy connects well to Python ecosystem of
computational science tools

• free and open source
• scriptable: can integrate into automatic workflows
• very powerful

383

Symbolic Python - basics

>>> import sympy
>>> x = sympy.Symbol('x') # define symbolic
>>> y = sympy.Symbol('y') # variables
>>> x + x
2*x
>>> t = (x + y)**2
>>> print(t)
(x + y)**2
>>> sympy.expand(t)
x**2 + 2*x*y + y**2
>>> sympy.pprint(t) # PrettyPRINT

2
(x + y)
>>> sympy.printing.latex(t) # Latex export
'\\left(x + y\\right)^{2}'

384

Substituting values and numerical evalution

>>> t
(x + y)**2
>>> t.subs(x, 3) # substituting variables
(y + 3)**2 # or values
>>> t.subs(x, 3).subs(y, 1)
16
>>> n = t.subs(x, 3).subs(y, sympy.pi)
>>> print(n)
(3 + pi)**2
>>> n.evalf() # EVALuate to Float
37.7191603226281
>>> p = sympy.pi
>>> p
pi
>>> p.evalf()

385

3.14159265358979
>>> p.evalf(47) # request 47 digits
3.1415926535897932384626433832795028841971693993

386

Working with infinity

>>> from sympy import limit, sin, oo
>>> limit(1/x, x, 50) # what is 1/x if x --> 50
1/50
>>> limit(1/x, x, oo) # oo is infinity
0
>>> limit(sin(x) / x, x, 0)
1
>>> limit(sin(x)**2 / x, x, 0)
0
>>> limit(sin(x) / x**2, x, 0)
oo

387

Taylor series

>>> from sympy import series
>>> taylorseries = series(sin(x), x, 0)
>>> taylorseries
x - x**3/6 + x**5/120 + O(x**6)
>>> sympy.pprint(taylorseries)

3 5
x x

x - -- + --- + O(x**6)
6 120

>>> taylorseries = series(sin(x), x, 0, n=10)
>>> sympy.pprint(taylorseries)

3 5 7 9
x x x x

x - -- + --- - ---- + ------ + O(x**10)
6 120 5040 362880

388

Integration

>>> from sympy import integrate
>>> a, b = sympy.symbols('a, b')
>>> integrate(2*x, (x, a, b))
-a**2 + b**2
>>> integrate(2*x, (x, 0.1, b))
b**2 - 0.01
>>> integrate(2*x, (x, 0.1, 2))
3.99000000000000

389

Solving equations

Finally, we can solve non-linear equations, for example:

>>> (x + 2)*(x - 3) # define quadratic equation
with roots x=-2, x=3

(x - 3)*(x + 2)
>>> r = (x + 2)*(x - 3)
>>> r.expand()
x**2 - x - 6
>>> sympy.solve(r, x) # solve r = 0
[-2, 3] # solution is x = -2, 3

390

Lambdify sympy expressions

>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> symb = sin(x) + cos(x)
>>> symb
sin(x) + cos(x)
>>> f = lambdify(x, symb, 'numpy')
>>> f(0)
1.0
>>> f(np.linspace(0, 1, 10))
array([1. , 1.10471614, 1.19580783, 1.27215164,
1.33280603, 1.37702295, 1.40425706, 1.4141725 ,
1.40664697, 1.38177329])

Workflow: Create sympy expressions, then lambdify them to execute faster.

391

Sympy summary

• Sympy is purely Python based
• fairly powerful (although better open source tools are
available if required)

• we should use computers for symbolic calculations
routinely alongside pen and paper, and numerical
calculations

• can produce LATEX output
• can produce C and fortran code (and wrap this up as a
python function automatically (“autowrap”))

392

392

Testing

Testing - context

• Writing software is easy – debugging it is hard
• When debugging, we always test
• Later code changes may require repeated testing
• Best to automate testing by writing functions that contain
tests

• A big topic: here we provide some key ideas
• We use Python extension tool py.test, see pytest.org

393

http://pytest.org

Example 1: mixstrings.py

def mixstrings(s1, s2):
"""Given two strings s1 and s2, create and return a new
string that contains the letters from s1 and s2 mixed:
i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
s[3] = s2[1], s[4] = s1[2], ...
If one string is longer than the other, the extra
characters in the longer string are ignored.

Example:

>>> mixstrings("Hello", "12345")
'H1e2l3l4o5'
"""
what length to process
n = min(len(s1), len(s2))
collect chars in this list
s = []

394

for i in range(n):
s.append(s1[i])
s.append(s2[i])

return "".join(s)

def test_mixstrings_basics():
assert mixstrings("hello", "world") == "hweolrllod"
assert mixstrings("cat", "dog") == "cdaotg"

def test_mixstrings_empty():
assert mixstrings("", "") == ""

def test_mixstrings_different_length():
assert mixstrings("12345", "123") == "112233"
assert mixstrings("", "hello") == ""

if __name__ == "__main__":
test_mixstrings_basics()
test_mixstrings_empty()
test_mixstrings_different_length()

395

• tests are run if mixstrings.py is the top-level (tests are
not run if file is imported)

• no output if all tests pass (“no news is good news”)

• More common approach than calling tests from
__main__: use py.test.

396

py.test (also known as pytest)

We can use the standalone program py.test to run test functions in any
python program:

• py.test will look for functions with names starting with test_
• and execute each of those as one test.
• Example:
$> py.test -v mixstrings.py
============================= test session starts ===========
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 3 items

mixstrings.py::test_mixstrings_basics PASSED [33%]
mixstrings.py::test_mixstrings_empty PASSED [66%]
mixstrings.py::test_mixstrings_different_length PASSED [100%]
============================== 3 passed in 0.01s ============

• This works, even if the file to be tested (here mixstrings.py) does not refer
to pytest at all.

397

*Calling pytest from a python file

If desired, one can trigger execution of pytest from python file.

Example:

import pytest

<parts of the file missing here>

if __name__ == "__main__":
pytest.main(["-v", "mixstrings.py"])

However, it is much more common to use py.test to discover and execute the tests
(often across multiple files).

398

Advanced Example 3: factorial.py

For reference: In this example, we check that an exception is raised if a particular error
is made in calling the function.

import math
import pytest

def factorial(n):
""" Compute and return n! recursively.
Raise ValueError if n is negative or non-integer.

>>> from myfactorial import factorial
>>> [factorial(n) for n in range(5)]
[1, 1, 2, 6, 24]
"""

if n < 0:
raise ValueError(f"n should be > 0 but n={n}")

399

if isinstance(n, int):
pass

else:
raise TypeError(f"n must be integer but is {type(n)}.")

actual calculation
if n == 0:

return 1
else:

return n * factorial(n - 1)

def test_basics():
assert factorial(0) == 1
assert factorial(1) == 1
assert factorial(3) == 6

def test_against_standard_lib():
for i in range(20):

assert math.factorial(i) == factorial(i)

def test_negative_number_raises_error():

400

with pytest.raises(ValueError): # this will pass if
factorial(-1) # factorial(-1) raises

a ValueError

def test_noninteger_number_raises_error():
with pytest.raises(TypeError):

factorial(0.5)

Output from successful testing:

$> py.test -v factorial.py
============================= test session starts ===============
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 4 items

factorial.py::test_basics PASSED [25%]
factorial.py::test_against_standard_lib PASSED [50%]
factorial.py::test_negative_number_raises_error PASSED [75%]
factorial.py::test_noninteger_number_raises_error PASSED [100%]
============================== 4 passed in 0.02s ================

401

Notes on pytest

• Normally, we call py.test from the command line
• Either give filenames to process (will look for functions starting with
test in those files)

• or let py.test autodiscover all files (!) starting with test to be
processed.

Example:

============================= test session starts ==============
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 7 items

mixstrings.py::test_mixstrings_basics PASSED [14%]
mixstrings.py::test_mixstrings_empty PASSED [28%]
mixstrings.py::test_mixstrings_different_length PASSED [42%]
factorial.py::test_basics PASSED [57%]
factorial.py::test_against_standard_lib PASSED [71%]
factorial.py::test_negative_number_raises_error PASSED [85%]
factorial.py::test_noninteger_number_raises_error PASSED [100%]
============================== 7 passed in 0.01s =============== 402

Testing summary

• Unit testing, integration testing, regression testing, system
testing

• absolute key role in modern software engineering: always
write (some) tests for your software

• bigger projects have ”continuous integration testing”:
automatic execution of tests on any change

• ”eXtreme Programming” (XP) philosophy suggests to write
tests before you write code (”test-driven-development
(TDD)”)

Executable py.test and python module pytest are not part
of the standard python library.

403

Object Oriented Programming

Overview

• Motivation and terminology
• Time example

• encapsulation
• defined interfaces to hide data and implementation
• operator overloading
• inheritance
• (teaching example only: normally datetime and others)

• Geometry example
• Objects we have used already
• Summary

404

Motivation

• When programming we often store data
• and do something with the data.
• For example,

• an array keeps the data and
• a function does something with it.

• Programming driven by actions (i.e. calling functions to do
things) is called imperative or procedural programming.

Object Orientation

• merge data and functions (that operate on this data)
together into classes.

(…and objects are “instances of a class”)

405

Terminology

• a class combines data and functions
(think of a class as a blue print for an object)

• objects are instances of a class
(you can build several objects from the same blue print)

• a class contains members
• members of classes that store data are called attributes
• members of classes that are functions are called methods
(or behaviours)

406

Example 1: a class to deal with time

class Time:
def __init__(self, hour, min):

self.hour = hour
self.min = min

def print24h(self):
print(f"{self.hour:2}:{self.min:2}")

def print12h(self):
if self.hour < 12:

ampm = "am"
else:

ampm = "pm"

print(f"{self.hour % 12:2}:{self.min:2} {ampm}")

if __name__ == "__main__":

407

t = Time(15, 45)

print("print as 24h: "),
t.print24h()
print("print as 12h: "),
t.print12h()

print(f"The time is {t.hour} hours and {t.min} minutes.")

which produces this output:

print as 24h:
15:45
print as 12h:
3:45 pm

The time is 15 hours and 45 minutes.

408

• class Time: starts the definition of a class with name Time
• __init__ is the constructor and is called whenever a new object is
initialised

• all methods in a class need self as the first argument. Self represents
the object.

• variables can be stored and are available everywhere within the object
when assigned to self, such as self.hour in the example.

• in the main program:

• t = Time(15, 45) creates the object t
↔ t is an instance of the class Time

• methods of t can be called like this t.print24h().

This was a mini-example demonstrating how data attributes (i.e. hour and
min) and methods (i.e. print24h() and print12h()) are combined in the
Time class.

409

Members of an object

• In Python, we can use dir(t) to see the members of an object t. For
example:

>>> t = Time(15, 45)
>>> dir(t)
['__class__', '__doc__', ...<entries removed here>....,
'hour', 'min', 'print12h', 'print24h']

• We can also modify attributes of an object using for example t.hour
= 10. However, direct access to attributes is sometimes supressed
(although it may look like direct access→ property).

410

Data hiding (also: information hiding)

• A well designed class provides methods to get and set attributes.

• These methods define the interface to that class.

• Purpose of get and set methods:

• to perform error and consistency checking when values are set
• to hide the implementation of the class (from the user):

• we can change the implementation of the class without
changing the interface (and a user of the class would never
know)

• makes future changes possible

• We introduce set and get methods as one would use in Java and C++ to
reflect the common ground in OO class design. In Python, the use of
property is often preferred over set and get methods.

411

Example 2: a class to deal with time

class Time:
def __init__(self, hour, min):

self.setHour(hour)
self.setMin(min)

def setHour(self, hour):
if 0 <= hour <= 23:

self._hour = hour
else:

raise ValueError(f"Invalid hour value: {hour}")

def setMin(self, min):
if 0 <= min <= 59:

self._min = min
else:

raise ValueError(f"Invalid min value: {min}")

412

def getHour(self):
return self._hour

def getMin(self):
return self._min

def print24h(self):
print(f"{self.getHour():2}:{self.getMin():02}")

def print12h(self):
if self._hour < 12:

ampm = "am"
else:

ampm = "pm"

print(f"{self._hour%12:2}:{self._min:2} {ampm}")

if __name__ == "__main__":
t = Time(15, 45)

413

print("print as 24h: "),
t.print24h()
print("print as 12h: "),
t.print12h()
print(f"that is {t.getHour()} hours and {t.getMin()} minutes")

which produces

print as 24h:
15:45
print as 12h:
3:45 pm

that is 15 hours and 45 minutes

414

Data Hiding summary

• providing set and get methods for attributes of an object
• The pythonic way for get and set functions is through
properties. A property is a special attribute:

• get and set functions are called automatically when the
attribute is accessed or assigned to.

• Advanced: Attributes that the user cannot access directly
are called private.

• In Python, class attributes can never be truly private. (in
contrast to C++, Java, ...)

• Convention: an attribute starting with an underscore is
private, and should not be accessed directly (by the user of
the class). Example: self._hour

415

Operator overloading

• We constantly use operators to “do stuff” with objects.
• What the operator does, depends on the objects it operates on. For
example:
>>> a = "Hello "; b = "World"
>>> a + b # concatenation
'Hello World'
>>> c = 10; d = 20
>>> c + d # addition
30

• This is called operator overloading because the operation is
overloaded with more than one meaning.

• Other operators include -,* , **, [], (), >, >=, ==, <=,
<, str(), repr(), ...

• We can overload these operators for our own objects. The next slide
shows an example that overloads the > operator for the Time class.

• It also overloads the “str” and “repr“ functions.
416

class Time:
def __init__(self, hour, min):

self.hour, self.min = hour, min

def __str__(self):
"""overloading the str operator (STRing)"""
return f"[{self.hour:2d}:{self.min:2d}]"

def __repr__(self):
"""overloading the repr operator (REPResentation)"""
return f"Time({self.hour:2d}, {self.min:2d})"

def __gt__(self, other):
"""overloading the GreaterThan operator"""
selfminutes = self.hour * 60 + self.min
otherminutes = other.hour * 60 + other.min
return selfminutes > otherminutes

if __name__ == "__main__":
t1 = Time(15, 45)

417

t2 = Time(10, 55)

print(f"Informal string representation of t1: {str(t1)}")
print(f"Representation of object = {repr(t1)}")

print("compare t1 and t2: "),
if t1 > t2:

print("t1 is greater than t2")

Output:

Informal string representation of t1: [15:45]
Representation of object = Time(15, 45)
compare t1 and t2:
t1 is greater than t2

418

Inheritance

• Sometimes, we need classes that share certain (or very
many, or all) attributes but are slightly different.

• Example 1: Geometry
• a point (in 2 dimensions) has an x and y attribute
• a circle is a point with a radius
• a cylinder is a circle with a height

• Example 2: People at universities
• A person has an address.
• A student is a person and selects modules.
• A lecturer is a person with teaching duties.
• …

• In these cases, we define a base class (or parent class)
and derive other classes from it.

• This is called inheritance

419

Inheritance example Time

class Time:
def __init__(self, hour, min):

self.hour = hour
self.min = min

def __str__(self):
"""overloading the str operator (STRing)"""
return f"[{self.hour:2}:{self.min:02}]"

def __gt__(self, other):
"""overloading the GreaterThan operator"""
selfminutes = self.hour * 60 + self.min
otherminutes = other.hour * 60 + other.min
return selfminutes > otherminutes

420

class TimeUK(Time):
"""Derived (or inherited class)"""
def __str__(self):

"""overloading the str operator (STRing)"""
if self.hour < 12:

ampm = "am"
else:

ampm = "pm"

return f"[{self.hour%12:2}:{self.min:02} {ampm}]"

if __name__ == "__main__":
t3 = TimeUK(15, 45)
t4 = Time(16, 15)
print(t3, t4)

if t3 > t4:

421

print("t3 is greater than t4")
else:

print("t3 is not greater than t4")

Output:

[3:45 pm] [16:15]
t3 is not greater than t4

422

*Inheritance example Geometry

import math

class Point: # this is the base class
"""Class that represents a point """
def __init__(self, x=0, y=0):

self.x = x
self.y = y

class Circle(Point): # is derived from Point
"""Class that represents a circle """
def __init__(self, x=0, y=0, radius=0):

Point.__init__(self, x, y)
self.radius = radius

def area(self):
return math.pi * self.radius ** 2

423

class Cylinder(Circle): # is derived from Circle
"""Class that represents a cylinder"""

def __init__(self, x=0, y=0, radius=0, height=0):
Circle.__init__(self, x, y, radius)
self.height = height

def volume(self):
return self.area() * self.height

if __name__ == "__main__":
d = Circle(x=0, y=0, radius=1)
print("circle area:", d.area())
print("attributes of circle object are")
print([name for name in dir(d) if name[:2] != "__"])
c = Cylinder(x=0, y=0, radius=1, height=2)
print("cylinder volume:", c.volume())
print("attributes of cylinder object are")
print([name for name in dir(c) if name[:2] != "__"])

Output:

424

circle area: 3.141592653589793
attributes of circle object are
['area', 'radius', 'x', 'y']
cylinder volume: 6.283185307179586
attributes of cylinder object are
['area', 'height', 'radius', 'volume', 'x', 'y']

425

*Inheritance (2)

• if class A should be derived from class B we need to use
this syntax:
class A(B):

• Can call constructor of base class explicitly if necessary
(such as in Circle calling of Point.__init__(...))

• Derived classes inherit attributes and methods from base
class (see output on previous slide: for example the
cylinder and circle object have inherited x and y from the
point class).

426

*super()

In the Circle class definition, we can replace

Point.__init__(self, x, y)

with

super().__init__(x, y)

as a short cut to call a method from the (single) parent class.

(Same for the Cylinder class definition.)

427

Everything in Python is an object

All “things” in Python are objects, including numbers, strings and
functions.

>>> dir(42) # numbers are objects
>>> dir(list) # list is an object
>>> import math
>>> dir(math) # modules are objects
>>> dir(lambda x: x) # functions are objects

428

Summary Object Oriented Programming

Summary
• Object orientation is about merging data and functions
into one object (sometimes called encapsulation).

• Data hiding (through get and set methods) makes the
classes more flexible: easier to maintain, possible to
change internal implementation

• Through operator overloading we can make working with
the objects more convenient and more flexible

• Classes can be derived from other classes: facilitates
re-use of code

429

Pandas

Pandas

• de-facto standard in data science (and maschine learning)
• builds on numpy
• convenient handling of multi-dimensional data sets
• important data structures: Series and DataFrame
• excellent import and export functionality, including csv
and xlsx.

• many, many, many parameters, functions, tools (Can’t
know them all)

• for data cleaning and data exploration typically used in
Juptyter Notebook

See https://fangohr.github.io/
introduction-to-python-for-computational-science-and-engineering/17-pandas.html

430

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html

430

Practical computational science
recommendations

Research software development

• use version control
• start in Python
• use tests
• keep it simple
• make it readable
• use notebooks for examples -> documentation (sphinx)
• if you need to change/extend/rewrite software

• automatic tests are your friend
• continuous integration
• we can also test documentation (nbval, doctest)

431

Software too slow?

• Identify where it is slow (”Profiling”)
• move execution of ’slow’ operations to compiled code
where necessary

• through use of numpy
• through use of Cython
• through linking to compiled code (ctypes, cython, swig,
boost, f2py, ...)

• Parallelise through use of libraries that can execute in
parallel

• mkl numpy
• dask
• numba
• pytorch, cupy, ...

Includes use of GPUs.

432

Good practice Computational Science

• use notebooks to document computational work
• use version control (for software, reports and papers)
• archive software and notebooks (publicly if you can)
• in particular for (more reproducible) publications [1]:

• publish git repo with paper (Zenodo?)
• document your software environment
• if you can create it automatically, this is best
• consider making your repo binder-enabled ()

[1] Beg, Fangohr, etal: Using Jupyter for reproducible scientific workflows,
Computing in Science and Engineering 23, 36-46 10.1109/MCSE.2021.3052101
(2021)

433

http://mybinder.org
https://doi.org/10.1109/MCSE.2021.3052101

Give back to the community where you can

• Contribute to the open source tools you are using, for
example

• provide bug reports
• suggest improvements to documentation
• make feature requests
• helping other users
• ...

• Cite software that is important for your work in your
papers: many packages suggest what to cite if you use
them

434

What to learn next?

What programming language to learn how - suggestions

• …it all depends what you want to achieve:

• To learn C or Fortran, get a book or on-line tutorial.

• To learn object oriented programming (OOP), read a more detailed
introduction, for example “How to think like a computer Scientist” (for
Python)

• To learn C++, learn OOP using Python first, then switch to C++.

• Consider Rust for a modern (lower level) language

Note:
• Python provides an excellent platform for all possible tasks

⇒ it could well be all you need for some time to come.

435

Further reading

• “How to Think Like a Computer
Scientist: Learning with Python”.
(ISBN 0971677506) free at
http://greenteapress.com/wp/think-
python-2e/

• Very systematic presentation of
all important programming
concepts, including OOP.

• Aimed at first year computer
science students.

• Recommended if you like
programming and want to know
more about the concepts.

436

http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/

Further reading (2)

• “Effective Computation in
Physics“ (ISBN 1491901535, 2015)

• Good overview of Python
language and Python-based
computational ecosystem

• Also introduces data
processing, version control (Git),
Github, testing, HDF5,
parallelism, software
deployment

437

What other tools, methods and topics might be relevant?

Tools to extend your computational toolkit / suggested
self-study topics

• Systematic testing (py.test for python) and
• Jupyter Notebook
• Test Driven Development (TDD)
• Version control (Git)
• Automate everything (continuous integration)
• LATEX (professional document creation)
• Editor (VS Code? Emacs? Vim? ...)
• Containers (Docker / Singularity / ...)
• Data management: hdf5
• Performance: parallel computing
• Touch typing
• ... 438

Typing

Dynamic Typing

Python derives flexibility from being dynamically typed:

def add(x, y):
"""Type of x and y is dynamic."""
print(f"Type of {x=} is {type(x)}")
return x + y

print(add(10, 20))
print(add("Hello", " World"))

Output:

Type of x=10 is <class 'int'>
30
Type of x='Hello' is <class 'str'>
Hello World

439

Duck typing — behaviour more important than type

def print_length(x):
"""Works for every object with __len__ method."""
print(f"The object of type {type(x)} has length {len(x)}.")

class Len42class:
"""A class where every object has length 42."""
def __len__(self):

return 42

x = [10, 20]
print_length(x) # list has length
y = Len42class() # y has length
print_length(y)

Output:

The object of type <class 'list'> has length 2.
The object of type <class '__main__.Len42class'> has length 42.

440

Static typing

• More formal “static typing” information can be useful:
• better (machine readable) documentation of types
• static type checking may discover mistakes
• editors/IDEs can use static type information
• potential execution speed-up (see cython)

• Typing module for type annotation introduced in Python
3.5

• Relevant PEPs: PEP483 and PEP484
• More concise introduction to typing realpython.com

441

https://docs.python.org/3/library/typing.html
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://realpython.com/python-type-checking/#static-type-checking

Static typing example

• Function type annotation: expect str and return str
1 def hello(name: str) -> str:
2 """Given a name, return 'Hello ' + name."""
3 return "Hello " + name
4

5 hello("Paul") # correct function call
6 hello(42) # incorrect type
• Can use mypy to do static type analysis:
typing-static1.py:6: error: Argument 1 to "hello"

has incompatible type "int"; expected "str"↪→

Found 1 error in 1 file (checked 1 source file)

442

Gradual typing

• gradual introduction of type annotations is possible: can
introduce type annotation for some functions only

• effective to annotate most heavily used functions first
• they are called from other places
• accidental calls with incorrect types can be discovered

443

Gradual typing example

•1 def mysum(a: int, b: int) -> int:
2 """Expect two ints and return the sum."""
3 return a + b
4

5 def f_without_types(x):
6 """Return x. A function without type annotation."""
7 return x
8

9 print(mysum(2, 3))
10 print(mysum("Hello", 2023)) # will not work
• Can use mypy to do static type analysis:
typing-gradual.py:10: error: Argument 1 to "mysum"

has incompatible type "str"; expected "int"↪→

Found 1 error in 1 file (checked 1 source file)

444

Useful tools

Black — The Uncompromising Code Formatter

“one style, as long as it is this one”

• leave formatting to black
• focus on content (rather than formatting)
• makes code review easier
• compatible with PEP8

Usage:

• Check if file.py sticks to Black standard:
black --check file.py

• Autoformat file.py:
black file.py

• Can be used by editors (e.g. Spyder) and tools (e.g.
pre-commit) 445

mypy and pytype — static type checking

Code with type annotations (see slide 442) can be analysed
statically (i.e. without being executed).

Important tools:

• mypy https://mypy-lang.org/
• pytype https://github.com/google/pytype

Pytype can also infer types (to some degree) and merge to
source.

A gentle introduction to the topic in Talk Python to Me podcast,
episode 151.

446

https://mypy-lang.org/
https://github.com/google/pytype
https://talkpython.fm/episodes/show/151/gradual-typing-of-production-applications
https://talkpython.fm/episodes/show/151/gradual-typing-of-production-applications

commit ffc72e7a5227ae1c48310c52c65162296c14d830
Author: Hans Fangohr <hans.fangohr@mpsd.mpg.de>
Date: Wed Jan 24 22:04:45 2024 +0100

improve ODE section

446

	Python for Computational Science
	Python prompt
	Functions
	About Python
	Style guide for Python code
	Conditionals, if-else
	Sequences
	Loops
	Some things revisited
	Reading and Writing files
	Exceptions
	Printing
	Higher Order Functions
	Modules
	Default arguments
	Namespaces
	IPython, Jupyter, Editors and IDEs
	List comprehension
	Dictionaries
	Recursion
	Common Computational Tasks
	Root finding
	Derivatives
	Numpy
	Higher Order Functions 2: Functional tools
	Numerical Integration
	Numpy usage examples
	Closures
	Scientific Python
	FIFO example and Object Oriented Programming (OOP)
	Environments and Python Package Index
	ODEs
	Sympy
	Testing
	Object Oriented Programming
	Pandas
	Practical computational science recommendations
	What to learn next?
	Typing
	Useful tools

