
Essential SoǕtware Engineering for
Computational Science and Data Science

Hans Fangohr
2019-06-12

Outline

Soǒtware Engineering introduction

Soǒtware processes and methodologies

Testing

Test Driven Development

Practial aspects of test driven development

Tools

Summary

Literature

1

SoǕtware Engineering introduction

SoǕtware Engineering introduction

SoǕtware engineering
is the study and an application of engineering to the design,
development and maintenance of soǒtware

(https://en.wikipedia.org/wiki/Software_engineering)

Including

• requirements capture
• design of soǒtware
• implementation
• testing
• verification and validation
• delivery
• maintenance

SoǕtware engineering helps to develop working soǕtware 2

https://en.wikipedia.org/wiki/Software_engineering

Famous accidents I

Ariane Rocket Goes Boom (1996)
Cost: $500 million

Disaster: Ariane 5, Europe’s newest unmanned rocket, was
intentionally destroyed seconds aǒter launch on its maiden
flight. Also destroyed was its cargo of four scientific satellites
to study how the Earth’s magnetic field interacts with solar
winds.

Cause: Shutdown occurred when the guidance computer tried
to convert the sideways rocket velocity from 64-bits to a
16-bit format. The number was too big, and an overflow error
resulted. When the guidance system shut down, control
passed to an identical redundant unit, which also failed
because it was running the same algorithm.

http://www.devtopics.com/20-famous-software-disasters-part-2/ 3

http://www.devtopics.com/20-famous-software-disasters-part-2/

Famous accidents II

Mars Climate Crasher (1998)
Cost: $125 million

Disaster: Aǒter a 286-day journey from Earth, the Mars Climate
Orbiter fired its engines to push into orbit around Mars. The
engines fired, but the spacecraǒt fell too far into the planet’s
atmosphere, likely causing it to crash on Mars.

Cause: The soǒtware that controlled the Orbiter thrusters
used imperial units (pounds of force), rather than metric
units (Newtons) as specified by NASA.

http://www.devtopics.com/20-famous-software-disasters-part-3/

4

http://www.devtopics.com/20-famous-software-disasters-part-3/

Famous accidents III

Therac 25 Accident ($∼$1985)
Cost: ?

Accident: The Therac-25 was a radiation therapy machine
which was involved in at least six accidents between 1985 and
1987, in which patients were given massive overdoses of
radiation.

Cause: Concurrent programming errors, combined with
integer overflow, lead to sometimes giving patients radiation
doses that were thousands of times greater than normal,
resulting in death or serious injury.

http://sunnyday.mit.edu/papers/therac.pdf

5

http://sunnyday.mit.edu/papers/therac.pdf

SoǕtware quality in Computational Science and Engineering

• errors
• lead to wrong science
• not good use of research funding
• can be dangerous if results are used
• Some case studies in Mike Croucher on ”Is your research
soǌtware correct?” at
http://mikecroucher.github.io/MLPM_talk/

• code maintainability and robustness allows
• re-use by future students/researchers
• re-use by other groups
• reproducibility
• better value for investment into coding

6

http://mikecroucher.github.io/MLPM_talk/

SoǕtware engineering overview, V-model

requirements
analysis

global design

detailed design

implementation

unit tests

system tests

acceptance
tests

verification

validation

verification

from Pfleeger (2010)
 & Van Vliet (2008)

7

Verification and Validation (terminology)

Validation
Have we got the right product?

(Does the product fulfill the requirements of the customer?)

Verification
Have we got the product right?

(Does the code do what the specification says?)

8

Planned versus agile soǕtware engineering

Plan-driven methods

• separates planning, design, implementation as distinct
activities

• integrate customer at beginning and end

Agile methods

• see design and implementation as key activities
• iterative refinement
• integrate all activities and require customer involvement
throughout the process

9

Agile methods

• iterative process
• customer closely involved
• deliver soǒtware protoype regularly
• reduce functionality if not sufficient time
• adjust flexibly to customer input
• tests-driven development

Works very well for small teams (≈ 10 people).
(But new evidence that also works well for larger organisations.)

10

SoǕtware processes and
methodologies

Methodology and Process

Having a process makes the difference

• between Surgery and Cutting people open
• between Engineering and Tinkering
• between Soǒtware Engineering and Programming

11

SoǕtware process

• Requirements
• Hardware
• Language/environment
• Architecture of programs
• Conventions and standards
• Version control
• Continuous integration
• Coordination techniques (planned, agile, etc)
• Testing
• Test Driven Development (TDD) - critical part of modern
process

12

Testing

Different levels of testing

• unit testing
• integration testing
• systems testing
• regression testing
• acceptance testing

13

Ways to test

• execute code manually, testing different inputs and
outputs

• write and run test code
• test the application by running through particular use
cases

• test the application by deploying it
• using dedicated test teams
• white box (glass box) testing & black box testing
• bug seeding (estimate effectiveness of testing)
• weakness oriented testing
• risk oriented testing
• representative testing

14

Test code

Executable tests

• provide documentation and example use of code,
• provide living form of documentation
• catch future errors
• provide long term time savings
• allow us to change the code easily and embrace change

(see ”continuous integration”)

15

First test code example (1/2)

def f(n):
s = 0
Loop from 0 to n:
for i in range(1, n + 1):

s = s + i
return s

def test_f():
assert f(3) == 0 + 1 + 2 + 3
assert f(5) == 15
assert f(10) == 55

16

First test code example (2/2)

Test by running py.test on the source file

cd code && py.test -v example1.py

Wed 9 Dec 2015 15:50:32 GMT
============================= test session starts ==============================
platform darwin -- Python 3.4.3 -- py-1.4.27 -- pytest-2.7.1 -- /Users/fangohr/anaconda/bin/python3
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
plugins: hypothesis, cov
collecting ... collected 1 items

example1.py::test_f PASSED

=========================== 1 passed in 0.01 seconds ===========================

17

Test design strategies

• experience
• guidelines
• partitioning

• identify classes of parameters
• test within each class
• test at class boundaries (border cases)

18

Second test code example (1/3)

def sum_custom(n):
"""
Given an integer n:
- return the sum from 0 to n if n >= 0
- return -1 for n < 0
- raise a TypeError if a is not of type int

"""
if type(n) is not int:

raise TypeError("f(n) expects integer, not {}"
.format(type(n)))

if n >= 0:
s = 0
for i in range(1, n + 1):

s = s + i
return s

else:
return -1 19

Second test code example (2/3)

from sum_custom import sum_custom as f

def test_positive(): # partitioning n
assert f(2) == 0 + 1 + 2
assert f(3) == 0 + 1 + 2 + 3
assert f(5) == 15
assert f(10) == 55

def test_negative():
assert f(-1) == -1
assert f(-10) == -1

def test_border_case():
assert f(1) == 1
assert f(0) == 0
assert f(-1) == -1
assert f(-2) == -1

20

Second test code example (3/3)

def test_raises_exception():
with pytest.raises(TypeError):

f(1.0)
with pytest.raises(TypeError):

f("This is a string")

21

Run tests automatically (py.test)

Here we use py.test to execute the tests automatically:

cd code && py.test -v test_sum_custom.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 4 items

test_sum_custom.py::test_positive PASSED
test_sum_custom.py::test_negative PASSED
test_sum_custom.py::test_border_case PASSED
test_sum_custom.py::test_raises_exception PASSED

=========================== 4 passed in 0.01 seconds ===========================

22

Test automation

Test automation
Wherever possible, create executable tests so that they can
be run automatically.

23

Effectiveness of testing

Testing effectiveness
Testing can only show the presence of errors, not their
absence

(Dijkstra et al, 1972)

• Exhaustive testing generally impossible

24

Testing tools

Python

• py.test/ nose - third party test tools
• PyUnit (object oriented) - inbuilt XUnit style framework
• hypothesis (Python) - automatic test case generation
• coverage - how many lines of code are covered by tests?
• radon Complexity - how complicated is the code?

Other

• JUnit (Java)
• XUnit (many languages)

C

• CUnit, … (C)

25

py.test: stdout is hidden if tests pass

Standard output is filtered out for all tests that pass:

def f(n):
print("in f(n), n={}".format(n))
r = 1 / (n - 1)
print("return value = {}".format(r))
return r

def test_f():
assert f(2.) == 1

cd code && py.test -v example_output.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 1 items

example_output.py::test_f PASSED

=========================== 1 passed in 0.00 seconds ===========================

26

py.test: stdout is displayed if test fails (1/2)

Standard output is displayed for tests that fail:

def f(n):
print("in f(n), n={}".format(n))
r = 1 / (n - 1)
print("return value = {}".format(r))
return r

def test_f():
assert f(2.) == "provoke error"

27

py.test: stdout is displayed if test fails (2/2)

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 1 items

example_output_fail.py::test_f FAILED

=================================== FAILURES ===================================
____________________________________ test_f ____________________________________

def test_f():
> assert f(2.) == "provoke error"
E assert 1.0 == 'provoke error'
E + where 1.0 = f(2.0)

example_output_fail.py:8: AssertionError
----------------------------- Captured stdout call -----------------------------
in f(n), n=2.0
return value = 1.0
=========================== 1 failed in 0.01 seconds ===========================

28

py.test: use -s to not capture stdout

A switch is available to supress capturing of standard output:

-s ⇔ --capture=no
def f(n):

print("in f(n), n={}".format(n))
r = 1 / (n - 1)
print("return value = {}".format(r))
return r

def test_f():
assert f(2.) == 1

cd code && py.test -v -s example_output.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 1 items

example_output.py::test_f in f(n), n=2.0
return value = 1.0
PASSED

=========================== 1 passed in 0.01 seconds ===========================

29

py.test: use -l to show local variables (1/2)

A switch is available to show local variables in failing context

-l ⇐⇒ --showlocals

def f(n):
r = (2 * n - 2) * (4 - n ** 2)
t = 1 / r
return t

def test_f():
assert f(2) == 1

30

py.test: use -l to show local variables (2/2)

cd code && py.test -q -l example_localvars.py
true

F
=================================== FAILURES ===================================
____________________________________ test_f ____________________________________

def test_f():
> assert f(2) == 1

example_localvars.py:7:
_ _

n = 2

def f(n):
r = (2 * n - 2) * (4 - n ** 2)

> t = 1/r
E ZeroDivisionError: division by zero

n = 2
r = 0

example_localvars.py:3: ZeroDivisionError
1 failed in 0.01 seconds 31

py.test: test that exception is raised

• Use pytest context to ensure exceptions are raised:
Example code (example_exception.py):

import pytest

def f(x):
if x is None:

raise ValueError("Called with x==None")

def test_f_exception():
with pytest.raises(ValueError):

f(None)

• Test will pass only if f(None) raises ValueError.

32

py.test: Running tests selectively (1/2)

• sometimes, we only want to run one particular test.
• Can select using -k NAME, where NAME is a substring of
the test name(s) to be run.

Example code (example_select.py):

def f(x):
return 2 * x

def test_number():
assert f(2) == 4

def test_str():
assert f("fish") == "fishfish"

def test_list():
assert f([42]) == [42, 42]

33

py.test: Running tests selectively (2/2)

cd code && py.test -v -k str example_select.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 3 items

example_select.py::test_str PASSED

======================== 2 tests deselected by '-kstr' =========================
==================== 1 passed, 2 deselected in 0.00 seconds ====================

34

py.test: how to execute all tests

• py.test MYFILE.PY
searches MYFILE.PY for functions called test_*

• py.test PATH
searches for files called test_*.py and *_test.py in
directory PATH and all subdirectories

• py.test --collect-only
shows which test cases can be found (without executing
them)

35

py.test: where to put the test code

Many options, including

• combine test functions and actual code in the same file
• gather tests for lib.py in test_lib.py or
lib_test.py

• gather test code in separate tests subdirectory

36

py.test: fixtures (1/2)

• If many tests need the same object, create this through a ”fixture” function.
• use Python decorator to make fixture
• use name of fixture as input argument in test functions

import pytest

@pytest.fixture
def db():

some complicated operation
print(" == Setting up database == ")
db = {} # Imagine this is a data base
return db # provide the fixture value

def test_1(db):
db['key1'] = 42
assert db['key1'] == 42

def test_2(db):
assert 'key1' not in db
assert len(db) == 0

37

py.test: fixtures (2/2)

Fixture function called (=object created) for every test:

cd code && py.test -v -s example_fixture.py

============================= test session starts ==============================
platform darwin -- Python 3.4.3 -- py-1.4.27 -- pytest-2.7.1 -- /Users/fangohr/anaconda/bin/python3
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
plugins: hypothesis, cov
collecting ... collected 2 items

example_fixture.py::test_1 == Setting up database ==
PASSED
example_fixture.py::test_2 == Setting up database ==
PASSED

=========================== 2 passed in 0.01 seconds ===========================

38

py.test: setup and teardown fixture (1/2)

• some fixtures need to be shutdown aǒter test
• in XUnit terms: ”setup” and ”teardown”

• setup is called to create the object required for testing
• teardown to shut it down aǒter test

import pytest

@pytest.fixture
def mydb(request): # setup

some complicated operation
print(" == setup database == ")
db = {}
db['active'] = True
def myteardown(): # teardown

print (" == teardown database == ")
db['active'] = False

request.addfinalizer(myteardown)
return db

def test_1(mydb):
assert len(mydb) == 1

def test_2(mydb):
assert isinstance(mydb, dict) 39

py.test: setup and teardown fixture (2/2)

cd code && py.test -v -s example_setup_teardown.py

============================= test session starts ==============================
platform darwin -- Python 3.4.3 -- py-1.4.27 -- pytest-2.7.1 -- /Users/fangohr/anaconda/bin/python3
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
plugins: hypothesis, cov
collecting ... collected 2 items

example_setup_teardown.py::test_1 == setup database ==
PASSED == teardown database ==

example_setup_teardown.py::test_2 == setup database ==
PASSED == teardown database ==

=========================== 2 passed in 0.01 seconds ===========================
40

py.test: Runtime – keep the tests fast 1/2

• Testing is most efficient
if you can run the
(automated) tests oǒten
and quickly

• Useful to find slowest
tests

• Use py.test
--durations=N to
show the N slowest
tests

Example code (example_slow.py)

def f(n):
if n == 1 or n == 2:

return 1
else:

return f(n - 1) + f(n - 2)

def test_basics():
assert f(1) == 1

def test_basics2():
assert f(2) == 1

def test_medium1():
assert f(30) == 832040

def test_medium2():
assert f(33) == 3524578

def test_long1():
assert f(35) == 9227465

def test_long2():
assert f(36) == 14930352

41

py.test: Runtime – keep the tests fast 2/2

cd code && py.test --durations=5 example_slow.py

============================= test session starts ==============================
platform darwin -- Python 3.4.3 -- py-1.4.27 -- pytest-2.7.1
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
plugins: hypothesis, cov
collected 6 items

example_slow.py

=========================== slowest 5 test durations ===========================
4.27s call example_slow.py::test_long2
2.58s call example_slow.py::test_long1
0.99s call example_slow.py::test_medium2
0.23s call example_slow.py::test_medium1
0.00s teardown example_slow.py::test_basics
=========================== 6 passed in 8.08 seconds ===========================42

py.test: Marking tests: expected to fail (xfail)

Can mark tests as eXpected to FAIL where we know about a
bug/problem but want to keep the test

import pytest

@pytest.mark.xfail
def test_write_theses_function():

write_thesis(topic="Quantum Physics",
length="90 pages")

cd code && py.test -v example_xfail.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 1 items

example_xfail.py::test_write_theses_function xfail

========================== 1 xfailed in 0.01 seconds ===========================

43

py.test: Marking tests: Skipping tests (1/3)

• Sometimes, tests need to be conditionally skipped
• use pytest.mark.skipif decorator

Example code (example_skipif.py):

import sys
import pytest

@pytest.mark.skipif(sys.version_info[0] >= 3,
reason="not python3 compatible")

def test_integer_division():
assert 1/2 == 0 # only valid in Python <= 2

44

py.test: Marking tests: Skipping tests (2/3)

Running this test with Python 3, will skip the test:

cd code && py.test example_skipif.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collected 1 items

example_skipif.py s

========================== 1 skipped in 0.00 seconds ===========================

45

py.test: Marking tests: Skipping tests (3/3)

Switch -rs Reports Skipped tests

cd code && py.test -rs example_skipif.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collected 1 items

example_skipif.py s
=========================== short test summary info ============================
SKIP [1] example_skipif.py:3: not python3 compatible

========================== 1 skipped in 0.00 seconds ===========================

46

XUnit style testing (unittest / PyUnit) (1/3)

import unittest # standard Python library

class TestStringMethods(unittest.TestCase):

def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')

def test_isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())

def test_split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):

s.split(2)

if __name__ == '__main__':
unittest.main() 47

XUnit style testing (unittest / PyUnit) (2/3)

cd code && python example_pyunit.py

...
--
Ran 3 tests in 0.000s

OK

48

py.test can run unittest test cases (3/3)

cd code && py.test -v example_pyunit.py

============================= test session starts ==============================
platform darwin -- Python 3.5.1, pytest-2.8.1, py-1.4.30, pluggy-0.3.1 -- //anaconda/bin/python
cachedir: .cache
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides/code, inifile:
collecting ... collected 3 items

example_pyunit.py::TestStringMethods::test_isupper PASSED
example_pyunit.py::TestStringMethods::test_split PASSED
example_pyunit.py::TestStringMethods::test_upper PASSED

=========================== 3 passed in 0.03 seconds ===========================

49

py.test switch summary

short name meaning
-v --verbose output more detail
-q --quiet output less detail
-l --showlocals show local variables in failing context
-rs --report=skip show skipped tests and reasons
-x --exitfirst exit instantly on first fail
-k EXP run only test with name matching EXP
-s --capture=no show stdout from running tests

--durations=N show the N slowest tests
--collect-only collect and report tests to run

py.test --help shows all options

50

py.test – other features

• py.test is big→ http://pytest.org
• py.test has many plugins extending its capabilities
(https:
//docs.pytest.org/en/latest/plugins.html,
http://plugincompat.herokuapp.com)

• can provide and clean up temporary files and directories
• provides fixtures per class and module
• …

51

http://pytest.org
https://docs.pytest.org/en/latest/plugins.html
https://docs.pytest.org/en/latest/plugins.html
http://plugincompat.herokuapp.com

Testing of computational science code

How do we test computational codes for correctness as there
are no exact solutions to compare against?

• a lot of code is not concerned with the key
equation/model, and can be tested as behaviour is
deterministic and known

Simulation results can be tested by

• comparison with analytic special cases (oǒten not
exploiting the full simulation capabilities)

• comparison with results obtained using a different method
• comparison with results from other simulation codes
• comparison with results from earlier versions of the same
soǒtware

52

SoǕtware engineering challenges in computational research

Other issues with research soǒtware engineering

• computing hardware changes
• unexpected changes in requirements (it’s research)
• reproducibility (would be good)
• fast execution competes with readable and maintainable
code

• metrics don’t reward good soǒtware / sustainability
• high turnaround of people (oǒten PhD students)
• lack of training in programming
• lack of training in soǒtware engineering (version control,
testing)

53

Should I really be writing test code?

Yes

Good practice:

• Part of any repository
• Ideally part of distribution
Example: scipy.test()

• Ideally run aǒter every code change (→ continuous
integration)

54

The role of testing

Tests are a tool.
The Process is: Test Driven Development

55

Test Driven Development

Motivation: reduce fear

• Test-driven development (TDD) is a way of managing fear
during programming. [from Kent Beck, 2002]

• Fear in the ”this is a hard problem and I can’t see the end
from the beginning” sense

• Fear
• makes you tentative
• makes you grumpy
• makes you want to communicate less
• makes you avoid feedback
• freezes creativity (stops you from exploring new ideas)

Need to have confidence in our code to reduce fear.

(Also culture of respect and team spirit in soǒtware
development teams.)

56

Test driven development (TDD) basics

Step 1: adding feature

• decide what the new code is going to do
• write a test that will pass when the feature is implemented
• run the new test code, ensure that it fails (”red”)
• write the code until the test passes (”greed”)

Step 2: Refactor

• simplify code
• avoid duplication
• add design decision one at a time

57

Example (exercise/tdd-units/todo.org)

Need a class that can represent distances in mm, metre, cm and
km. Possible design is to carry a value and a unit (='mm', 'm',
'cm' and 'km') around.

Desirable features / use cases:

- Have 'Distance' object that stores values and units
- Convert object to distance in metres
10 km --> 10,000
1cm --> 1e-2
2.5mm --> 2.5e-3

- Convert object to float (always in metres)
- Convert distance to other units
1 km in mm -> 1,000,000
- Add inches to set of known units
1 in in metres == 0.0254

- Allow addition of Distance objects
1m + 1m = 2m

- Add distance objects with different units
1m + 1inch = 1.0254 58

TDD strategy: Fake it till you make it (1/3)

Fake It: return a constant
and gradually replace constants with variables until you have
the real code

• okay to make the test pass somehow (initially)
• commit all coding crimes under the sun if necessary
• but don’t forget to refactor and tidy up later

59

TDD strategy: Obvious implementation (2/3)

Obvious Implementation
Type in the real implementation

60

TDD strategy: triangulation (3/3)

Triangulation
Only generalize code when we have two or more examples.
When the second example demands a more general solution,
then and only then do we generalize.

Strategy:

• implement case one trivially
• implement case two trivially
• at this point, ’triangulate’ and combine the two special
cases into a generic algorithm (and avoid duplication)

Why ”triangulation”? (from Kent Beck’s book)
If two receiving stations at a known distance from each other can both measure the direction of a radio signal,
there is enough information to calculate the range and bearing of the signal (if you remember more
trigonometry than I do, anyway.) This calculation is called triangulation.

61

What do we gain from test driven development ?

By writing the tests first, we

• design (the interface) before we code
• reduces complexity of task as you can focus on the design
without having to worry about the implementation

• document our design
• each test is an example use case

• proof that code implements design
• encourage design of testable code (!)
• achieve test coverage of code automatically
• make refactoring easier (possible)
• benefit from the tests when debugging

62

Testable code

• looks a lot like good code
• modular
• decoupled design
• methods/functions of limited scope
• reduces cyclomatic complexity

63

Result of Test Driven Development (TDD)

Better code in less time

…but you will have to use TDD do this for a while before you will be faster

64

Practial aspects of test driven
development

Reminder: TDD development (”red-green-refactor”)

1. Pick a feature
2. write the test first

• make sure it fails

3. implement some code to somehow make the test pass
(without breaking the other tests)

4. refactor existing code and tests (growing code base must
be cleaned up regularly during test-driven development)

5. Go back to 1.

By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process
is not altering any existing functionality.

65

What happens in the refactor step?

• New code can be moved from where it was convenient for
passing a test to where it more logically belongs

• Duplication must be removed
• Object, class, module, variable and method names should
clearly represent their current purpose and use

• As features are added, method bodies can get longer and
other objects larger. They benefit from being split and
their parts carefully named to improve readability and
maintainability.

• Inheritance hierarchies may be rearranged to be more
logical and helpful, and perhaps to benefit from
recognised design patterns.

• There are specific and general guidelines for refactoring
and for creating clean code.

[See also https://en.wikipedia.org/wiki/Test-driven_development]
66

https://en.wikipedia.org/wiki/Test-driven_development

What do we mean by duplication

• The concept of removing duplication is an important
aspect of any soǒtware design.

• For TDD, it also applies to the removal of any duplication
between the test code and the production code — for
example magic numbers or strings repeated in both to
make the test pass (initially)

67

Development styles and terminology

• TDD is sometimes describe as ”red/green/refactor”
• Principles associated with TDD:

• ”keep it simple, stupid” (KISS)
• ”You aren’t gonna need it” (YAGNI)
• ”Fake it till you make it” (Beck, 2002)

68

Which feature to implement first?

• Have a todo list with all features required (”backlog”)
• this will grow and change over time

• pick a feature to work on next that that
• you feel confident about
• is realistic to complete quickly
• will teach you something

• some features may have higher priority (from the
customer/requirements)

69

How long to work on each test?

In other words: how much functionality should one test cover?

• generally: a short time (20 minutes, an hour, …)
• some people try to make the test pass before taking a
break

70

Do I have to test everything?

Use judgement:

• some things are too hard to test
• in particular integration with external tools
• some tests are too trivial
• overtesting is possible: try to test each thing once
• exploratory coding without tests is okay

71

If you have to do back testing

If you have to add tests to existing code:

• write the test
• see it pass
• break the code
• see the test fail (to double check test works)
• [then fix the code again (by going back to original
version).]

72

If you have to work with/extend/maintain code that has no tests

Prioritise your time and write tests for the parts you will be
working on

This way:

• you will have tests for new code
• you will have tests for the fast-changing parts of the code
• ’static’ parts of the code may have no tests, but if they do
not require change, they are probably bug free

73

Adding regression tests (if you discover a bug)

• create a test that fails because of the bug
• fix the bug (i.e. make the test pass)
• the process adds a new test to your test suite

Learning opportunity
Try to understand why you did not have this test in the first
place

74

Good practice for writing tests

• Separate common set-up and teardown logic into test
support services utilized by the appropriate test cases
(’fixtures’)

• Treat your test code with the same respect as your
production code.

• Get together with your team and review your tests and test
practices to share effective techniques and catch bad
habits.

75

Things to avoid when writing tests

• Having test cases depend on system state manipulated
from previously executed test cases.

• Dependencies between test cases. A test suite where test
cases are dependent upon each other is brittle and
complex.

• Execution order should not be presumed.
• Testing precise execution behavior timing or performance.
• Building “all-knowing oracles.” An oracle that inspects
more than necessary is more expensive and brittle over
time.

• Testing implementation details.
• Slow running tests.

76

Summary TDD

Key things to remember

TDD 1

• Red/Green/Refactor

TDD 2

• Don’t write a line of new code unless you first have a
failing automated test.

• Eliminate duplication.

77

Tools

Version Control

Repository soǒtware we can run locally or on our own servers

• git
• mercurial

Web hosted services to serve repositories (generally free for
open source code)

• github (git only)
• bitbucket (git and mercurial)

78

Testing

• py.test, nose
• JUnit
• XUnit (https://en.wikipedia.org/wiki/XUnit)
• and more (https://en.wikipedia.org/wiki/List_
of_unit_testing_frameworks)

• coverage
(https://pypi.python.org/pypi/coverage)

79

https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://pypi.python.org/pypi/coverage

Test coverage

Given some Python code:

def sum_custom(n):
if type(n) is not int:

raise TypeError("f(n) expects integer, not {}".format(type(n)))
if n >= 0:

s = 0
for i in range(1, n + 1): # Loop from 0 to n

s = s + i
return s

else:
return -1

And some tests

from example_partial_coverage import sum_custom as f

def test_sum_custom(): # partitioning n
assert f(3) == 0 + 1 + 2 + 3
assert f(5) == 15
assert f(10) == 55
assert f(-1) == -1
assert f(0) == 0

80

coverage example, terminal output

• Using the pytest-cov plugin, we can ask: how many
lines of the source are ’covered’ by the tests?

• Command: py.test --cov --cov-report=FORMAT
TESTSTORUN

• Example

cd code && py.test --cov --cov-report=term test_example_partial_coverage.py

============================= test session starts ==============================
platform darwin -- Python 3.4.3 -- py-1.4.27 -- pytest-2.7.1
rootdir: /Users/fangohr/gitdocs/teaching-software-engineering/slides, inifile: pytest.ini
plugins: hypothesis, cov
collected 1 items

test_example_partial_coverage.py .
--------------- coverage: platform darwin, python 3.4.3-final-0 ----------------
Name Stmts Miss Cover
--
example_partial_coverage.py 9 1 89%
test_example_partial_coverage.py 7 0 100%

=========================== 1 passed in 0.01 seconds ===========================
81

coverage example, html output

Using --cov-report=html, we can create a nice html
representation of coverage:

82

Containers

• Container contains a (virtual) operating system
environment

• typically linux

• popular: Docker and Singularity
• Useful for

• complicated installations
• multiple conflicting soǒtware environments on the same
computer

• reproducible soǒtware environments

• Basic introduction:
https://github.com/fangohr/containers-for-science/blob/master/README.md

83

https://github.com/fangohr/containers-for-science/blob/master/README.md

Continuous Integration (CI)

Key idea:
Execute tests automatically when the code changes

In more detail detail

• Continuous integration tool watches repository
• if repository has new commits, run all the tests
• test suites write machine readable test result file
• continuous integration tool emails committer if tests fail

• also email line manager

• Can also build executables, documentation, release
versions

• Run tests on multiple environments (hardware, OS,
libraries, …)

84

Jenkins CI (https://jenkins-ci.org)

• Jenkins (free, flexible, needs server [=hardware])

[]

85

https://jenkins-ci.org

Travis CI (http://travis-ci.org)

• Cloud hosted service
• commercial provider but test open source code free
• connects with github and bitbucket

[]

86

http://travis-ci.org

Travis CI .travis.yml

• Example: http://github.com/fangohr/travisci
• Instruct travis via .travis.yml

language: python
python:

- "2.7"
- "3.4"

cache: pip

install:
- pip install hypothesis

before_script:
- sudo apt-get install libsundials-serial-dev libfftw3-dev
- ls /usr/lib/x86_64-linux-gnu/

command to install dependencies
install: "pip install -r requirements.txt"
command to run tests
script: make test 87

http://github.com/fangohr/travisci

Other CI services

Many similar Cloud hosted services to Travis CI, including

• Cirle CI
• Snap CI
• …

Other soǒtware:

• Buildbot (http://buildbot.net)
• similar to Jenkins but Python based and more light-weight?

88

http://buildbot.net

Summary

Summary SoǕtware Engineering for Computational Science

• Soǒtware Engineering is no exact science
• Best practice for Computational Research

• version control is essential
• and having tests is crucial
• continuous integration should be a must
• test driven development if you can
• use containers to set up the soǒtware environment
• automate everything: Computers are good at repetitive
things — we must exploit that.

• Choose methods you enjoy and that increase your (long
term) productivity. Choose responsibly.

89

Literature

Literature

Kent Beck: Test Driven Development by Example
Addison-Wesley Signature Series, Paperback – 8 Nov 2002
http://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/
KentBeck_TDD_byexample.pdf

Talk by Evan Dorn, Los Angeles Ruby Conference
https:
//www.youtube.com/watch?t=15&v=HhwElTL-mdI

Discussion on TDD
http://martinfowler.com/articles/is-tdd-dead/

90

http://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf
http://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf
https://www.youtube.com/watch?t=15&v=HhwElTL-mdI
https://www.youtube.com/watch?t=15&v=HhwElTL-mdI
http://martinfowler.com/articles/is-tdd-dead/

	Software Engineering introduction
	Software processes and methodologies
	Testing
	Test Driven Development
	Practial aspects of test driven development
	Tools
	Summary
	Literature

