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Introduction

- Magnetic vortex can have two different core 
orientations and two different chiralities, which results in 
four states.
- Stacking vortices with the same chirality but different 
core orientation, results in a magentisation configuration 
which is continuous everywhere except in the middle, 
where an energetically expensive discontinuity occurs - 
Bloch point.
- One of the vortices is going to change its core 
orientation and expell the Bloch point from the system 
in order to minimise its energy.
- Adding Dzyaloshinkii-Moriya interaction to the sample 
restricts the core-orientation relation and only two states 
are allowed.
- Motivated by this tought experiment, we perform a 
micromagnetic study to find a stable Bloch point.  
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Hysteretic behaviour

Summary

- We find that a stable Bloch point emerges between grains with different chirality.
- We demonstrate the existence of two different Bloch point configurations (Head to Head BP and Tail to Tail 
BP) at zero external magnetic field.
- By exploring hysteretic behaviour, we demonstrate that we can switch between HHBP and TTBP.
- Finally, we demonstrate that in the relaxation process, the Bloch point is created at the boundary.

Methods

- Geometry and material parameters:

Ms = 384 kA/m

A = 8.78 pJ/m

D = 1.58 mJ/m2

FeGe [1]:

- Hamiltonian:

symmetric exchange
Dzyaloshinskii-Moriya

Zeeman
demagnetisation

- Dynamics (LLG equation):

- Full 3D finite elements simulation model
- No assumption about translational invariance in the out-
of-plane direction
- Full computation of demagnetisation energy.
- Maximum mesh discretisation is 3 nm.

precession

damping
- Skyrmion number:
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- We fix the thickness of the bottom layer and vary the thickness of the top layer, and compute the skyrmion 
number (Fig. a) in both layers.
- For the top layer thickness greater than 8 nm, a stable Bloch point emerges (Figs. b and c).

- We simulate time evolution from the uniform state.- We vary the external magnetic field between -1.0 T 
and 1.0 T.
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