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State of theArt: Magnetism in curvilinear geometries Topical Review: [Streubel et al., Journal of Physics D: Applied Physics 49, 363001 (2016)]

One dimensional (1D) curvilinear structures Two dimensional (2D) curvilinear structures

Microhelices: magnetochiral
dichroism

[Smith et al., PRL 107, 097204 (2011)]

Nanohelices: artificial
helimagnets

[Phatak et al., Nano Lett. 14, 759-64 (2014)]

Parabolas: curvature-induced
domain wall (DW) pinning

[Kim et al., Nature Comm. 5, (2014)]

[Yershov et al., Phys. Rev. B 92, 104412 (2015)]

Nanotubes: ultrafast DW
motion

[Yan et al., APL 99, 122505 (2011)]

Nanocaps: chirality-dependent
vortex switching

[Streubel et al., PRB 85, 174429 (2012)]
[Baraban et al., ACS Nano 6, 3383–9 (2012)]

Möbius stripe: magnetochirality

symmetry breaking

[Pylypovskyi et al., Phys. Rev. Lett. 114, 197204
(2014)]

Theoretical background for one-dimensional case

Homogeneous state Periodical state
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Strictly tangential state Helicoidal state

Quasitangential state Elliptical helicoidal state

In the case of 1D curvilinear magnetic wire it is convenient to use its natural parametrization by arc length s of a general form ~γ = ~γ(s)

and work in the curvilinear Frenet-Serret (TNB) reference frame (~et, ~en, ~eb). The total energy in the TNB reference frame has a form:

E = KS

∫

dξ
{

m′
αm

′
α + D

meso
αβ (mαm

′
β −m′

αmβ) + K
meso
αβ mαmβ

}

, α, β = (t,n,b),

where ~m is the magnetization unit vector ~m = ~M/Ms, withMs being the saturation magnetization, ()
′ = ∂ξ, with ξ = s/w
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where K = K0+πM
2
s is the effective anisotropy constant, with K0 > 0, w =

√

A/K is the characteristic magnetic length, with A being an

exchange constant. The tensors Dmeso
αβ and K meso

αβ are mesoscale DMI and anisotropy tensors, respectively, with:

◮
~Di = (Di

t
,Di

n
,Di

b
) = ~D i/

√
AK being the reduced vector of the intrinsic DMI;

◮
~De = (−2 σ(ξ), 0,−2κ(ξ) is the vector of the extrinsic DMI, with σ = w τ and κ = w κ being the reduced curvature and torsion.

In the following, it is instructive to introduce the vector of the mesoscale DMI:

~D = ~Di + ~De = (Di

t
−2σ, Di

n
, Di

b
−2κ).

In the case of 2D curvilinear magnetic systems this theory remains valid but becomes more complex, due to differentiation along two or-
thogonal directions on the curvilinear plane.

Microscopic numerical experiments withmagnetic wires
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It is possible to access the value for intrinsic DMI from the analysis of the microscopic images of the pe-

riodical magnetic states taken by using microscopic techniques, e.g. Lorentz electron microscopy, elec-

tron holography, magnetic transmission X-ray microscope (MTXM) and X-ray magnetic circular dichro-

ism photoelectron emission microscope (XMCD-PEEM). We illustrate this possibility for an exemplarily

choosen XMCD-PEEM-like experiment, where the x-ray beam hits the samples under the angle of 25◦

with respect to the surface plane.

(a) The helicoidal state in a straight wire withDi

t
= 2.7.

(b) The quasitangential state in a helix wire with κ = 0.8, σ = 0.5,Di

t
= 0, C = +1.

(c) The periodical state with κ = 0.8, σ = 0.5,Di

t
= 2.7, C = +1.

Colors of the surface of the magnetization rotation and the XMCD-PEEM-like contrast are equal and

reveal the magnetization parallel (red) and antiparallel (blue) to the x-ray beam.

(d1-d3) Fourier spectra of the XMCD-PEEM-like signal along the wires for the helicoidal,

quasitangential and periodical states, respectively.

Magnetic states on spherical shells
In the case of a thin spherical shell with radius R and easy-normal anisotropy there exsit a class of az-

imuthally symmetric solutions ~m = ~eϑ sin θ + ~n cos θ. The function θ = θ(ϑ) satisfies the following

equation:

θ′′ + cotϑθ′ − sin θ cos θ

[

cos 2ϑ

sin2 ϑ
+

R2

w 2
− 4D

Dc

]

+ 2 cotϑ sin2 θ

[

1 +
D

Dc

]

= 0,

where Dc = 2A/R is the strength of the curvature-induced effective DMI that solely is exchange-driven.

This geometrical DMI contribution copetes with the intrinsic spin-orbit driven DMI. Full compensation

takes place when D = −Dc

Dependences of the skyrmion radius Rs on the dimensionless DMI constantDi = D/
√
AK .

In the case of curvilinear systems resulting skyrmion

numberN become dependent on both a magneticQ
and a geometricalQg topological charges, which provide

a topological charge shift:

N = Q−Qg .

Thus, for the case of magnetic skyrmion on thin

magnetic spherical shell, the corresponding magnetic

topological chargeQ = 0. Therefore, the skyrmion

magnetic configuration can be created by means of a

uniform magnetic field.

[Kravchuk, Rößler, Volkov, Sheka, van den Brink, Makarov, Fuchs, Fangohr,

Gaididei, Phys. Rev. B 94, 144402 (2016)]


