Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction

Marijan Beg^{1,2}, Leoni Breth², David Cortés-Ortuño², Ryan A. Pepper², Thomas Kluyver², Gary Downing², Thorsten Hesjedal³ Peter Hatton⁴, Tom Lancaster⁴, Geetha Balakrishnan⁵, Ondrej Hovorka², and Hans Fangohr^{1,2,*}

¹European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany

²Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom

³Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom ⁴Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom ⁵Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

*email: hans.fangohr@xfel.eu

University

rham

Introduction

European

- Simulations emerge as the **third pillar** of research and development in academia and industry, and

1D problems

Quasi-ferromagnetic state

DREA

correctness of simulation tools needs to be ensured.

Magnetic simulations with Dzyaloshinskiiinteraction (DMI) becoming Moriya are increasingly popular after the discovery of magnetic skyrmions and their promising features.

- Standard problems [1, 2, 3] are used to test and provide confidence for the correctness of newly developed and existing micromagnetic simulation tools.

- There is **no set of standard problems** that can be used to test micromagnetic simulation tools that include Dzyaloshinkii-Moriya interaction.

- In this work, we present simple 1D and 2D **problems** where their solutions can be compared to simulation results to support practical the computational micromagnetics.

Methods

- Geometries and material parameters:
- **1-dim:**
- **2-dim:**

Ο

Due to the specific boundary conditions, magnetisation tilts at the edges of the onedimensional sample (quasi-ferromagnetic).

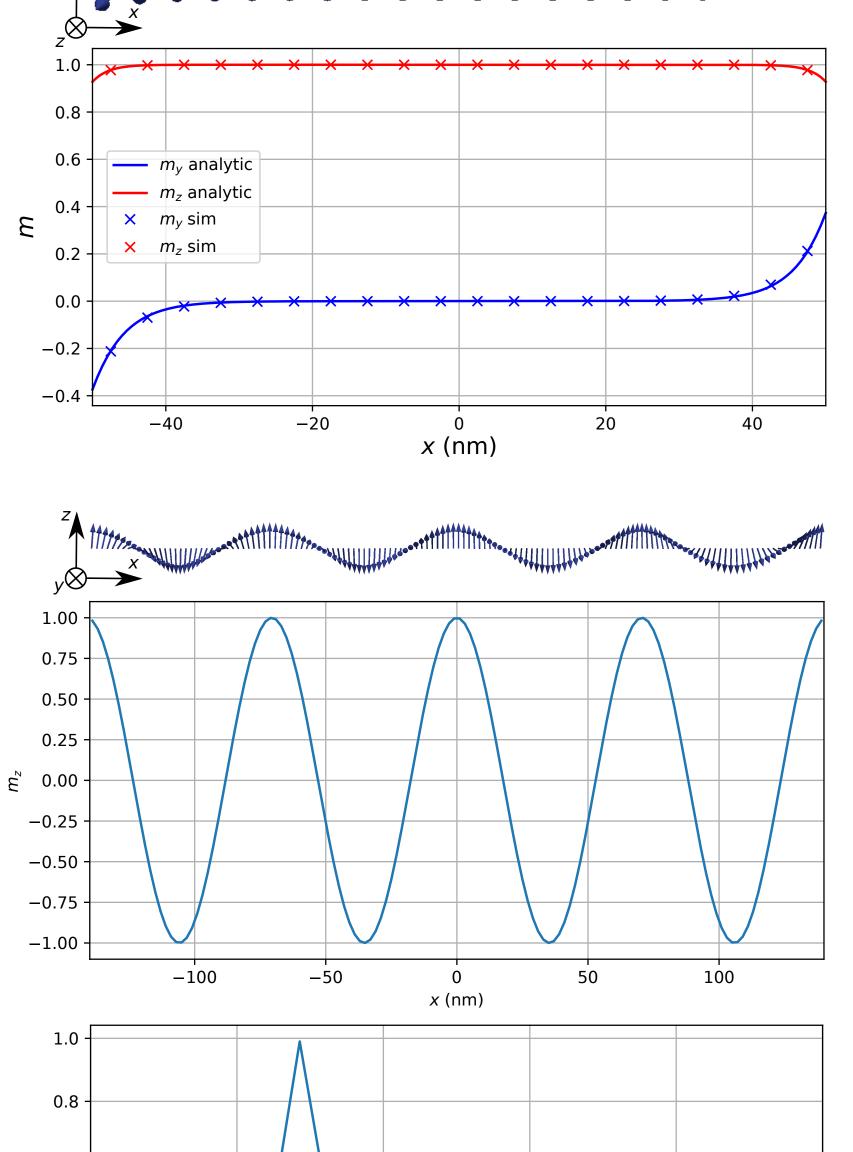
EPSRC

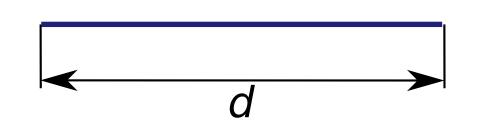
Research Council

Engineering and Physical Sciences

- We solve the boundary value problem [9] using the shooting method.

- We include uniaxial anisotropy in the (0, 0, 1) direction.


$$\frac{\mathrm{d}^2\theta}{\mathrm{d}x^2} = \frac{\cos\theta\sin\theta}{\Delta^2}$$
$$\frac{\mathrm{d}\theta}{\mathrm{d}x} = -\frac{D}{2A}$$


Helical state

- We have only symmetric exchange and DMI in the Hamiltonian.
- Due to a mutual competition, the helical state is formed.
- We know that the helical period should be:

$$\lambda = 4\pi \sqrt{\frac{A}{D}} = 70 \,\mathrm{nm}$$

- By computing the Fourier transform, we can obtain the helical period.
- The helical period strongly depends on the length

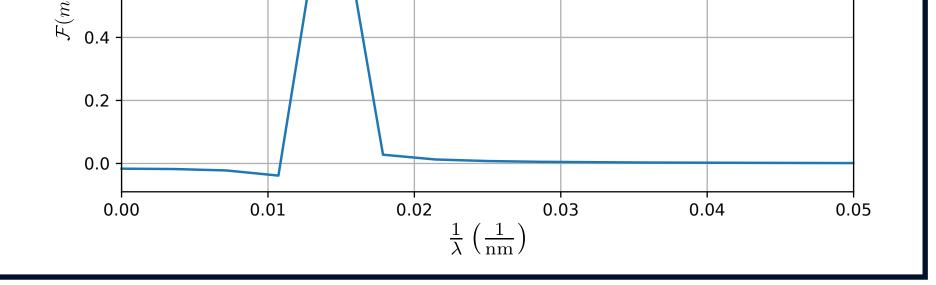
FeGe [4]:

 $M_{\rm s} = 384 \, \rm kA/m$

A = 8.78 pJ/m

 $D = 1.58 \text{ mJ/m}^2$

- Hamiltonian:


 \rightarrow exchange → Dzyaloshinskii-Moriya $w = A(\nabla \mathbf{m})^2 + D\mathbf{m} \cdot (\nabla \times \mathbf{m}) - K(\mathbf{m} \cdot \mathbf{u})^2$ uniaxial anisotropy

- We run simulations using **OOMMF** [5] via our Python interface **JOOMMF** [6, 7].

We use our implementation of bulk DMI extension for OOMMF [8].

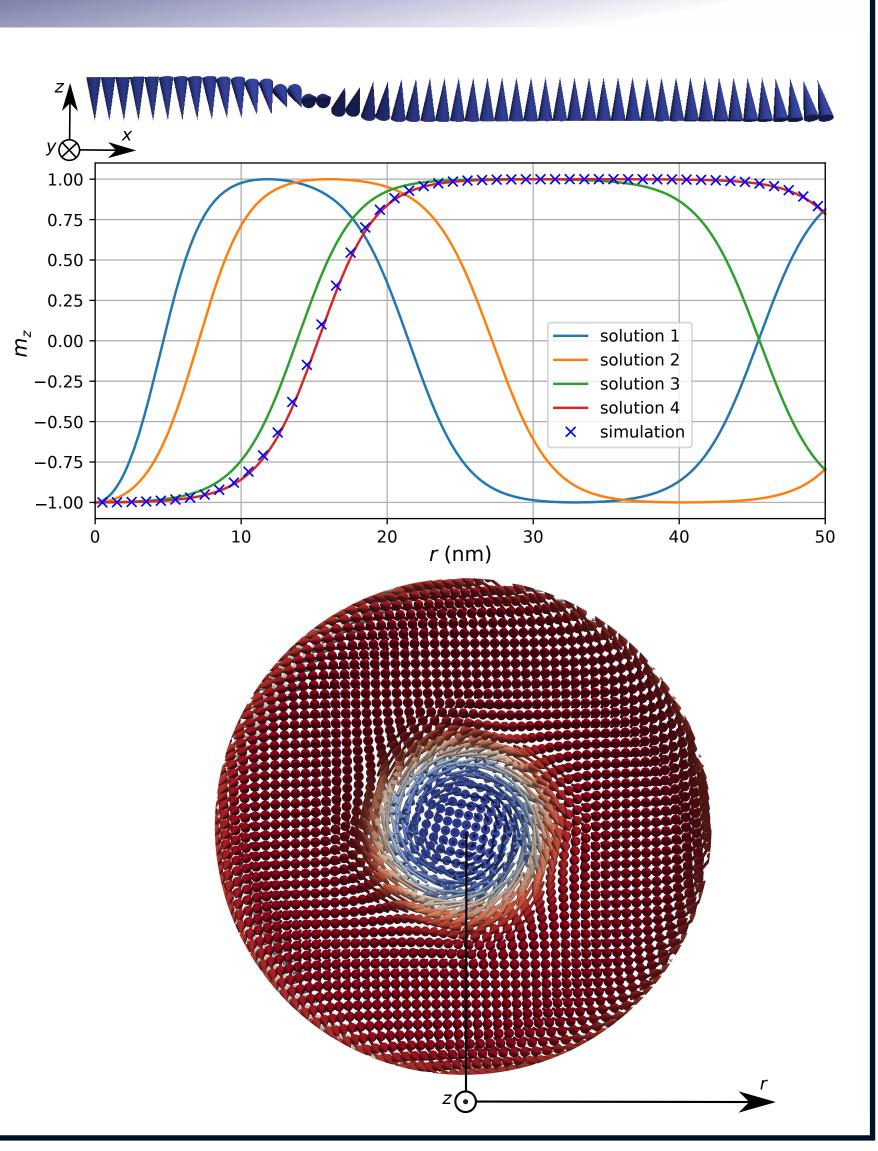
- No assumption about translational invariance of magnetisation in any direction.

of the one-dimensional sample because the magnetisation configuration must always satisfy the specific boundary conditions.

0.6

2D problem

Isolated skyrmion


- We have only symmetric exchange, DMI, and uniaxial anisotropy energy terms in the Hamiltonian. - In a two-dimensional disk sample with 50 nm radius, an isolated skyrmion is formed.

- We solve the boundary value problem [9] using the shooting method:

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}r^2} = -\frac{1}{r}\frac{\mathrm{d}\theta}{\mathrm{d}r} + \left(\frac{1}{r^2} + \frac{1}{\Delta^2}\right)\frac{\sin 2\theta}{2} - \frac{2\sin^2\theta}{\xi r}$$
$$\mathrm{d}\theta - D$$

- We perform shooting at m_z =-1 and R=0 because we assume the skyrmion orientation to point down in core.

 $\frac{\mathrm{d}r}{\mathrm{d}r} = -\frac{1}{2A}$

References

[1] http://www.ctcms.nist.gov/~rdm/mumag.org.html [2] M. Najafi et al. *J. Appl. Phys.* **11**, 113914 (2009). [3] A. Baker et al. J. Magn. Magn. Mater. **421**, 428 (2017).

[4] M. Beg et al. *Sci. Rep.* **5**, 17137 (2015).

[5] M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0, Interag. Rep. NISTIR 6376, Natl. Inst. Stand. Technol. Gaithersburg, MD, 1999.

[6] M. Beg et al. *AIP Advances* **7**, 056025 (2017).

[7] http://joommf.github.io

[8] https://github.com/joommf/oommf-bulk-dmi [9] S. Rohart and A. Thiaville. *Phys. Rev. B* 88, 184422 (2013)

[10]https://github.com/fangohr/paper-2017-dmistandard-problem

- The magnetisation at the core points in the negative z direction and then rotates in a Bloch-type wall configuration to the periphery.

- There is additional tilting of magnetisation at the boundary due to the specific boundary conditions.

Summary

- We implemented the OOMMF extension module for simulating bulk Dzyaloshinskii-Moriya interactions [8].
- We collect a set of simple problems that can be used to test new and existing micomagnetic simulation tools with DMI tools effectively.

- We provide the full calculation of the semi-analytical solution and the numerical solution (computed with OOMMF) in public Jupyter Notebooks [10].