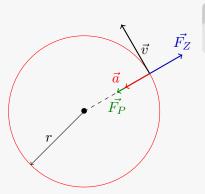
Physik für Biologen und Zahnmediziner

Kapitel 4: Arbeit, Energie und Meachnik starrer Körper

Dr. Daniel Bick

17. November 2017

Übersicht



- Wiederholung
- 2 Arbeit und Energie
- 3 Mechanik starrer, ausgedehnter Körper
 - Schwerpunkt
 - Drehmoment
 - Hebel
 - Gleichgewicht

Zentripetalkraft

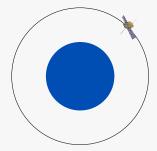
 Radiale Beschleunigung auf einer Kreisbahn ist zum Mittelpunkt gerichtet

Zentralbeschleunigung $a=\omega^2 r=rac{v^2}{r}$

Zentripetalkraft

$$\vec{F_P} = m \cdot \vec{a}$$

Die **Zentripetalkraft** ist nach **innen** gerichtet.

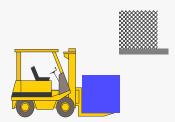

Die Zentrifugalkraft $\vec{F_Z}$ ist eine Scheinkraft, der der Zentripetalkraft entgegengesetzt ist.

$$\vec{F_Z} = -\vec{F_P}$$

$$F_Z = m \cdot a = m \cdot \omega^2 \cdot r = \frac{m \cdot v^2}{r}$$

Umlaufbahn von geostationären Satelliten

Übersicht


- 1 Wiederholung
- 2 Arbeit und Energie
- Mechanik starrer, ausgedehnter Körper
 - Schwerpunkt
 - Drehmoment
 - Hebe
 - Gleichgewicht

Arbeit

Hubarbeit

Arbeit auf einer schiefen Ebene

Konservative Kräfte

Definition

Eine Kraft ist dann **konservativ**, wenn die **Arbeit**, die man aufbringen muss um von einem Punkt zum anderen zu gelangen **wegunabhängig** ist.

Potentielle Energie

Beispiel Flaschenzug

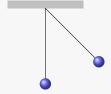
Mit welcher Kraft F muss man ziehen um das Gewicht anzuheben?

Leistung

Dehnen einer Feder

Beschleunigungsarbeit

Kinetische Energie


Energieerhaltung:

Die Summe von potentieller und kinetischer Energie ist konstant

Fadenpendel

Energie

Gestörtes Pendel

A Das Pendel schießt über die ursprüngliche Höhe hinaus.

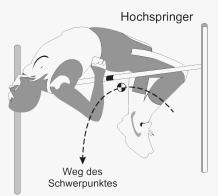
C Das Pendel bleibt unter der ursprünglichen Höhe.

B Das Pendel erreicht die ursprüngliche Höhe.

D Das Pendel überschlägt sich.

https://arsnova.eu/mobile/#id/77498708

Übersicht

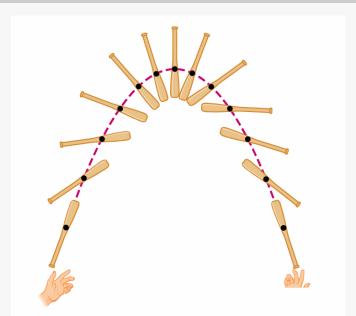


- 1 Wiederholung
- 2 Arbeit und Energie
- Mechanik starrer, ausgedehnter Körper
 - Schwerpunkt
 - Drehmoment
 - Hebel
 - Gleichgewicht

Schwerpunkt

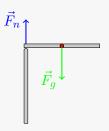
- Massenmittelpunkt
- Punkt, der sich so bewegt, als ob die gesamte Masse dort konzentriert wäre und alle äußeren Kräfte dort ansetzen
- Mit Massen gewichtetes Mittel aller Massepunkte

Für zwei Körper:

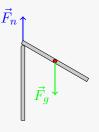

Allgemein:

Beispiele mit zwei Massen

Schwerpunktbewegung



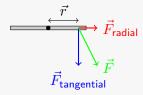
Drehbewegung


- Wenn unterschiedliche Kräfte an unterschiedlichen Punkten angreifen, kann es eine Drehung geben.
- Meistens zusätzliche Translation.

Drehbewegung

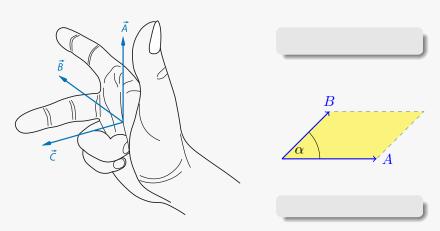
- Wenn unterschiedliche Kräfte an unterschiedlichen Punkten angreifen, kann es eine Drehung geben.
- Meistens zusätzliche Translation.

Drehmoment


Drehung hängt ab von

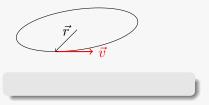
- ullet Größe der Kraft o $ec{F}$
- ullet Richtung der Kraft o $ec{F}_{\mathsf{tangential}}$
- ullet Ansatzpunk der Kraft o $ec{r}$

Das $\operatorname{\bf Drehmoment}\ \vec{M}$ ist ein Maß für die Drehwirkung

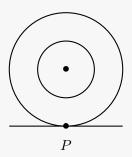


 ${\bf \circ}$ Richtung von \vec{M} gibt Drehsinn an

Erinnerung: Kreuzprodukt

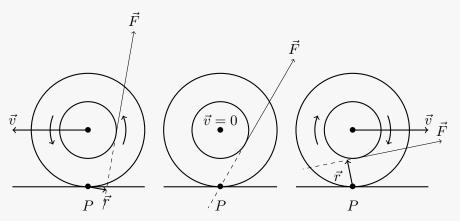


Winkelgeschwindigkeit als Vektor



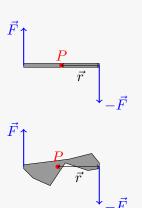
- Bahngeschwindigkeit bisher: $v = \omega \cdot r$
- ullet Zusätzlich: Richtung der Drehachse \Rightarrow vektoriel

Garnrolle

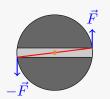


Garnrolle

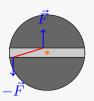
 Je nach Winkel des Fadens, an dem ich ziehe, rollt die Garnrolle sich auf oder ab.



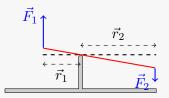
Kräftepaar

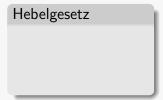

Zwei parallele Kräfte

- deren Betrag gleich ist
- die entgegengesetzt wirken
- deren Angriffspunkte nicht zusammenfallen heissen Kräftepaar.
 - ullet und $-\vec{F}$ verursachen eine Drehung des Körpers um P.
 - P liegt auf der Verbindungslinie der beiden Angriffspunkte.

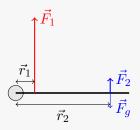


Schaubenzieher

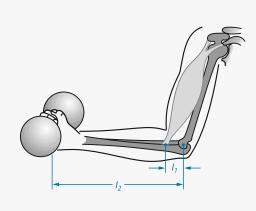



- Ein breiterer Schaubenzieher bewirkt ein größeres Drehmoment.
- ⇒ Drehen (Schrauben) fällt einem leichter!
- Drehachse ist vorgegeben! Am besten in der Mitte ansetzen!

Hebel



• Gleichgewicht von Drehmomenten

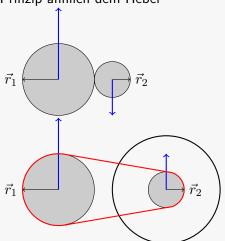

Einarmiger Hebel

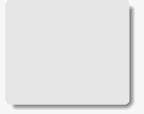
- Die Kraft muss in die gleiche Richtung aufgebracht werden
- Alternativ: Umlenkrolle
- Beispiel: Unterarm

Kurze Arme helfen beim Armdrücken

Anwendungsbeispiele

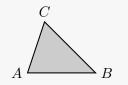
- Schere
- Zimmermannshammer
- Flaschenöffner
- Schraubenschlüssel
- Nussknacker

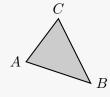



Drehmomentwandler

Funktionsprinzip eines Getriebes Prinzip ähnlich dem Hebel

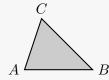
 statt Hebelarm Zahnräder unterschiedlicher Größe

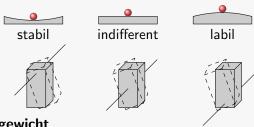

Bestimmung des Schwerpunktes



- Häufig eindeutig durch Symmetrie
- Ansonsten: Nehme Gewichtskraft zur Hilfe
 - Lagere Gegenstand auf einer freien Drehachse
 - ullet ightarrow Drehung durch Schwerkraft
 - $\quad \bullet \ \to Schwerpunkt \ auf \ der \ Vertikalen \ unterhalb \ der \ Drehachse$
 - Wiederholung für mehrere Drehachsen
- Schnittpunkt aller Vertikalen ergibt Schwerpunkt

Beispiel: Schwerpunkt eines Dreiecks





Gleichgewicht

Arten von Gleichgewichten

Stabiles Gleichgewicht

- Zustand kehrt nach Störung dorthin zurück
- Verrücken erfordert Energie

Indifferentes Gleichgewicht

- Kleine Störung verschiebt den Gleichgewichtszustand nur leicht
- Energie bleibt unverändert

Instabiles (labiles) Gleichgewicht

- Zustand verlässt das Gleichgewicht völlig bei kleiner Störung
- Verrücken setzt Energie frei