Diffractive and Electromagnetic Processes at the LHC Trento, January 4-8, 2010

Leading Baryon Production at HERA

Armen Bunyatyan

<u>Outline:</u>

Leading Protons and Neutrons in DIS

Leading Neutrons in photoproduction of jets

Leading Baryons and Cosmic Rays

Introduction

scale for secondary particle production decreases from Q^2 in current region (or high P_T jets if $Q^2 \sim 0$) to a <u>soft</u> <u>hadronic scale</u> (proton fragmentation region)

Significant fraction of *ep* scattering events contains in the final state a leading proton or neutron which carry a substantial portion of the energy of the incoming proton: $e+p \rightarrow e'+n+X$ or e'+p+X

Introduction

Production mechanism of leading baryons:

'conventional' fragmentation of proton remnant (e.g. Lund string)

exchange of virtual particle

- LP: neutral iso-scalar, iso-vector (π, IR, IP)
- LN: charged iso-vector $(\pi +, \rho +, a_2..)$

Kinematics and Vertex factorisation

ep→ e'NX

Lepton variables: Q²=-(k-k')² x=Q²/(2p•q) Leading baryon variables:

 $x_L = E_{LB} / E_p$ t=(p-p_{LB})² (or p²_{T,LB})

In the exchange model the cross sections factorise, e.g. for one pion exchange

$$\sigma(ep \rightarrow e'NX) = f_{\pi/p}(x_L,t) \times \sigma(e\pi \rightarrow e'X)$$

$$f_{\pi/p}(x_L,t) - pion flux:$$

$$\sigma(e\pi \rightarrow e'X) - cross-section$$
of $e\pi$ scattering

-Leading Baryon production independent from photon vertex -probe structure of exchanged particle -factorisation violation predicted- absorption/rescattering

Armen Bunyatyan

pro

Leading Baryon Production at HERA

H1 and ZEUS detectors for leading baryons

Acceptance limited by beam apertures and detector size p_T resolution is dominated by p_T spread of proton beam (50-100 MeV)

Cross sections vs x_L normalised to $\sigma_{DIS} (1/\sigma_{DIS} \times d\sigma/dx_L)$

Double differential cross sections vs p_T^2 and x_L

•similar around $x_{L} \sim 0.7$

Trento, 4-8 January 2010

Comparison with fragmentation and exchange models: Leading Protons in DIS

Comparison with fragmentation and exchange models: Leading Neutrons in DIS

 \cdot all standard fragmentation models underestimate the neutron yield at high x_L \cdot LEPTO-SCI better for x_L shape, but not for the slope

· RAPGAP- π -exchange describes data well for x_L>0.6, underestimate data at lower x_L

Mixture of RAPGAP- π -exchange and standard fragmentation (e.g. DJANGO-CDM) gives the best description of the data

Leading Proton production rate in DIS

Leading Neutron production rate in DIS: $F_2^{LN(3)}(Q^2, x, x_L)$ to $F_2(Q^2, x)$ ratio

$$\frac{d^{3}\sigma(ep \rightarrow eNX)}{dQ^{2}dx dx_{L}} = \frac{4\pi\alpha^{2}}{xQ^{4}} \left[1 - y + \frac{y^{2}}{2}\right] F_{2}^{LN}(Q^{2}, x, x_{L})$$

i.e. LN production rate, kinematics is approx. independent of (Q²,x)
→ consistent with factorisation, limiting fragmentation (overall suppression of LN events is also possible)

 $F_2(Q^2,x)$ from the H1-2000-PDF parameterisation

6< Q²<100 GeV² , p_T< 0.2 GeV

 $F_2^{LN(3)}(Q^2,\beta,x_L)$: factorisation properties

In particle exchange picture expect proton vertex factorisation:

 $F_2^{LN(3)}(Q^2,\beta,x_L) \sim f(x_L) \times F_2^{LN(2)}(Q^2,\beta)$

 $\beta = x/(1-x_L)$ - fraction of exchange's momentum carried by the struck quark

$$F_2^{LN(3)}(Q^2,\beta,x_L) \sim \beta^{-\lambda}$$

 λ is almost independent of $\mathbf{x}_{\mathrm{L}} \boldsymbol{\rightarrow}$

consistent with vertex factorisation

Estimate the Pion structure function from $F_2^{LN}(Q^2, x, x_L)$

within π^+ -exchange model we may try to estimate F_2^{π} from measured F_2^{LN} : $F_2^{LN(3)}(\beta, Q^2, x_L) = \Gamma_{\pi}(x_L) \cdot F_2^{\pi}(\beta, Q^2)$ where $\beta = x/(1-x_L)$ - fraction of pion momentum carried by struck quark (i.e. x_{Bj} for pion) $\Gamma_{\pi}(x_L)$ is integrated over t pion flux $\Gamma_{\pi} = \int f_{\pi/p}(x_L = 0.73, t) dt$

use pion flux parameterisation (Holtmann et al.):

$$f_{\pi^{+}/p} = \frac{1}{2\pi} \frac{g_{p\pi\pi}^{2}}{4\pi} (1 - x_{L}) \frac{-t}{(m_{\pi}^{2} - t)^{2}} \cdot exp\left(-R_{\pi n}^{2} \frac{m_{\pi}^{2} - t}{1 - x_{L}}\right)$$

Data are sensitive to the parameterisations of the pion structure function (constrained for x>0.1 from the fixed target experiments).

Armen Bunyatyan

Leading Baryon Production at HERA

Estimate the Pion structure function from $F_2^{LN}(Q^2, x, x_L)$

However: large uncertainty of pion flux normalisation: choice of pion flux (formfactor), absorption/rescattering, background...

<u>in π -exchange picture</u> $\sigma(ep \rightarrow e'nX) = f_{\pi/p}(x_L,t) \times \sigma(e\pi^+ \rightarrow e'X)$

 p_T² (or t) distribution is determined solely by pion flux

$$f_{\pi/p} = \frac{1}{2\pi} \frac{g_{p\pi\pi}^2}{4\pi} (1 - x_L)^{1 - 2\alpha(t)} \frac{-t}{(m_{\pi}^2 - t)^2} \cdot |F(x_L, t)|^2$$

- many parameterizations of pion flux $f_{\pi/p}(x_L,t)$ in literature
- compare measured p_T slope $b(x_L)$ with models (shown best agreeing models)
- reasonable agreement in shape but not in absolute values: all give too large $b(x_L)$
- $\pi\text{-exchange}$ models alone don't describe $p_{T}{}^2$ distribution

Exchange model refinement: absorptive corrections

Absorption: important ingredient to interpret the results in terms of particle exchange

Neutron absorption through rescattering:

enhanced when size of π -n system $r_{\pi n} \sim 1/p_{T}$ is small w.r.t. the transverse size of γ , e.g. at high p_{T} , low $x_{L} \rightarrow$ neutron breaks up or

 \rightarrow is kicked to lower x_L , higher p_T (migration) and/or escapes detector acceptance (absorption loss) (in other language: multi-Pomeron exchange)

 Affects the relative rate of leading neutrons (depends on the scale Q) more absorption in photoproduction then in DIS, (real γ transverse size larger than at higher Q²)
 → The calculations/models made without absorption may overestimate the measurements

Effects of absorption and migration estimated: D'Alesio,Pirner; Nikolaev,Speth,Zakharov; Kaidalov,Khoze,Martn,Ryskin;

Kopeliovich,Potashnikova,Schmidt,Soffer

Absorption- key ingredient in calculations of gap-survival probability in pp interactions at LHC, critical in interpreting hard diffractive processes, e.g. central exclusive Higgs prod.

Armen Bunyatyan

Comparison photoproduction and DIS: Q² dependence

Leading Baryon Production at HERA

Comparison $\gamma p/DIS$: p_T^2 distributions (LN)

 p_T^2 slopes steeper in γp than in DIS From geometrical picture: Larger p_T →smaller $r_{\pi n}$ →more absorption →less neutrons at high p_T → steeper slope

model of Kaidalov, Khoze, Martin, Ryskin • rescattering on intermediate partons in central rapidity region; migration of LN in (x_L, p_T) • ~50% absorption loss in γp • addition of (p, a_2) exchanges

Dijet photoproduction with Leading Neutrons

• In photoproduction (Q²~0) hard scale provided by jets with high P_T^{jet}

- RAPGAP- π -exchange and PYTHIA-SCI describe data poor
- Pion exchange is dominating mechanism at high x_L
- Full RAPGAP (π -exchange + inclusive DIS) gives good description of data

Dijet photoproduction with Leading Neutrons

. W – total energy of γp system

$$x_{\gamma} = \sum_{jets} (E - p_z) / (2yE_e)$$

 $\cdot x_p = \sum_{jets} (E + p_z) / (2E_p)$

 \bullet strong dependence of ratio on x_{γ} (also on W, $x_{p})$

resolved photon processes seem to be suppressed in LN events

Armen Bunyatyan

Dijet photoproduction with leading neutrons

• dijets suppressed at high $x_L \rightarrow$ phase space limitation (dijets in the final state leave little room for energetic neutrons)

similar b-slopes in DIS & γp-dijets; slightly different at high x_L

Above 10¹⁴ eV, primary cosmic rays particles are detected via air showersdetermination of their primary energy and mass relies on the <u>modeling</u> of hadronic interactions.

Precision of elemental composition analyses limited by modeling of hadronic interactions; significant differences between the model predictions for particle multiplicities, energy flow etc.

→

The measurements at accelerators can contribute to the tuning of the models

In particular, the forward measurements (baryons, γ 's, π^0) are of the greatest importance for the model tuning, since the shower development is dominated by the forward, soft interactions.

Forward proton spectra vs models for cosmic rays

• EPOS 1.6, 1.9 (Pierog, Werner)

- QGSJET 01 and II (Kalmykov, Ostapchenko)
- SIBYLL 2.1 (Engel, Fletcher, Gaisser, Lipari, Stanev)
- reasonable predictions for LP data (after model tuning)
- -none of models describe LN data well
 → HERA can further contribute to the understanding of high energy cosmic rays
 → The forward measurements (p,n,γ) are possible also at lower proton beam energies

Summary

- Leading Baryons are good ground to study interplay of soft and hard physics \cdot precise measurements of LB x_{L} and p_{T}^{2} presented in γp , DIS, γp with dijets
- 'standard' fragmentation models without meson exchange do not describe the data; models with virtual particle exchange describe data better;
- $\cdot F_2^{LP}/F_2$ and F_2^{LN}/F_2 ratio is mostly independent of x and Q^2
- . For leading neutron production the pion structure function estimated, compared with parameterisations of F_2^{π}
- neutron energy spectrum in γp compatible with effects of absorption and migration; suppression in γp at low x_L , high p_T absorption effects not prominent in high P_T jet photoproduction
- leading baryon data important for an improved theoretical understanding of the proton fragmentation; provide very useful input for models of CR interactions with matter