13th International Conference on Elastic & Diffractive Scattering CERN, 29th June - 3rd July 2009

Soft interaction processes at HERA (leading baryons, multiple interactions)

Armen Bunyatyan

representing the H1 and ZEUS Collaborations

<u>Outline:</u>

- Leading baryon production
 - comparison with models
 - estimation of pion structure function
 - absorption/rescattering effects
- Studies of multi-parton interactions in photoproduction

HERA

The world's only electron/positron-proton collider at DESY, Hamburg $E_e = 27.6 \text{ GeV}$ $E_p = 920 \text{ GeV}$ (also 820, 460 and 575 GeV) (total centre-of-mass energy of collision up to $\sqrt{s} \approx 320 \text{ GeV}$)

Two colliding experiments: H1 and ZEUS

HERA-2: 2003 - 2007 total lumi: 0.5 fb⁻¹ per experiment

Introduction

scale for secondary particle production decreases from Q^2 in current region (or high P_T jets if $Q^2 \sim 0$) to a <u>soft hadronic scale</u> (proton fragmentation region)

Significant fraction of *ep* scattering events contains in the final state a leading proton or neutron which carry a substantial portion of the energy of the incoming proton: $e+p \rightarrow e'+n+X$ or e'+p+X

Introduction

Production mechanism of leading baryons:

'conventional' fragmentation of proton remnant (e.g. Lund string)

exchange of virtual particle

- LP: neutral iso-scalar, iso-vector (π, IR, IP)
- LN: charged iso-vector $(\pi +, \rho +, a_2..)$

Kinematics and Vertex factorisation

ep→ e'XN

Lepton variables: $Q^2=-(k-k')^2$ $x=Q^2/(2p\cdot q)$

Leading baryon variables: $x_L = E_{LB}/E_p$ $t = (p-p_{LB})^2$ (or $p_{T,LB}^2$)

In the exchange model the cross sections factorise, e.g. for one pion exchange

$$\sigma(ep \rightarrow e'NX) = f_{\pi/p}(x_L,t) \times \sigma(e\pi \rightarrow e'X)$$

$$f_{\pi/p}(x_L,t) - pion flux:$$

$$\sigma(e\pi \rightarrow e'X) - cross-section$$

-LB production independent from photon vertex -probe structure of exchanged particle -factorisation violation predicted- absorption/rescattering

pro

H1 and ZEUS detectors for leading baryons

Acceptance limited by beam apertures and detector size p_T resolution is dominated by p_T spread of proton beam (50-100 MeV)

Cross sections vs x_L normalised to $\sigma_{DIS}(1/\sigma_{DIS} \cdot d\sigma/dx_L)$

Double differential cross sections vs p_T^2 , x_L

•similar around $x_L \sim 0.7$

Comparison with fragmentation and exchange models: Leading Protons in DIS

Comparison with fragmentation and exchange models: Leading Neutrons in DIS

 \cdot all standard fragmentation models underestimate the neutron yield at high x_L \cdot LEPTO-SCI better for x_L shape, but not for the slope

· RAPGAP- π -exchange describes data well for x_L >0.6, underestimate data at lower x_L

Mixture of RAPGAP- π -exchange and std. fragmentation (e.g. DJANGO-CDM) gives the best description of the data

Estimate the Pion structure function from $F_2^{LN}(Q^2, x, x_L)$

within π^+ -exchange model we may try to estimate F_2^{π} from measured F_2^{LN} :

$$F_{2}^{LN(3)}(\beta,Q^{2},x_{L}) = \Gamma_{\pi}(x_{L}) \cdot F_{2}^{\pi}(\beta,Q^{2})$$

where

 $\beta = x/(1-x_{L}) - \text{fraction of pion momentum} \\ \text{carried by struck quark} \\ (i.e. x_{Bj} \text{ for pion}) \\ \Gamma_{\pi}(x_{L}) \text{ is integrated over t pion flux} \\ \Gamma_{\pi} = \int f_{\pi/p}(x_{L} = 0.73, t) dt$

use pion flux parameterisation (Holtmann et al.):

$$f_{\pi^{+}/p} = \frac{1}{2\pi} \frac{g_{p\pi\pi}^{2}}{4\pi} (1 - x_{L}) \frac{-t}{(m_{\pi}^{2} - t)^{2}} \cdot exp\left(-R_{\pi n}^{2} \frac{m_{\pi}^{2} - t}{1 - x_{L}}\right)$$

$$\mathbf{F}_{2}^{\text{LN(3)}}(\mathbf{x}_{L} = \mathbf{0.73})/\Gamma_{\pi}, \Gamma_{\pi} = \mathbf{0.131}$$

Data are sensitive to the parameterisations of the pion structure function (constrained for x>0.1 from the fixed target experiments).

Estimate the Pion structure function from $F_2^{LN}(Q^2, x, x_L)$

 $\mathbf{F}_{2}^{\text{LN(3)}}(\mathbf{x}_{\text{L}}=0.73)/\Gamma_{\pi}, \ \Gamma_{\pi}=0.131$ within π -exchange model we can estimate F_2^{π} from measured F_2^{LN} : H1 data (prelim.) H1 Preliminary HERA-II $F_{2}^{LN(3)}(\beta, Q^{2}, x_{L}) = \Gamma_{\pi}(x_{L}) \cdot F_{2}^{\pi}(\beta, Q^{2})$ 4.5 2/3 F₂ H1 2000 GRV-π LO (revisited) where ABFKW-π Set 1 NLO $j = 6, \beta = 0.00082$ $\beta = x/(1-x_1)$ 3.5 $\Gamma_{\pi}(\mathbf{x}_{1})$ is integrated over t pion flux $j = 5, \beta = 0.0017$ $\Gamma_{\pi} = \int f_{\pi/p}(x_L = 0.73, t) dt$ (£) NJ 2.5 j = 4, $\beta = 0.0037$ use pion flux expression (Holtmann et al.): $j = 3, \beta = 0.0079$ 2 $f_{\pi^{+}/p} = \frac{1}{2\pi} \frac{g_{p\pi\pi}^{2}}{4\pi} (1 - x_{L}) \frac{-t}{(m_{\pi}^{2} - t)^{2}} \cdot \exp\left(-R_{\pi n}^{2} \frac{m_{\pi}^{2} - t}{1 - x_{L}}\right)$ 1.5 $j = 2, \beta = 0.017$ $j = 1, \beta = 0.036$ 0.5 $j = 0, \beta = 0.077$ • F_2^{LN} dependence on x and Q^2 similar to proton, 0 \rightarrow universality of hadron structure at low x 10 10 Q^2 (GeV²) •in absolute values F_2^{LN}/Γ below the F_2^{π} and F_2

However: large uncertainty of pion flux normalisation: choice of pion flux (formfactor), absorption/rescattering, background...

$F_2^{LN}(Q^2, x, x_L)$ to $F_2(Q^2, x)$ ratio

$$\frac{d^{3}\sigma(ep \rightarrow eNX)}{dQ^{2}dx dx_{L}} = \frac{4\pi\alpha^{2}}{xQ^{4}} \left[1 - y + \frac{y^{2}}{2}\right] F_{2}^{LN}(Q^{2}, x, x_{L})$$

 $F_2^{LN}(Q^2, x, x_L)/F_2(Q^2, x)$ is mostly flat in Q^2 and x

i.e. LN production rate, kinematics is approx. independent of (Q²,x)
→ consistent with factorisation, limiting fragmentation (overall suppression of events is also possible)

Comparison of p_T slope of LN with pion exchange models

 $\frac{\text{in }\pi\text{-exchange}}{\sigma(\text{ep}\rightarrow\text{e'nX}) = f_{\pi/p}(x_L,t) \times \sigma(\text{e}\pi^+\rightarrow\text{e'X})}$

 p_T² (or t) distribution is determined solely by pion flux

$$f_{\pi/p} = \frac{1}{2\pi} \frac{g_{p\pi\pi}^2}{4\pi} (1 - x_L)^{1 - 2\alpha(t)} \frac{-t}{(m_{\pi}^2 - t)^2} \cdot |F(x_L, t)|^2$$

- many parameterizations of pion flux $f_{\pi/p}(x_L,t)$ in literature
- compare measured p_T slope $b(x_L)$ with models (shown best agreeing models)
- reasonable agreement in shape but not in absolute values: all give too large $b(x_L)$
- $\pi\text{-exchange}$ models alone don't describe $p_{\text{T}}{}^2$ distribution

Exchange model refinement: absorptive corrections

Absorption: important ingredient to interpret the results in terms of particle exchange

Neutron absorption through rescattering:

enhanced when π -n system size $r_{\pi n} \sim 1/p_T$ is small w.r.t. the γ -transverse size, e.g. at high p_T , low $x_L \rightarrow$ neutron breaks up or

 \rightarrow is kicked to lower x_L , higher p_T (migration) and/or escapes detector acceptance (absorption loss) (in other language: multi-Pomeron exchange)

 Affects the relative rate of leading neutrons (depends on the scale Q) more absorption in photoproduction then in DIS, (real γ transverse size larger than at higher Q²)
 The calculations/models made without absorption may overestimate the measurements

Effects of absorption and migration estimated: D'Alesio,Pirner; Nikolaev,Speth,Zakharov; Kaidalov,Khoze,Martn,Ryskin; Kopeliovich,Potashnikova,Schmidt,Soffer

Absorption- key ingredient in calculations of gap-survival probability in pp interactions at LHC, critical in interpreting hard diffractive processes, e.g. central exclusive Higgs prod.

Comparison $\gamma p/DIS: Q^2$ dependence

Comparison $\gamma p/DIS$: p_T^2 distributions (LN)

 p_T^2 slopes at γp steeper than at DIS From simple geometrical picture: Larger $p_T \rightarrow$ smaller $r_{\pi n} \rightarrow$ more absorption \rightarrow less neutrons at high $p_T \rightarrow$ steeper slope model of Kaidalov, Khoze, Martin, Ryskin
rescattering on intermediate partons in central rapidity region; migration of LN in (x_L, p_T)
~50% absorption loss in γp
addition of (ρ, a₂) exchanges

Dijet photoproduction with LN

- Study the jet production in event with leading neutron in the final state ($\gamma^*p \rightarrow jet+jet+n+X$)
- In photoproduction (Q²~0) hard scale provided by jets with high E_{T}^{jet}

Do we see suppression?

Recall: factorisation breaking observed in diffractive dijet photoproduction at HERA: in γp jets with $E_T^{jet} > 5$ GeV are suppressed by factor 2 compared to DIS)

Phase space limitation (dijets in the final state leave little room for energetic neutrons)

 b-slopes (DIS & γp-dijets) are slightly different at high x_L

Comparison of $\gamma * p \rightarrow 2jets + n + X$ with theory

Calculations (Klasen & Kramer, Eur.Phys.J.C49:957-965,2007)

- normalise NLO (fix pion PDF, adjust pion flux) to H1-DIS data $\gamma^* p \rightarrow jj+n+X$ (Eur. Phys. J. C41 (2005) 27)
- compare to H1- γ p data (γ p \rightarrow jjnX) , look for suppression

NLO vs H1 photoproduction data $(E_T^{jet} > 7 \text{ GeV})$ needs ~0.48 suppression of resolved $\underbrace{9}_{2}^{0.16}$ 0.14 component (or 0.64 global 0.12 suppression) 0.1

NLO overestimates also the ZEUS γp dijet data (E_T^{jet} >7.5 GeV) for <u> x_L >0.5</u>

Underlying event / Multi-parton interactions

In addition to the primary hard parton-parton interaction with large $p_{\mathsf{T}}\!\!:$

- interactions with lower p_{T} (remnant interactions)
- additional hard parton-parton interactions

→ higher particle multiplicity, jet multiplicity, energy offset

important for analyses involving jets (pedestal under the jet) !

 \rightarrow may fake a discovery signal !

 \rightarrow also to take into account

- higher order QCD corrections (e.g. parton showers)
- effects of fragmentation
- beam remnants

Understanding and modeling of Underlying event and multi-parton interactions crucial for all precision measurements!

2-jets with Priet >5 GeV and |njet|<1.5</p> H1-prelim-08-036 The Leading Jet • charged particles with P_{T} >150 MeV and $|\eta| < 1.5$ define two transverse regions: -high activity region with higher $P_T^{sum} = \Sigma_i^{tracks} P_T$ $\phi * = 60$ Region Toward Transverse Transverse -low activity region Region Region High activity Low activity Region Region ⟨N charged ′ 1.6 H1 Preliminary H1 Data (prel.) * * ····· Pythia MI x^{obs} < 0.7 $\phi * = 120$ Pythia NMI Away Region The Subleading Jet 0.8 0.6 Charged particle multiplicity vs angle 0.2 between leading jet and charged particles 00^L 150 200 250 300 Jet₁, h± 50 100 350 Leading jet [°] Away region High activity transverse region transverse regions

QCD models

Pythia

-direct+resolved processes in LO -matched DGLAP parton shower

-with/without MPI (additional "semi-hard" interactions down to $P_{T,min}$ =1.2 GeV)

• Cascade

-off-shell LO ME for direct processes
-matched with CCFM parton showers
-k_t un-integrated gluon densities
(set1 , set2)
-no resolved (VDM) photon, no MPI

Charged particle multiplicity vs $\Delta \phi$

 $\Delta \phi$ -angle between leading jet and charged particles

H1-prelim-08-036

Data at low $\mathbf{x}_{\!\gamma}$ described by Pythia when multi-parton interactions are included

Charged particle multiplicity in Toward and Away regions

H1-prelim-08-036

CASCADE (no MPI) not too bad

Charged particle multiplicity in transverse regions

Summary

Leading Baryons are good ground to study soft vs. hard physics

- Precise measurements of LB x_L and p_T^2 presented in γp , DIS, γp with dijets;
- Standard fragmentation models do not describe the data;
 Models with virtual particle exchange describe data better;
- For LN production pion structure function estimated, compared with parameterisations $\cdot F_2^{LN}/F_2$ ratio is mostly independent of x and Q²
- . neutron energy spectrum in γp compatible with effects of absorption ~ and migration; suppression in γp at low x_L , high p_T
- . better agreement with data if account for absorption and for (p,a_2) exchanges
- \cdot suppression seen also in photoproduction of dijets

Multiple interactions are very relevant for hadronic interactions

 description of average charged particle multiplicity in resolved photon events with hard jets requires MPI (at least when using PYTHIA); interestingly, the model without MPI, CASCADE, is not too bad