XVIII International Workshop on Deep Inelastic Scattering and Related Subjects Florence, April 18–23, 2010

Leading Neutron Production in DIS at HERA

Armen Bunyatyan

Representing the H1 Collaboration

<u>Outline:</u>

- Introduction
- Measurement of the cross sections and the semi-inclusive structure function $F_2^{LN(3)}$
- Estimate for pion structure function
- Summary

H1 Collaboration, DESY-09-185, arXiv:1001.0532 [hep-ex]

Introduction

A fraction of ep scattering events contains a high energy leading neutron (LN), produced at very small angles. The production of LN in a process with a hard scale (e.g. in DIS) provides a probe of QCD evolution and factorisation properties of proton fragmentation.

Kinematics and Vertex factorisation

- constraint the structure of pion at low to medium Bjorken-x
 test the validity of various pion SF parameterisations
- test the validity of limiting fragmentation and the proton vertex factorisation

Event sample

Data from 2006-2007 e+p collisions (27.6 GeV × 920 GeV) DIS kinematics: $6 < Q^2 < 100 \text{ GeV}^2$, 0.02 < y < 0.6, $1.5 \cdot 10^{-4} < x < 3 \cdot 10^{-2}$ Neutron detected in the forward neutron calorimeter (FNC): $x_L = E_n / E_p > 0.3$

Luminosity=122 pb⁻¹ \rightarrow 36x larger than in previous H1 publication; new FNC with much improved energy resolution and neutron identification FNC: 106m downstream in proton direction from the interaction point. Acceptance limited by the aperture of beam line magnets to $\theta_n < 0.8$ mrad with ~30% azimuthal coverage

Energy resolution $\sigma_{\rm F}/{\rm E} \approx 63\%/\sqrt{{\rm E}({\rm GeV})} \oplus 3\%$

Spatial resolution 2mm for the showers starting in Preshower and 100mm/JE(GeV) ⊕6mm for the Main Calorimeter

315,960 events in the data sample

600

Leading neutron energy and p_T distributions measured by the FNC

RAPGAP-π-exchange MC describes data well for E_n>650 GeV, underestimate data at E_n<600 GeV.
 the standard fragmentation model (DJANGO-CDM) predicts a large contribution at low E_n.

. The best description of data gives a mixture of RAPGAP- π -exchange and DJANGO Monte Carlo simulations

Diff. cross section vs x_L : comparison with fragmentation and exchange models

· typical syst.uncertainties 10-14% (dominated by uncert. of neutron position and energy)

- the geometrical acceptance of the FNC restricts the $p_{T,n}$ to the range $p_T < x_L \cdot 0.69$ GeV
- \rightarrow apply p_T<0.2 GeV for x_L independent p_T acceptance and to enhance π -exch. contribution
- RAPGAP- π -exchange describes the shape of data distribution well for x_L >0.7
 - $\rightarrow \pi$ -exchange is the dominant mechanism at high x_L
- · DJANGO-CDM underestimate the neutron yield at high x_L
- \cdot SCI (soft colour interactions) model is better, but still too low at low $p_{T,n}$ and high x_L

Mixture of RAPGAP- π -exch. and DJANGO-CDM describes the data over the full range

Semi-inclusive structure function $F_2^{LN(3)}(Q^2, x, x_L)$

Measure triple-differential cross section:

$$\frac{d^{3}\sigma(ep \rightarrow enX)}{dQ^{2}dx dx_{L}} =$$

$$= \frac{4\pi\alpha^{2}}{xQ^{4}} \left[1 - y + \frac{y^{2}}{2} \right] F_{2}^{LN}(Q^{2}, x, x_{L})$$

 F_2^{LN} analogous to the proton structure function F_2 for events containing leading neutron

•RAPGAP- π +-exchange model describes data well for x_L >0.7

• combination of RAPGAP- π -exch. and DJANGO-CDM gives the best description of the data over full range

6<Q²<100 GeV²; 0.02<y<0.6; 1.5·10⁻⁴<x<3·10⁻²;

Leading Neutron production rate in DIS: $F_2^{LN(3)}(Q^2, x, x_L)$ to $F_2(Q^2, x)$ ratio

- $F_2^{LN}(Q^2, x, x_L)/F_2(Q^2, x)$ is 2÷7% depending on x_L ; In each x_L bin the ratio almost independent of Q^2 and x(lines show the average ratios for x_L bin)
- F₂^{LN}(Q²,x,x_L) and F₂(Q²,x) have a similar (Q²,x) behavior
- leading neutron production in the proton fragmentation region in DIS is insensitive to Q² and x
- consistent with the hypothesis of limiting fragmentation

 (i.e. target fragmentation is independent of the projectile)
 x

$F_2^{LN(3)}(Q^2,\beta,x_L)$: proton vertex factorisation

in particle exchange picture expect proton vertex factorisation:

 $F_2^{LN(3)}(Q^2,\beta,x_L) \sim f(x_L) \times F_2^{LN(2)}(Q^2,\beta)$

 $\beta = x/(1-x_L)$ - fraction of exchange's momentum carried by the struck quark $F_2^{LN(3)}(Q^2,\beta,x_L)$ shows a similar β dependence in all Q^2,x_L bins $F_2^{LN(3)}(Q^2,\beta,x_L) \sim \beta^{-\lambda}$

• λ is almost independent of $x_L \rightarrow$ consistent with the proton vertex factorisation

• λ increases with Q²: from 0.23 to 0.3 similar to the rise towards low x of proton structure function F₂ Fit $\lambda = a \cdot ln(Q^2/\Lambda^2) \rightarrow a = 0.052 \pm 0.003$;

 Λ =416±52 MeV

 \rightarrow similar Q² evolution of F₂^{LN(3)} and F₂

Estimate the pion structure function from $F_2^{LN(3)}$

Assuming proton vertex factorisation and the dominance of π^+ -exchange at high x_L and low p_T , we estimate pion structure function at low x_{Bj} from measured $F_2^{LN(3)}$ at 0.68< x_L <0.77:

$$F_{2}^{LN(3)}(\beta, Q^{2}, x_{L}) = \Gamma_{\pi}(x_{L}) \cdot F_{2}^{\pi}(\beta, Q^{2})$$

 $\beta = x/(1-x_L)$ - the fraction of pion momentum carried by struck quark

 $\Gamma_{\pi}(\mathbf{x}_{L})$ - integrated over t pion flux $\Gamma_{\pi} = \int f_{\pi/p}(\mathbf{x}_{L} = 0.73, t) dt$

Use pion flux parameterisation (Holtmann et al.):

$$f_{\pi^+/p} = \frac{1}{2\pi} \frac{g_{p\pi\pi}^2}{4\pi} (1 - x_L) \frac{-t}{(m_{\pi}^2 - t)^2} \cdot exp\left(-R_{\pi n}^2 \frac{m_{\pi}^2 - t}{1 - x_L}\right)$$

(other pion formfactors give values of Γ_{π} which may differ by up to 30%) Contribution from fragmentation (DJANGO) is ~30%, largely independent of Q² and β .

• rise with decreasing β at all Q², shape similar to the parameterisations of F₂^π and F₂^P • in absolute values F₂^{LN}/ Γ below the F₂^π parameterisations

• data are sensitive to the π -structure function parameterisations (constrained for x>0.1 from the fixed target experiments).

Estimate the pion structure function from $F_2^{LN(3)}$

- $\bullet F_2^{\text{LN(3)}}/\Gamma$ as function of β in bins of Q^2
- Rise with Q² (scaling violation) for all β Similar in size and shape to F_2^{π} and F_2^{p} parameterisations \rightarrow universality of hadron structure at low x

- In absolute values $F_2{}^{\text{LN}}/\Gamma$ below the $F_2{}^{\pi}$ parameterisations
- However: large uncertainty of pion flux normalisation: choice of pion flux, absorption/rescattering, background processes (ρ , a_2 exchange, Δ production, diffr.diss.)...

$$F_2^{LN(3)}(x_L = 0.73)/\Gamma_{\pi}, \Gamma_{\pi} = 0.13$$

Summary

• New measurement of triple differential cross sections and semi-inclusive $F_2^{LN(3)}(Q^2, x, x_L)$ structure function by H1 using HERA-II data

F₂^{LN(3)} measured in the kinematic range:
 6 GeV²<Q²<100 GeV², 1.5·10⁻⁴<x<3·10⁻², 0.32 <×_L< 0.95, p_{T.n}<0.2 GeV

• Standard fragmentation models do not describe leading neutron production. The pion exchange model describes data well for x_L >0.7

• Within the measured kinematic range $F_2^{LN(3)}$ and F_2 have similar (Q²,x) behaviour, consistent with hypothesis of limiting fragmentation

 \bullet The dependence of $F_2^{LN(3)}$ on β is similar for all x_L , consistent with proton vertex factorisation

• The scaling violation observed in $F_2^{LN(3)}$ is similar to those seen in parameterisations of the pion and the proton structure functions

• $F_2^{LN(3)}$ measurement is used to estimate the structure function of the pion