POETIC IV Physics Opportunities at an Electron-Ion Collider September 2-5, 2013 Jyväskylä, Finland

Low-x Physics at the LHeC

Armen Buniatyan

Physikalisches Institut Ruprecht-Karls-Universität Heidelberg

Inclusive measurements at low x Diffraction

Legacy from HERA (1992-2007)

- Proton structure functions in a wide x,Q² range; xg(x) $\propto 1/x^{\lambda}$, λ >0; PDFs
- Large contribution of diffractive proceeses $\sigma_{diff}/\sigma_{tot} \sim 10\%$
- Precision tests of QCD with jets, heavy flavours,...
- But: no eA/eD, kinematical reach at small x, luminosity at high x /for searches,

Parton densities at low-x

 $\hfill Parton densities exhibit a strong rise towards low <math display="inline">x$ and fixed Q^2

→ QCD radiation of partons leads to a large number of gluons (each parton evolves independently- linear evolution $\Delta[xg] \propto xg$)

→ eventually will violate unitarity

 This independent evolution breaks at high densities (low x/ high A), non-linear evolution must become relevant and parton densities must saturate

 \rightarrow recombination (gg \rightarrow g) / saturation

LHeC can access very low x, study

- associated microscopic dynamics
- transition between perturbative and non-perturbative dynamics

ISSN 0054-3000

Journal of Physics G Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group

IOP Publishing

LHeC Study Group

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64} M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶ A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶ S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰. Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷ H.Kowalski¹⁷, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹ P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31} S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷ B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶ D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶ R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt¹⁶, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

arXiv:2306.2913, 1211.4831, 1211.5102 http://cern.ch/lhec

Physics at LHeC

increase of kinematic range at low x: ep - ×20; eA - ~ 4 orders of magnitude
 significant improvement of existing constraints on parton densities

Establish the existence of physics beyond DGLAP

- Substructure/parton dynamics inside nuclei with implications on QGP search.
 Precision QCD/EW physics
- High-mass frontier (leptoquarks, excited fermions, contact interactions).
- Access (ep and eA) to a qualitatively novel regime of matter predicted by QCD

LHeC vs LHC

 The LHeC will explore a region overlapping with the LHC

→ in a cleaner experimental setup

→ on firmer theoretical ground

Inclusive measurements: comparison with models

different pQCD-based approaches to describe evolution at low-x

- \rightarrow DGLAP evolution (fixed order perturbation theory).
- \rightarrow Resummation schemes: BFKL, CCFM, ABF, CCSS
- \rightarrow Saturation (CGC, dipole models)

Models based on linear evolution approaches

- extrapolation from the NLO DGLAP fit (NNPDF) and the results from a combined DGLAP/BFKL approach, which includes resummation of small-x effects

. Models which include non-linear small-x dynamics

- dipole models, based on eikonalisation of multiple scatterings with DGLAP evolution and CGC LHeC F₂ and F_L data can discriminate between models

Armen Buniatyan

Low X physics at the LHeC

Constraining Proton PDFs at small x

- uncertainties in predictions due to poorly known parton densities at small x
- LHeC can substantially reduce the uncertainties in global fits (in particular F_L and heavy flavours useful)

xg(x) in NNPDF DGLAP fit with LHeC pseudodata (which include gluon saturation effects: AAMS09, FS04)

F_L measurements- sensitivity to effects beyond DGLAP

Combined F_2 and F_L measurement is very sensitive probe of novel small-x QCD dynamics NLO DGLAP cannot simultaneously accommodate LHeC F_2 and F_L data if saturation effects included

Nuclear Parton Densities (nPDFs) at small x

(ratios of gluon distribution functions at Q²=5 GeV²) Yellow Report on Hard Probes, 2004

Large uncertainties in NLO DGLAP analyses at small scales and x $R = rac{f_{i/A}}{A f_{i/p}}$ ratio of parton densities in bound proton in Pb to those in free proton

Lack of data \rightarrow models give very different results for the nuclear glue at small scales and x

Low X physics at the LHeC

nPDF at small x

(R - nuclear modification factor)

eA at LHeC: impact on nPDFs

Good precision can be obtained for F_2 and F_L at small x

LHeC pseudodata simulation with Glauberized 5-flavour GBW model (N.Armesto)

eA at LHeC: impact on nPDFs

 F_2 data substantially reduce the uncertainties on nPDFs in DGLAP analysis; Additional constraints from charm, beauty and F_L

Diffraction in ep collisions

One of the first HERA surprises: ~10% of DIS events have no activity in proton direction \rightarrow <u>diffractive interactions</u>

$Q^2 = -q^2$	
$x = {1 \over 2q \cdot p} \ W^2 = (p+q)^2$	
$t = (p - p_Y)^2$	4
$x_{I\!\!P} = rac{q \cdot (p-Y)}{q \cdot p}$	fr
	to
$eta = rac{Q^2}{2q \cdot (p-Y)}$	fr
	b

 M_X

photon virtuality Bjorken scaling variable $q)^2 \gamma^* p$ CM energy squared $\gamma^* p$ CM energy square

- t-channel exchange of vacuum quantum numbers
- · proton survives the collision intact or dissociates to low mass state, $M_y \sim O(m_p)$
- large rapidity gap
- small t (four-momentum transfer), small x_{IP} (fraction of proton momentum); $M_X \ll W$

In diffractive DIS, $\gamma^* p \rightarrow XY$, virtual photon resolves structure of colour singlet exchange Understanding diffraction in terms of partons

- essential for the predictions of diffractive cross sections (e.g. diffractive Higgs)
- related to non-linear evolution (saturation), underlying event (gap survival), confinement

Diffraction at LHeC

Inclusive and exclusive diffraction can be studied at LHeC over a hugely expanded kinematical range, also using dedicated forward detectors

Compared to HERA significant extension of kinematic region of diffraction:

 $\ensuremath{\scriptstyle \rightarrow}\ensuremath{\text{access}}$ to M_{x} up to 250 GeV

 $_{\Rightarrow}$ test collinear and proton vertex factorisation in significantly increased phase space domain $_{\Rightarrow}$ diffractive charged current

> new diffractive channels: beauty, W/Z, new/exotic states (e.g. 1-- odderon) ...

Armen Buniatyan

Low X physics at the LHeC

Diffractive event selection ($ep \rightarrow e'p'X$)

- >'Large Rapidity Gap' method (LRG)
- restricted to low X_{IP}
- exploit correlation between x_{IP} and η_{max}
- η_{max} <5 corresponds to x_{IP} ~0.001 (require forward instrumentation down to 1°)
- *t* is not measured
- may contain some p-diss. background
- syst.uncertainties due to missing proton

'Leading proton' measuremens scattered proton detected in 'Roman Pots' (420m)

- t and x_{IP} measurement
- larger **X**_{IP} accessable
- free of p-diss. background
- overlap region with LRG method for cross-check

Armen Buniatyan

Low X physics at the LHeC

POETIC IV, Jyväskylä, 2-.5.9.2013 16

Diffractive event selection

- >'Large Rapidity Gap' method (LRG)
- restricted to low x_{IP}
- exploit correlation between x_{IP} and η_{max}
- η_{max} <5 corresponds to x_{IP} ~0.001 (require forward instrumentation down to 1°)
- *t* is not measured
- may contain some p-diss. background
- syst.uncertainties due to missing proton

'Leading proton' measuremens scattered proton detected in 'Roman Pots' (420m)

- t and x_{IP} measurement
- larger \mathbf{x}_{IP} accessable
- free of p-diss. background
- overlap region with LRG method for cross-check

Armen Buniatyan

Low X physics at the LHeC

Diffractive F_2^D measurements

LHeC pseudodata
Ee = 150 GeV, L = 2 fb⁻¹
Extrapolation from "H1 fit B"

→ Large extension of HERA measurements!

Diffractive DIS and non-linear dynamics

Dipole models show differences w.r.t. linear-based extrapolations from HERA DPDF's and among each other: possibility to check saturation and its realization

- Diffractive DIS sensitive to power corrections of order Q²_{sat} / Q²
 LHeC gives access to semi-hard regime Q² < 10 GeV² and low x; can distinguish between a range of models with and without saturation effects

Diffractive DIS on nuclear targets

to be studied in eA at LHeC:

if collinear factorisation (proved for proton) holds for nuclei

Hadron vertex factorisation

Diffraction is linked to nuclear shadowing: search for new effects

large differences between predictions for nuclear coherent diffraction

Frankfurt, Guzey, Strikman

Charged Current in Diffraction

Charged Current in Diffraction

<u>H1:</u> σ^{CC,diff}=0.39±0.12(stat.)±0.07(sys.) pb <u>ZEUS</u>: σ^{CC,diff}=0.49±0.20(stat.)±0.13(sys.) pb

Low X physics at the LHeC

0.012 X_{IP}

Diffractive dijet production in DIS

Diffractive dijet production in DIS

At LHeC cross-section dominates for small z_{IP} , where gluon part of DPDF dominates (weakly constrained from inclusive measurement)

At LHeC smaller z_{IP} is accessed $z_{IP}\sim0.07$ at HERA ; $z_{IP}\sim0.02$ at LHeC

Diffractive dijet production in photoproduction

<u>Factorization</u> in diffractive dijet
 photoproduction has been studied at HERA
 → controversial results, no clear conclusion

3 independent measurements by H1 obtained suppression factor $S^2 = \sigma(NLO)/\sigma(data) \sim 0.5 - 0.7$ (with large theoretical uncertainties), ZEUS measurement consistent with $S^2 \sim 1$

• Theoretically predicted (e.g. KKMR group) dependence of S^2 on the fraction of photon's momentum in hard subprocess, X_{γ} , not observed neither by H1 nor ZEUS.

• LHeC can clarify the issue with factorisation, survival probaility

Diffractive dijet production in photoproduction

920 + 27.5 HERA (400 pb⁻¹) $Q^{2} < 2 \text{ GeV}^{2} \land 0.2 < y < 0.8$ $x_{IP} < 0.03 \land |t| < 1 \text{ GeV}^{2}$ $M_{Y} < 1.6 \text{ GeV}$ $E_{T}^{\text{jet1}} > 6 \text{ GeV}$ $E_{T}^{\text{jet2}} > 4 \text{ GeV}$ $-1 < \eta^{\text{jets}} < 2$

 $\begin{array}{l} & Q^2 < 2 \, \mathrm{GeV}^2 \wedge 0.2 < y < 0.8 \\ & x_{IP} < 0.01 \wedge |t| < 1 \, \mathrm{GeV}^2 \\ & M_Y < 1.6 \, \mathrm{GeV} \\ & E_T^{jet1} > 10 \, \mathrm{GeV} \\ & E_T^{jet2} > 6.5 \, \mathrm{GeV} \\ & -3 < \eta^{jets} < 3 \end{array}$

• Higher E_T of jets - smaller scale uncertainties in NLO QCD calc. • Access to lower values of z_{IP} and x_{γ} than at HERA

E_T^{jet} ~ 17 GeV at HERA ; E_T^{jet} ~ 42 GeV at LHeC

 $X_{\gamma} \sim 0.09$ at HERA; $X_{\gamma} \sim 0.03$ at LHeC

Exclusive Vector Mesons production (ep \rightarrow e+VM+p)

• Clean experimental signature

• Sensitivity to low x gluon up to $x_q \sim 6.10^{-6}$ at Q²~3 GeV²

Elastic J/ψ production

Low X physics at the LHeC

Elastic VM production off nuclei

Challenging experimental problem: resolving the difference between models requires good separation of coherent and nuclear break-up

Deeply Virtual Compton Scattering $ep \rightarrow e\gamma p$

- Exclusive processes give access to Generalized Parton Densities
- DVCS sensitive to the singlet quark GPDs

Sensitive to dynamics / non-linear effects

No complications due to meson wave function

Total photoproduction cross section

Small angle electron detector 62 m far from the interaction point: Q²<0.01 GeV², y~0.3 \Rightarrow W~ 650÷950 GeV

Substantial enlarging of the lever arm in W

Summary

the LHeC represents a natural extension to HERA and LHC
 unprecedented access to small x in proton and nuclei
 novel sensitivity to physics beyond standard pQCD

 \rightarrow access to regime of saturation/ non-linear dynamics

^ohigh-precision tests of collinear factorisation and determination of PDFs

 $_{\circ}$ diffraction: access to high masses of diffractive system M_X, larger scales, E_t^{jets}

→ possibility for detailed studies of Charged Current diffractive interaction, factorisation in diffractive photoproduction, etc.
 opossibility to study diffractive DIS on nuclear target

oand a lot more...

LHeC CDR, arXiv:2306.2913, 1211.4831, 1211.5102 http://cern.ch/lhec

backup

Kinematics

LHeC - High Q² Kinematics

Diffraction and low x

- •At LHeC, $M_{\rm X}$ up to hundreds of GeV can be produced with low $x_{\rm IP}$
- New diffractive channels ... beauty, W/Z
- Measure exclusively produced new/exotic 1-states (odderon?)
- Diffractive charged currents
- Dijets in DIS and Photoproduction
- Elastic J/ψ photoproduction
- Deeply Virtual Compton Scattering

Odderon

• Odderon (C-odd exchange contributing to particle-antiparticle difference in cross section) searched in $\gamma^{(\star)}p \rightarrow Cp$, where $C = \pi^0, \eta, \eta', \eta_c \dots$ or through O-P interferences

$$A(Q^{2}, t, m_{2\pi}^{2}) = \frac{\int \cos\theta \, d\sigma(W^{2}, Q^{2}, t, m_{2\pi}^{2}, \theta)}{\int d\sigma(W^{2}, Q^{2}, t, m_{2\pi}^{2}, \theta)} = \frac{\int_{-1}^{1} \, \cos\theta \, d\cos\theta \, 2 \, \operatorname{Re}\left[\mathcal{M}_{P}^{\gamma_{L}^{*}}(\mathcal{M}_{O}^{\gamma_{L}^{*}})^{*}\right]}{\int_{-1}^{1} \, d\cos\theta \left[|\mathcal{M}_{P}^{\gamma_{L}^{*}}|^{2} + |\mathcal{M}_{O}^{\gamma_{L}^{*}}|^{2}\right]}$$

Expect sizable charge asymmetry

