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Outline of the lectures

= Part 1: Why a Higgs boson is needed

= Part 2: Connections between Higgs Physics and unanswered questions of Particle
Physics (and possible solutions to them)

= Part 3: What can be learnt from the Higgs boson at high-energy colliders — an
overview

= Part 4: The Higgs boson mass as a precision observable — calculations and
interpretations

- Part 5: The Higgs boson potential, its trilinear coupling, and relations with early-
Universe evolution
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Part 4:
The Higgs boson mass,
a new precision observable

PPPPP



Measurements of the Higgs boson mass

> Higgs mass already measured at sub-permille level! — new precision observable!

M_=125.09 + 0.21(stat.) + 0.11(syst.) GeV
[ATLAS & CMS Run 1 combined, Moriond 2015]

M =125.11 £ 0.11(stat.) £ 0.09(syst.) GeV

[ATLAS 2308.04775 from Runl+Run2 in h-yy and h - 4l channels]

CMS
Run 1:5.1 fb' (7 TeV) + 19.7 b (8 TeV) —— Total Stat. Only b b b b b b [ T
. -1
2016: 35.9To” (13 TeV) ATLAS e+ Total Stat. only | Combination
Total (Stat. Only) ) )
Run 1 Hosyy 124,70+ 0.34 ( + 0.31) GeV Runi:5=7-8TeV, 25", Run 2: \/s = 13 TeV, 140 b ol (St o)
Run1 H — vy I @ 1 126.02 + 0.51 (+ 0.43) GeV
Run 1 H— ZZ— 4| ——y 125.59 +£ 0.46 ( + 0.42) GeV
Run1 H — 4/ I @ | 124.51 + 0.52 (+ 0.52) GeV
Run 1 Combined — 125.07 + 0.28 ( + 0.26) GeV Run2 H — vy |—Io—| 125.17 + 0.14 (+ 0.11) GeV
T Run2 H — 4¢ —e—| 124.99 + 0.19 (+ 0.18) GeV
2016 H—yy H—— 125.78 + 0.26 ( + 0.18) GeV
Run 1+2 H — ~y e 125.22 + 0.14 (+ 0.11) GeV
2016 H— ZZ—s 4l —— 125.26 £ 0.21 (£ 0.19) GeV Run1+2 H — 4/ —e— 124.94 + 0.18 (+ 0.17) GeV
Run 1 Combined —e— 125.38 + 0.41 (+ 0.37) GeV
2016 Combined [ 125.46 £ 0.16 ( £ 0.13) GeV |
I r e Run 2 Combined I—OI—I 125.10 + 0.11 (+ 0.09) GeV
Run 1 + 2016 -i- 125.38 £0.14 (£ 0.11) GeV Run 142 Combined e 125.11 + 0.11 (+ 0.09) GeV
I TN NN U N AN T N TN AN T T A AN N A N NN T M I AN TNN A M B B T B | . '||' N I T S ST N N N T
122 123 124 125 126 127 128 129 123 124 125 126 127 128
My (GeV) my [GeV]

[CMS-HIG-19-004] [ATLAS 2308.04775]
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Radiative corrections to the Higgs boson mass

» Feynman-diagrammatic calculations, i.e. solve for Mi
My = (m)"™ + Spu(p® = Mp)

pole mass tree-level mass self-energy
PIEREEN
I \ s \
O - -@---=---e---foieo o] Loy
N &

NB: other possible approach
— EFT (more later)

f]hh(pz) computed order-by-order in perturbation theory as Feynman diagrams.
Difficulty: momentum dependence of self-energy diagrams not always known at

two loops and higher + long numerical calculations

» effective potential approximation Vi = V(O + AV
where AV are quantum corrections, computed as

- one loop: supertrace formula
- two loops and beyond: 1P| vacuum bubble diagrams

0% Vg .
Oh2 < Ypn(0)

min

= much simpler/faster calculations, but with lower accuracy

OVesr
ah min
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> tadpole equation(s)

= (0 are needed to properly relate all couplings
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Two interpretations of Higgs mass calculations

- Higgs mass M is computed as a function of Lagrangian parameters, in particular quartic Higgs coupling A

Mh:Mh()‘v)

> Case 1: A is a free parameter of the theory
e.g. in SM and many extensions (SSM, 2HDM, etc.)
- one cannot predict M,

— but one can use the equation My (A, ---) = 125.09 GeV to extract A and study the high-scale behaviour of
the theory

> Case 2: A is predicted by the theory
e.g. - in SUSY, Ais related to other couplings (EW gauge couplings + eventually SUSY scalar couplings)
- in (classical) scale invariant models, A=0 at the scale at which the symmetry is imposed
- but also the case in a non-SUSY extension of the SM taken as low-energy limit of a UV-model in which A is
predicted (more on this later)
-~ M, can be predicted as a function of the model parameters
(M2 )iree < M225, M2~ (m2) +ﬁ<m%+yi 2o L% |4>+
h/tree > Z =203 h h/tree 47_‘_2?}2 m t t ..
- Comparing computed and measured values of M, - constrain allowed BSM parameter space
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Case 2:
SUSY Higgs mass calculations

PPPPP



SUSY Higgs mass calculations - fixed-order calculation

>

SUSY models contain extended scalar sectors — physical masses found as solutions for p? of equation
2 2 2 2 _
det [p“0s; — (Miree)is — AMG;(p7)] =0
At tree level, m < M, however, since early 1990's (|Okada, Yamaguchi, Yanagida '90], [Ellis, Ridolfi,
Zwirner '90], [Haber, Hempfling '90]) it has been known that loop corrections can raise m,_to 125 GeV

2 2 Smffl MS2USY v (2 | R 4 tanp: ratio of Higgs VEVs
Mh ~ (mh)tree —I— 1H — 5 —|— ‘Xt‘ - E ‘Xt‘ —|— o oo X, stop mixing parameter

4292 m% Mg sy: SUSY-breaking

s/c\ale

. . .. . . X = Xy /M,
Since then, huge efforts to improve precision of SUSY Higgs mass calculations e = Xe/Msusy

— summarised in recent report of “Precision SUSY Higgs Mass Calculation Initiative KUTS”
[Slavich, Heinemeyer (eds.) et al 2012.15629]
- for the MSSM, state-of-the-art is now almost full 2L in effective-potential approximation, + leading 2L
momentum-dependent effect + leading 3L corrections
— for the NMSSM and beyond (e.g. Dirac gaugino models), leading 2L corrections

+ reliable estimates of theoretical uncertainties (from missing higher orders & parametric uncertainties) —
1-3 GeV depending on point

However, experimental searches now put lower bounds on stop (scalar partner of top quarks) masses
beyond 1 TeV - fixed-order calculations start to suffer from large logs
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SUSY Higgs mass calculations - the problem of large logs

» Scale of New Physics Myp driven higher by experimental searches

Mnp

TMew

can spoil the accuracy, or

= in fixed-order calculations, large logarithmic terms o log

even the validity, of the perturbative expansion, e.g.

O = a’ag +a(biL+a1)+a(coL? +boL+as)+ -
N ~ ~ S . ~ ’,

tree-level one-loop two-loop

Q@ = (9/47T)2= L= 10g MNP/mEW: aq, b’iac’i c C.
Loss of perturbativity if
ol =1 -

The perturbative expansion must be reorganised — EFT calculation

DESY. | QURS Graduate Week — Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024 Page 9



Intermezzo: an EFT primer
» Integrate out heavy fields at some scale A ~ Mnp and work in a low energy EFT below A

» Couplings in the EFT receive threshold corrections at the matching scale A

E
o5 Coupling of the UV theory g
UV theory 3 R
licht & h ticl w3 Match effective actions computed
(light & heavy particles) e in UV th. and EFT, at ¢ loops:
A ~ Myp S T =A) =TT (Q =A)

4

¢-loop threshold correction
to coupling of the EFT ¢

g=0g-+Ag

» Use RGEs to run the couplings from the high input scale, to the low scale (< Myp) at which the
calculation is performed = large logs are resummed!

EFT
(light particles only)

RGE running
in EFT

\J
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SUSY Higgs mass calculations — EFT approach

» Simplest example: ~ UV theory — MSSM, and EFT — SM
see e.g [Bernal, Djouadi, Slavich '07], [Draper, Lee, Wagner '13], [Bagnaschi, Giudice, Slavich, Strumia '14|, [Pardo Vega, Villadoro '15],
[Bagnaschi, Pardo Vega, Slavich '17], [Athron et al. '17|, [Harlander, Klappert, Ochoa Franco, Voigt '18], etc.

More choices of EFTs also considered,
see [KUTS report ‘20] and refs. therein

e.g.
E
: Full 2¢ RGEs
MSSM inputs [ 1 MSSM ]
MSSM Y
1 ;
v Asm(Ms) = 1(92(%@) +g"*(Ms)) cos® 23
> FANE(Mg) + AN (Msg) + AN (M)
4 | Full 2¢ + leading
- SM M;% — F(sm(me)) flxecl—c:.trder calculation 3¢ and 4¢ RGE
i in the SM for Agm in SM
Mz SM inputs

» In many cases Mg > v = effect of higher-dimensional operators o v/Mg can be disregarded
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SUSY Higgs mass calculations — hybrid approaches

> However, for lower M EFT calculations lose accuracy (because of v/IM

effects)

SuUsY’ SUSY

> Can one combine the advantages of fixed-order (reliable for low M, ,..) and
EFT (reliable for high M

— Yesl!

SUSY

SUSY)

-~ Different approaches
1) FeynHiggs approach [Hahn, Heinemeyer, Hollik, Rzehak, Weiglein PRL ‘13]

(Mh)FH hyb. = (mh)tree + Z (Mh) + [)‘(Mt)UQ]log [E (Mh)]logi

- (g J/

~" ~"

fixed-order EFT log. resum. subtraction term

2) FlexibleSUSY approach - “pole mass matching” [Athron et al “17]
1
M uer — (AM?
QUQ(MS) [( h)uer — ( h)SM}

(also included in SARAH/SPheno) Fixed-order res.
in full theory

)\SM(MS) —

3) Aachen group solution
[Harlander, Klappert, Voigt ‘19]

(MP) gy, = (MP)ger + AT 1 A2
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Different types of SUSY Higgs mass calculations — summary

3m? M? ~ 1, =
M2 ~ (m?)iree + — | In =205 41X, 12 — — | X, |* ) +.
== (M )tree + Ar2p2 (n m2 + | X 12| ")+
3 types of calculations for M, :

> Fixed-order approach: tan 8 = 20, X, = —/6Mg
+ precise for low SUSY scales 135 ——rrrr A — —————r
~ but for high scales large logarithms log(M.,/m,) spoil | FeynHiggs e
convergence of perturbative expansion 130 | —
- Effective field theory approach: - | ATLAS/CMS +10 - = e ;
+ precise for high SUSY scales (since logarithms are resumed) i i
— but for low scales O(v/M_ ) terms are missed if higher- E ______
dimensional operators are not included = 200 g7 i
= N e i
> Hybrid approach combing FO and EFT approaches: 115 :-’ -
++ precise for both low and high SUSY scales. v/ :
o e |
~ Current status in FeynHiggs (c.f. figure) : ~ hybrid [d
— FO: full 1L + 2L in gaugeless limit, . A - a V , =1
. EFT: full leading-log (LL) + Next-to-LL (NLL) + NNLL + partial 10° susy / Ge 10°
N3LL in gaugeless limit Ms | GeV

[KUTS report, Slavich, Heinemeyer et al. ‘20]
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Accessing the stop mixing parameter X via the Higgs boson mass

- X enters prediction of M, from 1L:

Mi% = (m%)tree T

> Bluelgreen lines:
common mass scenarios,
l.e. all non-SM masses
=M, ,andA_ =0

SUSY

> Grey points:
scan over SUSY
parameters (masses and
trilinears) between
M, ./2and 2 M

SUSY SUSY

AJSUSY =l TCV, tlﬁ =28

4
Sy (o
A2 2

2
MSUSY

my

2

130

T

T

—
)
>}

N TCE |

ATLAS/CMS +1a

. 1 ~
+ | X |* — —|Xt\4> + ...

Msusy = 100 TeV, ¢3 =3
T T ! I ‘ ‘

128 . T

—

[}

-1
T

—_

[\~

D
I

ATLAS/CMS *£1e

= 125
O
= 124
123
1221
| 1 1 1 | 1 I 1 1
121—3 —2 —1 0 1 2

[Bahl, JB, Weiglein ‘22] with FeynHiggs 2.18.1

- Significant dependence of M, on X, even for high SUSY scale, at 10 or 100 TeV!

- If stop masses and tan3 known - X can be extracted from M_
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Automating Higgs mass computations



The motivation for automation

> Interest for non-minimal SUSY and non-SUSY models is growing, driven by experimental
results, but in most cases Higgs mass calculations beyond one-loop are still missing
— huge uncertainties

~ Computing corrections from the beginning for every new model would be extremely inefficient
and time consuming!

> ldea:
Do the calculation for a general renormalisable theory and then apply that result to the

considered model
— can be automated, in public tools like SARAH [Staub ‘08-"15] or FlexibleSUSY [Athron et al.

14, “17]
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Generic calculations of the Higgs boson mass — conventions

Write the most general renormalisable interactions with real scalars ¢;, Weyl
fermions 17y and vector bosons AfL:

1. 1 i
Ls == A" hipitn — oA digidropn,

1
Lsp=— 591‘)%?#1@0&1% + c.c.,

1 abit 4a 1 abit] q4a ait] Aa
Lsv == 59 AL AR, — 19 PTAL AR Gip; — g™ AL ;0" ¢,
Lry = gt' 'Y AL,

1

ﬁgauge _ gabcAzAl;gﬁbAyc o ZgabEngEA“aAybAiAg + gabcAﬁwbgpQC

> Here, all fields are defined in mass-diagonal bases
(some care needed to diagonalise scalar masses)

- Interactions between scalars and ghosts turned off by working in Landau gauge

- Parameters usually* renormalised in minimal subtraction schemes (MS or DR)

(*: with one notable exception — anyH3 in Part 5)
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Generic calculations of the Higgs boson mass — diagrams

Then we need to compute loop P AT
1 i L i . T —
diagrams for Ve, the tadpole ‘\_,f' ‘\__;_,f*
equations and the mass Sess Voscus
diagrams, e.g. P
A}
f/""'\\ JETE B r\\ ,' ,:'F“\
0 S N T R N
/‘H‘:\ ‘\ : ,’ ‘\ ," ___.r.f____‘\_-- _____\vf_ ______
.
Vo Yssss Wssss
-
i .
'
TG‘S T:S'SS -T:‘;SSS' "'@ ------ : D--_ =t

- "
i ¥ Q Mprrrs Mgsrpsrr
\ -
— r -
| | 1 ]
| ]
1 |
______ | Epp—— |

SSFF o
TJ"

— VEFFFs Vsssrr
’ N
3 \
i &
\
! A
Ay
S K r’
r Pl
|

Wsssv
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Mgssssy

: 4 \\ b
e | j=== === Momosenn  fog
= \ s
Tfi' f O

LAY hY

e Generic 2L results available for:
Zssss Ussss

T . B Veff:

) o0 [Martin ‘01] (Landau gauge),

O ' [Martin, Patel ‘18] (general gauge)
Tomemees oo b--=='=== (8L V4 in [Martin ‘17])

X 558 V‘s‘h’S.‘s‘.‘s‘

- Tadpoles:
[Goodsell, Killian, Staub ‘15]

Mrrrey - Self-energies:

N [Martin ‘03, ‘05],
[Goodsell, PalRehr ‘19]
Wsskr

Vssssy

Page 18



Generic calculations of the Higgs boson mass with SARAH/SPheno

User defined

model

SARAH (Mathematica) SPheno (Fortran)

(Analytical calculations) (Numerical calc.)

Generic exp. for » Masses & Vertices Loop
masses & vertices in model Integrals

¢

Generic loop » Expressions for Numerical
\ expressions Higgs mass Routines /

For extended scalar sectors:
- neutral scalar masses @ 2L

M . charged scalar masses @ 1L

Many other observables also
Adapted from a figure by Florian Staub available! (decays, STU, etc.)

parameters
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Part 5:

Higgs potential,

trilinear Higgs coupling,

and early-Universe evolution

PPPPPP



Higgs potential,
trilinear Higgs coupling(s),
and Electroweak Phase Transition



Higgs potential — the “easy picture”v
eff

— a strong first-order phase transition (SFOEWPT), motivated in particular by EWBG,
usually* correlates with a deviation in A__ from its prediction in the SM

[*: if the EWPT occurs along the direction of the EW VEV in field space]
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Kateryna’s question: why is there such a correlation between
(T O) and the EWPT (T 100 GEV)’) [Kanemura, Okada, Senaha ‘05]

(see also [Grojean, Servant, Wells ‘04])

hhh
- Dynamics of EWPT controlled by finite-temperature effective potential

m 1
Vei(0, T) = VO (0) + AVT=0(0) + AV (o, T) LI>m, D(T? —T3)p? + ET " + ZA(T)gp4 4.

- At critical temperature T_: 2 degenerate minima at ¢ = 0, and ¢_~ 2ET /\(T ) , so that the sphaleron
decoupling condition (to ensure a strong FOEWPT) becomes ~ ¥c _ 2L > 1

> In a model with an extended (and aligned) Higgs sector,: Contour plot of AA /A and /T, in the mg-M plane
(®: additional scalars, M: BSM mass scale, n: no. of d.o.f of scalar CD) 450 I I I | | | ]
Pe 1 6 13 n Z 1 M? 1+ 3M? B0 onemmmmmmn s i 10 B cpemamep s SRRETn .
a ms m; nems — —5 L e et i
T.  3mom3 w z ® m2, 2mz )| *°0 B oo e

while the corrections to A (more later) are

hhh

2 4 4 2\ 3 150 | oommszmmmimmm = Qc/Te = 1 i
A ~ Bmh _ 1 _ 48mt 4nfbm@ 1 — M Alnhh/ Abbh = 5%
hhh = 1672 5 T 3 —5 100 - sin(a-B) = -1, tanp = 1 -
@ v D v mg g mh = 120 GeV i
Me=MH=MA= Mu=*
0 | | | | | " |A " |

0 20 40 60 80 100 120 140
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h,

Higgs potential — a more realistic BSM picture [Bosse, JB, Gabelmann,

Hannig, Weiglein ‘23]

- For instance, for a Z,SSM where the Z, symmetry is spontaneously broken - S gets a VEV v,

2 2 4 2 4 2 2
L[ VaGH V(Q,8) = p@]* + T |® + —28% + T28% + =570
¢ =— . 2 ps
2 \ vt h+iG
T —— /™=
500! 500;

gl
_500! ~500§-
~1000/ —1000?»
_1500! 1500 . T ——

-2000 -1500 -1000 -500 O 500 1000 1500 -2000 -1500 -1000 -500 O 500 1000 1500

hy hy

mp, = vs = 300 GeV,a = —0.01 my, =900 GeV,vg = 600 GeV,a = —0.01
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Experimental probes
of the trilinear Higgs coupling

PPPPPP



1 [NB: triple-Higgs production
Experimental probes of A_ rple-Higgs product

in a few slides]

- Double-Higgs production — A enters at leading order (LO) — most direct probe!

g > - ——-—Hh  “DOOCOCT00) ~h
. Anih -7
b bt o
L N
g « - ——-—h  DO0COCC00" ~
- Single-Higgs production — A enters at NLO (i.e. indirect probe)
‘ - - g > 90000
h h i \ h
vy ~----h ®---- h ‘A vf'——h
" i
N + 4 = 9 —=— 1 QQQ—=—" n

[Degrassi, Giardino, Maltoni, Pagani ‘16] [ATLAS- CONF 2019-049]
- Electroweak Precision Observables (EWPOs) — A enters at NNLO (i.e. indirect probe)

.. n

hi: h h S

h Q o h, Q heo . .
' ,,:,. ‘,:, + _:__\‘,’;,,,:

DESY. | QURS Graduate Week — Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024 [Degrassi, Fedele, Giardino ‘17]
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Probing A via double-Higgs production

K¢
g L000000090008 ———p— i -- - - - - - - - - H g ) H
i Kt KA .
gluon-fusion | b il P
Oggr(pp—HH) = 31.05 b Ho
K .
g 1090929290909 A . H g \20909990292999 A "H
q q
K .H
VBF A ¥
over(pp—HH) = 1.726 fb Vol -
q q

VHH
O\;HH(DD—'HH) =0.86fb

Slide by K. Leney @ HiggsDays 23
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Probing A via double-Higgs production

- Double-Higgs production — A enters at LO — most direct probe of A__
g - -—--h h

A ~
g — L ~h

> Box and triangle diagrams interfere destructively
— small prediction in SM

— BSM deviation in A can significantly enhance
double-Higgs production!

I I 1 | | I I I T

- ATLAS = Observed limit (95% CL) -

i B Expected limit (95% CL) |

‘/E: 1 3 -TeV, 1 26_1_39 fb 1 o - {uHH =0 hypo[hesis)

-~ HH-bbT™ T~ + bbyy + bbbb 0 Expected limit +10 -

- 1 Expected limit +20
E== Theory prediction

> Search limits on double-Higgs production
%  SM prediction

— limits on effective coupling k,EA /(A @)V

OggF + VBF(HH) [fb]
)

—
—
-

- Current best limits: -0.4 < k, < 6.3 (95% CL) [ATLAS PLB ‘23] .. _ eyl

(including information from single-Higgs production) [ ——
-1.4 <K, < 6.1 (95% CL) [ATLAS PLB ‘23]

—— bbyy

—— bbTtT~
(including information from single-Higgs production + k. floating) i —— bbbb
= Combined
-1.2<K)‘<6-5 (95% CL) [CMS ‘22] 10_110| L |_5| L1 0 L [ 5 [ |1I0| 1 }15

Ka
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Probing A via double-Higgs production

- Double-Higgs production — A enters at LO — most direct probe of A__

g — - ---h b
by e
n | Ch hhh -
£ N
g —L - —--h ~h
- Box and triangle diagrams interfere destructively 14
TSN o] NI N B B B BN
— small prediction in SM X [ ATLAS — 68%CLHH+H
. g . . " gn B = — -1 — % C + .
— BSM deviation in A can significantly enhance 1_3:— ﬁot;:rTKef\if);;jtso sﬁg ° . EZ; CtgH ’ —
double-Higgs production! - Observed T i
1 2-_ —i\;- 95% CLHH N
> Search limits on double-Higgs production f I b ZQASF;??-L?;ITH 1
— limits on effective coupling k,=EA /(A @)V 11 R S - i
[ \ \ ]
N \ 1 -
- Current best limits: -0.4 < k, < 6.3 (95% CL) [ATLAS PLB ‘23] S ! G 1
(including information from single-Higgs production) L - " ,/' B
-1.4 <K, < 6.1 (95% CL) [ATLAS PLB ‘23] - i
(including information from single-Higgs production + k. floating) T e N heww' N T T
-1.2 <K, < 6.5 (95% CL) [CMS "22] -10 -5 0 5 10 15 20
Ka
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Probing A __ via double-Higgs production — HL-LHC prospects

- Double-Higgs production — A enters at LO — most direct probe of A__
g - -—--h h

A RN

q - - — - — h - h
> Box and triangle diagrams interfere destructively
— small prediction in SM

i i R | e G IR IR [ 5 ) LR [FURUUET] [T B L) [
— BSM deviation in A can significantly enhance £ gl | ATLAS Preliminary 4
) hhh S VS =14 TeV, 3000 fo-! ]
double-Higgs production! ' HH - bbyy + bbT * T~ + bbbb
16_ Projection from Run 2 data __
Asimov data (kx = 1) .
~ Search limits on double-Higgs production R — Mo Y=

—e— Baseline

— limits on effective coupling k,EA /(A @)V 2 Theoreical unc. halved 1
- =+ Run 2 syst. unc,
- Prospects at HL-LHC: 0.1 <k, < 2.3 (95% CL) with ATLAS+CMS °r n
[Cepeda et al. “19] L Y O 954
0.0 <k, <2.7 (95% CL) with ATLAS alone e R T
=2 -1 0 1 2 3 4 5 6 7 8
[ATL-PHYS-PUB-2022-053] K

Figure adapted from [ATL-PHYS-PUB-2022-053]
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Direct probes of A_at e*e" colliders

> Double-Higgs production, either in e*e'—. Zhh or e*e-—. vwhh
Figure from [De Blas et al. 1812.02093]
> Relies however on being above the Zhh threshold! L o dmam

e+€_ — Zhh
ete” — vrhh (WW-fusion only)

—_—

—_
T

-—
—~—
-

- \
\
F \
\ pa—
\
\
/ \
\
/ \
= \
| 1 IIIIiII 1

et

~

et s & ;
10_3 | l- 1 1 | |
400 600 1000 2000 3000
wl, __h w V5 [GeV]
wg <~ h w
> e*e - Zhh better at Vs~500 GeV
e Vs &

» e*e - vwvhh better for larger Vs

Figure from [De Blas et al. 1905.03764]
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Indirect probes of A__at e*e” colliders

_ _ _ P(e, e*)-(08 0.3), M =125 GeV
can still be investigated 400

> Below the Zhh threshold, A

hhh
through its (indirect) effect in quantum corrections to I — SM all ffh
single-Higgs production - ——Zh
. | S300F — WW fusion
- In particular, A enters NLO corrections to e'e” - Zh — 77 fusion y
First pointed out in [McCullough ‘13], numerous works O
since (also with global analyses in EFT setting) O
0200
n
YA )
w ______
£100
O
0 s 3 3 0 & 3 3 2 0 2 2 2 o 1 . o  + 3 gy T35
“h 200 250 300 350 400 450 500

\s (GeV)

Figure adapted from [McCullough 1312.3322] Figure from [Fuijii et al. 1710.07621]
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Future determination of A__

Expected sensitivities in literature, assuming A = (A__ )"

hhh

Higgs@FC WG September 2019

I LI I I I I I | 1 1 1 I I ) — p— 1 I I I | fr— I 1 I dI_nggS SIngle_nggS
AR fipe wie, | 7 HL-LHC limits will likely outperform
..................................................................................................... E%:;(’;']%?OE/U&%/) 2019 prOSpeCtS (even Wlth gIObaI
HE-LHC ; ; . FCC-es/etnh - [] FCC- ssiehi an alyse S)
............................................................................................... I{EO/FCC . LE-FCC
FCC-ee/eh/hh _\“\\\\\\\ e di-Higgs | (M :‘}_‘j;j?;:‘f‘f____________E‘_;‘_’__‘?_“fff’? ______ - Single-Higgs results at lepton colliders
. SANNNNANNNNNIN - exclusive o always include information from HL-
<t under HH threshold i 1y o :
©  FCC-ee - il OG-t LHC, and don’t improve much (if at all)
" SRR RS N\ FCC-ee,,,
O ||l e 49% (19%) . C g . .
0 LG, ] o » Significant improvements only with
S ILC 10% 36% (25%) . ] .
o L0 ] double-Higgs production at (high-
%o 4 38% (27% .
3 DLQC/Z 1 energy) lepton colliders or FCC-hh
...................................... 29%)......
£ 5 CEPC o
L 50 %
N ™ 6tic,, cuﬁ)\ single-Higgs
©@  CLC n exclusive
iS) Q 36% 49% (41%)
T O 0 10 20 30 40 50 e T single-Higgs global '
68% CL bounds on x, [%]  aifuture colliders combined with HL-LHC

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fuijii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al.,
1901.05897], [Chang et al. 1804.07130,1908.00753], etc.
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New investigations via triple-Higgs production

Constraining the trilinear and quartic Higgs couplings at the same time

Hadron g

collider :::DH
g JH
Ky //
$¢\H
g g

K,=K, : trilinear coupling modifier

K, - quartic coupling modifier

Lepton
collider

Figure adapted from
[Maltoni, Pagani, Zhao .-
1802.07616]
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[P. Stylianou and
G. Weiglein

2312.04646]
Unitarity
vA 1 TeV €€ 2 [ab
B 3 TeV ££5 /ab
B 10 TeV ¢4 10 /ab

Lepton
colliders

- == LHC 3b27 3/ab
—— LHC 3b27 6/ab

- - - LHC Combination 3/ab

—— LHC Combination 6/ab

HL-LHC
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Future determination of AL

E L ] I 1 ] L I I 1 1 1 1 I L] L] 1 1 I ] ] 1 1 I 1 1 1 1 .! 1
B g [ [ Mo seteouptingprolections e [J. List et al. ‘21]
~— B === HL-LHC (single coupl. analysis) : g '

f-ﬁ - = =% = cross-section-level extrapolation I ‘ '

GEJ : === |LC 500 GeV ZHH (full coupl. analysis) : E
(< 2 _____ = |LC 500 GeV + 1 TeV vwHH combined

-0.5 0 0.5 1 1.5 2
7\‘true/}\'SI\e'l
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See also [Durig, DESY-THESIS-2016-027]



Calculating A in models with extended
scalar sectors
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One-loop mass-splitting effects

- Leading one-loop corrections to A _, in models with extended sectors (like 2ZHDM):

hhh

SM top quark loop BSM scalar loops ,
---------- ] — Y
\ / ' (A
N \\\ 'l<\ ‘\‘ 'I’ \\\
A . 4 5 o Firstfound in 2HDM.
[Kanemura, Kiyoura,
5( ))\hhh D L — 48mt i E 472(1)777/(1) 1 — M Okada, Senaha, Yuan ‘02]
1672 v3 = V3 ms

_/\/l : BSM mass scale, e.g. soft breaking scale M of Z, symmetry in 2HDM
N : # of d.o.f of field P

: : : 2 2 \ .2
- Size of new effects depends on how the BSM scalars acquire their mass: Mg 7~ M + A\v

M2\’ (O, for M2 > \v?
1 -2 ) —

mgb 1, for M2 < 5\@2 _ » Huge BSM
\

effects possible!
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One-loop mass-splitting effects

> i - ative
Leading one-loop ¢ Plot from [Kanemura, Okada, Senaha, Yuan '04] NB: ng.?t;bnot
uni
300 N violated!
2HDM ”
M=0 (Max. Non—Decoupling Case) '
sin’(a—PB)=1 m,=100GeV /
s I £ 1 B First found in 2HDM:
S 200 m t=m, =m, (=m,) [Kanemura, Kiyoura,
5(1) )\hhh D p=s i s * Okada, Senaha, Yuan ‘02]
: N'=2m, /120
<-'.: : ;
| = 100 | S
M : BSM mass: & 160
N :#ofd.ofof =
> 5 % o
- Size of new effects e 4\
0 = e B R et | : L :
100 200 300 400 500
mg, (GeV) Huge BSM
P effects possible!
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anyH3: full 1L calculation of A_ in any renormalisable model

“ -
- #
// s
i -
Ahbh = ===~ < + ----Q\ F e
\\ "\\
e > . i
v W
tree-level: A{% 5 o0 T B, - S
hhh one-particle irreducible: 0, . Annh
tadpoles: 6% X
A PEs: tadpoles hhh
o
;s N
,—’ ,.‘ A
\\
N
- N AUl - - K T
" " - ,
- . b p *

external leg corretions: 5%%3)\}1.‘1}1

rd
-

s
-
+ -’
4
s
hY
b
.
\
L ”
W

Lol 1
renormalisation: JE"I)‘ ARRh
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of aligned BSM models
—

1.0

13—
AH 1'2_
11

Decoupling in «) in various scenarios
—_—

N RN fe=fey

III’l()\}th) [Ge\/]

— SM
— SSM - qH ]
—— IDM -

—— TSMy=;

THDM-II
NTHDM-II ]
TSMy—g .

GeorgiMachacek ]

THDM-I: mpy = M = 400 GeV, my = mp= = 700GeV, tg = 2

125 15

— p; = (p*,mj,mj) _w
2.4L | ) | 1 ) | .

0 200 400 600 00 1000 1200 1400
100 / =
______________________ e Ls!

) S —— e . . . . u

0 200 400 600 800 1000 1200 1400

V7P [GeV]
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anyH3: mass-splitting effects in various BSM models

Mass-splitting effects on k) for various aligned SU(2), multiplets

7 ! | | I I | | | I
~ Consider the non-decoupling T AS CONTL9099- 050 /
limit in several BSM models i - f
Mggy = M? + Mo - SM
- —— IDM
S5F SM + doublet
- —— THDM-II
- Increase M,,, keeping M l TSMy_; SM + triplet
fixed . 2 ir GeorgiMachacek SM + 2 triplets
— large mass splittings -
- large BSM effects! s L
L HL_LHC
> Perturbative unitarity ol
checked with _m
anyPerturbativeUnitarity i
X ;

350 400 450 500 550 600 650 700 750 800
MBSM [GeV}

Here: scenarios with lightest BSM scalar mass & BSM mass param.

at 400 GeV, other BSM scalar masses = M__,.
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> Constraints on BSM
parameter space!



Two-loop calculation of A_

Goal: How large can the two-loop corrections to A become?
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An effective Higgs trilinear coupling

-~ In principle: consider 3-point function ',
but this is momentum dependent - very difficult beyond one loop

> Instead, consider an effective trilinear coupling

N 0°Vert N
hhh =~

min
entering the coupling modifier
A 3m?
jn = R ()M = 22
()\(0) )SM v
hhh

constrained by experiments (applicability of this assumption discussed later)
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Effective-potential calculation

- Step 1: compute Vg = V() 4

> V@: 1P| vacuum bubbles

1672

v 4

1

(1672)2

(2

(MS result)

[JB, Kanemura ‘19]

> Dominant BSM contributions to V@ = diagrams involving heavy BSM scalars and top quark

> Neglect masses of light states (SM-like Higgs, light fermions, ...)

-
- ~
- ~
’ N
s AN
! \
! \
, h, H
1 1
\ !
AY /
N /
AN s
\\‘H"/
/’—--.\ /a--\
/ \ / Al
I I
I 11
\ 1\
\ 7/ N 7
~ ~ P
=== ===
- Ve ~
/! hY / AN
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I ()
\ I\
\ VARERN ’
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> fa—
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’ \
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1
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I
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\ /
’
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e —
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Effective-potential calculation

[JB, Kanemura ‘19]

1 1 _
AREE -V (MS result)

. : Vg = V()
Step 1. compute Ve + 16722 (1672)

> V@: 1Pl vacuum bubbles
> Dominant BSM contributions to V@ = diagrams involving heavy BSM scalars and top quark

- Step 2: derive an effective trilinear coupling

)\ — ag%ff — ﬂMf%]Veff —I_ 8_3 L § 82 ]. 8
I B Y Oh3 oh? v oh
(MS result too) C v

/
/
/

Express tree-level

result in terms of

effective-potential
Higgs mass
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Effective-potential calculation

1 1 _
= v 4 T6n2)2 Ve (MS result)

[JB, Kanemura ‘19]

> Step 1: compute Ve = V() +

> V@: 1Pl vacuum bubbles
> Dominant BSM contributions to V@ = diagrams involving heavy BSM scalars and top quark

oh3 v

. . 0>V, 3[M?)vy... 0> 370 190
sep. ), = Pl _ 30 +[ (____)]AV

min. ahQ v 8h min.

(MS result too)

- Step 3: conversion from MS to OS scheme !
> Express result in terms of pole masses: M, M, , M_ (®=H,A,H*); OS Higgs VEV Uphys = NoTe
F

> Include finite WFR: Appp = (205 /ZMS)3/2)\, 0

> Prescription for M to ensure proper decoupling with M2 = M? 4+ \pv? and M —
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Our results in the aligned 2HDM [JB, Kanemura ‘19]

Taking degenerate BSM scalar masses: M_ =M =M, =M *

T T T | ‘ ' ' | ‘ ' ' ' \ 1 T T T 40 [T T T T T T T T T T T T T T T T .1 T -r -' ]
N ina limi : : =M =M, := Non-d ling limit ;-
[ .\‘Decouplmg limit My=M,=M,=M¢, ) A.f,H My=M,:=Mq¢ Non-decoupling limi ;,:
20 - - M=0 8 ]
Y sg-a=1 | 35/ I
\ - ! i
i : tg=15
18N\ % B

.\‘ F—M¢2-M2= 1L | 3.0:

Z“ 400Gev - 2L

RN
o
P

> 52.5:
2.0f
1.5}
1.0}
0 500 1000 1500 2000 100 200 300 400 500
M [GeV] Mo [GeV]
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Constraining BSM models with A_

I. Can we apply the limits on k,, extracted from experimental searches for
di-Higgs production, for BSM models?

ii. Can large BSM deviations occur for points still allowed in light of theoretical and
experimental constraints? If so, how large can they become?

As a concrete example, we consider a 2HDM

DESY Page 47



A benchmark scenario in the alighed 2HDM

> Two-Higgs-Doublet Model (2HDM). ?
nd
add a 2nd scalar doublet to the SM Our benchmark:
Here: CP conservation assumed, Yukawa couplings of type | 2 BSM scales
(varied)
~  Mass eigenstates: +—MaA = Mg+ o @

2 CP-even Higgs bosons
_ +M=mg

n (125-GeV Higgs), H

CP-odd Higgs boson A

Charged Higgs bosons H+
M: new BSM mass term in 2ZHDM

LL
Va4

. _ _ VU EW scale 0
~ Scenario with alignment: couplings of h are SM-

like at tree level
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Can we apply di-Higgs results for the alighed 2HDM?

- Current strongest limit on k, are from ATLAS double- (+ single-) Higgs searches

-0.4 < K, < 6.3 [ATLAS-CONF-2022-050] [where k,=A, /(A

> What are the assumptions for the ATLAS limits?

@»SM]

All other Higgs couplings (to fermions, gauge bosons) are SM-like

- this is ensured by the alignment v/

The modification of A, is the only source of deviation of the non-resonant Higgs-pair production cross section

from the SM
DOC000) i
// l
A t —@—.\ |(I)
(I)\\l
TOOO0O ®--

x O(y:97 1 os) included

h

h

DO00C0—T~> - - ----
T A

potoy Lo

I
DOO000——= e --1-

o« O(yiginee) notincluded

— We correctly include all leading BSM effects to di-Higgs production, in powers of ¢,,00, Up t0 NNLO! v

- We can apply the ATLAS limits to our setting!

(Note: BSM resonant Higgs-pair production cross section also suppressed at LO, thanks to alignment) :3> _q? -8’ .

~h

-

~

~h
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A benchmark scenario in the aligned 2HDM [Bahl, JB, Weiglein PRL "22]

Results shown for alighed 2HDM of type-l, similar for other types (available in backup)

We take m =m ,, M=m , tanf3=2

H+?

2HDM type I, M = my, mg = mg+,tanff =2, a =8 —n/2

1400

1200

1000

ma [GeV]

Excluded by:
600 [

constraints
other constraints

400 ¢

2
rc& ) contours

400 600 800 1000 1200 1400
DESY. | QURS Graduate Week — Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024

Grey area: area excluded by other constraints,
in particular:

- BSM Higgs searches,

- boundedness-from-below (BFB),

- perturbative unitarity (at NLO)

Light red area: area excluded both by other
constraints (BFB, perturbative unitarity) and by
K,@ > 6.3 [in region where k,® < -0.4 the
calculation isn’t reliable]

Dark red area: new area that is excluded
ONLY by «,@ > 6.3. Would otherwise not be

excluded!

Blue hatches: area excluded by «,® > 6.3 -
impact of including 2L corrections is significant!
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A benchmark scenario in the aligned 2HDM [Bahl, JB, Weiglein PRL "22]

Results shown for alighed 2HDM of type-l, similar for other types (available in backup)

We take m =m ,, M=m , tanf3=2

H+?

2HDM type I, M = my, mg = mg+,tanff =2, a =8 —n/2

NLO pert. unit.

Excluded by:

constraints

BSM nggs _ other constraints
searches

S e /// K&Q) contours
400 600 800 1000 1200 1400
my [GeV]
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Grey area: area excluded by other constraints,
in particular:

- BSM Higgs searches,

- boundedness-from-below (BFB),

- perturbative unitarity (at NLO)

Light red area: area excluded both by other
constraints (BFB, perturbative unitarity) and by
K@ > 6.3 [in region where «,@ < -0.4 the
calculation isn’t reliable]

Dark red area: new area that is excluded
ONLY by x,@ > 6.3. Would otherwise not be

excluded!

Blue hatches: area excluded by ,® > 6.3 -
impact of including 2L corrections is significant!
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A benchmark scenario in the alighed 2HDM - future prospects

Suppose for instance the upper bound on k, becomes k, < 2.3

2HDM typel, M =my, mag=my+, tan =2, a =74 — /2

1400

1200

800 FExchided by:

(2]

600 ‘ 5 -+ other
constraints
other constraints

(2]
A

Prospect for &
limit at HL-LHC

2]
A

400

—

contours

100600 800 1000 1200 1400
ey [GEV]
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>

Golden area: additional exclusion if the limit on
K, becomes «,? < 2.3 (achievable at HL-LHC)

Of course, prospects even better with an e+e-
collider!

Experimental constraints, such as Higgs
physics, may also become more stringent,
however not theoretical constraints (like BFB or
perturbative unitarity)
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A benchmark scenario in the alighed 2HDM

In view of recent ATLAS-CONF-23-034

2HDM type I, M =mpy, mqg =mpgs,tanf =2, a=8 —7/2

.«:&2) contours
1400 § —— ATLAS-CONF-23-034 Obs.

1200
— 1
= 000
[<b]
O,
~T
SN ‘
Excluded by:
600F
constraints
other constraints
400 f - Prospect for K:&z)
: limit at HL-LHC

100 600 800 1000 1200 1400
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»

Green line: additional exclusion from direct
searches for heavy Higgs bosons, via
A-ZH

with full LHC-Run2 data
[ATLAS-CONF-23-034]

Small excess (2.9 o) for m, ~ 450 GeV and
m, ~ 650 GeV
— near region probed by k, at HL-LHC

— complementarity between direct and indirect
searches!
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A . in relation to thermal history of the EWPT

- Corrections to A, correlate with the thermal history of the

: :_'“““““'“““““““f EWPT
67 If potential barrier is too high, the EWPT cannot occur
j — vacuum trapping (black region)
o ) . :
[ e _ Conversely, it can occur that the EW symmetry is not
ALIL " o - EIE)I(()Z' _ restored at high T (blue region)
A0 oo ATLAS limit ] . -
& | E gt Strong 1st order EWPT, with gravitational waves
N ) _ﬁ__mpzd' . (produced by bubble collisions) observable at LISA in
[ SNR > 1 ‘ pink
5 — ——————————— Strom 5 ist'&ae'rf * Impact of 2L corrections likely strong
I EWPT ‘
| - Sphaleron decoupling condition
I U T T TR VR ) 1SS S | N S VRN VR T LR /UC
0 100 200 300 400 T—” rather than —C > 1
mag—mgyg [GQV] n
Figure from [Biekotter et al., 2208 . 14466] All receive quantum
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Cosmological relics
of a strong first-order phase transition

DESY.
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Gawttlonal wave from first-order phase transitions ... s.vanoq

N [Caprini et al. ‘15, ‘19]
hQQGW — h29¢ env T h’QQSW =+ hZQturb

~ For each contributions, results/estimates exist, which
depends mostly on:
» Assumptions for spectral shapes for different types of
GW sources

- o: “latent heat”, ratio of vacuum energy density
released in the transition to radiation bath density

—_~ *
- a pvac/prad

Figure adapted from [Jinno, Konstandin, Rubira ‘20] 1
and [Servant ‘'22] time

Bubble Collisions N
“Sound waves” . . .
“Turbulences in sHEFIEETE" /. (Compressional plasma) > BIH, where (3 is (approx.) the inverse duration of the

PT, and H, is the Hubble parameter at T, (temperature

when GW are produced) . Euclidian
action of critical

B=— dSE Lt Al nuc bubble

- I,... bubble

dt t=t. Fnuc dt t=t. nucleation rate

“Wall Collisions”

Envelope approximation) > VW bubble wall Ve|OCIty

(often taken as an assumption, but see workshop at DESY/UHH
“How fast does the bubble grow?”)
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Probing scenarios of SFOEWPT with gravitational waves

» Exemple 1: spectra of GW produced by the EWPT in the
near-aligned Higgs EFT [Kanemura, Nagal ‘21],
[Kanemura, Nagai, Tanaka ‘22]

/\: mass of BSM state(s), k. no. of BSM d.o.f;

. kb _ ; n ~ XU2
r: “non-decouplingness A2 = M2 4002 r= v
N 4 f/
10~9 > (/ e /,:9 ‘ /
N A
5*-..\. Y e 3 S
—11 EC/G‘:-.'Q/. 7, A
10 'x,\. RS P /
85 ~<) i
8 =~ ~ -~ ,’/ /
% 10-13} "\\ h""'-..,,____// /
c RN yd
o™~ e +
< ~_-7
10—15 L
— (N, Ko, r) = (1000 GeV, 1, 0.525)
107 —— (A ko, r) = (1000 GeV, 1, 0.52)
— (A, Ko, r) = (1000 GeV, 1, 0.48)
—— (A, Ko, ) = (1000 GeV, 1, 0.44)
10—19 Ll ARy A | Ll PR Ll M W YRR | o N
10~> 1074 1073 1072 1071 100 101
f[Hz]
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- Exemple 2: correlation of Kk, and signal-to-noise
ratio (SNR) of GW at LISA for 2HDM scenarios
with SFOEWPT [Biekotter et al. ‘22]

ory® %] at HL-LHC
70 i 72 73

2.20f |

215k ) ]

i3 - ]

e i ’o " o. *

o " ."’ ’ ]

2.10 - ‘e ” =

2.05F /2HDM-II, tan 8 = 3: SNR > 0.1
10 10° 10t 1%

SNR(vw = 0.6)7ys
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Primordial black holes from first-order phase transitions

[

Time o E 14
» i Horizon | | Wotson

-

radiation energy density

A

vacuum :

» Space

Figure from [Kanemura ‘23]
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Primordial black holes from first-order phase transitions

[Gouttenoire, Volansky PRL ‘23]

> Patches of Universe in which EWPT is (randomly) delayed can lead to overdensities sourcing
primordial black holes (PBH)

> PR Pover. — Pbked [Hawking “71], [Hawking, Carr,
PBH formation if: O = g Z 50 ~ 0.45 ‘“74], [Harada, Yoo, Kohri ‘13]
Pofgd
TI me 1 PB H
. — c Nucleation becomes energetically allowed
T teq The universe becomes vacuum-dominated
trBH .
H Orlzon _ —_ t”i Nucleation starts only now in this peculiar Hubble patch
Vacuum-to-radiation E
» transition = 1 té%trec Percolation occurs in the late patch
z (37 % of remaining false vacuum)
/ (4)} #0 v b A dp/p reaches a maximal value
t . ace @ (about 1% of remaining false vacuum)
phase \ Sp v (the patch collapses into a PBH if p/p 2 8,)
. , , $)=0 time _ _
Figure from [Kanemura ‘23], [Tanaka 23] Figure from [Gouttenoire, Volansky PRL 23]

DESY. | QURS Graduate Week — Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024 Page 59



Searching for primordial black holes

Gouttenoire, Volansky PRL ‘23
Mppu [g] [Gou I y ]
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Searching for primordial black holes

Gouttenoire, Volansky PRL ‘23
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Complementary probes of SFOEWPT with PBHs

> Production of PBHs and GW in near-aligned Higgs EFT
/\: mass of BSM state(s),; k,; no. of BSM d.o.f,

r: “non-decouplingness”
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Summary

[ | LHC 3000 fb” (ATLAS: ATL-PHYS-PUB-2014-016 (2014), Model Dependent « flt)
B LHC 3000 fb” @ ILC 250 GeV, 2000 fb” (Model Independent EFT fit)
1 0 i m LHC 3000 fb” & ILC 250 GeV, 2000 b ]
& ILC 500 GeV, 4000 fb™ & 350 GeV, 200 1o (Model Independent EFT fit)

Origin of EWSB?

Precision of Higgs boson couplings [%]

Thermal History of Higgs Portal

9”533/9“@;;”5}@9@0@9@3?/‘9”79@9”5099@;» @9/4'%?‘%5@ Universe to Hidden Sectors?
Figure from [ILC250 Physics case, 1710.07621] ' —
=

. . . Stability of Uni
The vision for the future of particle physics must acknowledge the central role of m e &
the Higgs field. The Higgs field i1s a crucial part of the Standard Model. It i1s our Higgs 5 con
ignorance about this field that keeps us from solving the remaining mysteries that ol O
the Standard Model t address. To mak < t dy this. We (i CHgend T
e Standar odel cannot address. 'lo make progress, we must remedy this. We |\ gyyasttm Baryogenesis  JRou
need to make clear (with apologies to Red Sanders and Vince Lombardi): “Higgs =
isn’t everything; it’s the only thing.” A vision for particle physics that is not 2 %
built on this idea cannot address the most profound questions for our field or realize Is it unique? Origin of masses? % o
: e %
1ts greatest opportunl.tles.. | | | Originti@REIavor? 8 g
[Peskin, Vision for Elementary Particle Physics 2302.05472] T
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Thank you very much for your
attention!

Contact
DESY. Deutsches Johannes Braathen
Elektronen-Synchrotron DESY Theory group

Building 2a, Room 208a
www.desy.de johannes.braathen@desy.de

DESY.
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