Advanced Course on Higgs Physics

1st Graduate Week of the Quantum Universe Research School

Johannes Braathen (DESY)

Hamburg, Germany | 5-8 February 2024

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline of the lectures

- Part 1: Why a Higgs boson is needed [Yesterday]
- Part 2: Connections between Higgs Physics and unanswered questions of Particle Physics (and possible solutions to them) [Yesterday]
- Part 3: What can be learnt from the Higgs boson at high-energy colliders an overview
- Part 4: The Higgs boson mass as a precision observable calculations and interpretations
- Part 5: The Higgs boson potential, its trilinear coupling, and relations with early-Universe evolution

Part 3: Higgs coupling measurements and precision calculations

h → yy event at CMS

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision! (*more later*)
- > The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- Spin 0
- Not purely CP-odd

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision! (*more later*)
- > The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- Spin 0
- Not purely CP-odd
- Its couplings to gauge bosons (to O(5%)), to 3rd gen. fermions (to O(10%)), to muons (to O(30%)) → so far, Standard-Model (SM) -like

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision! (*more later*)
- > The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- Spin 0
- Not purely CP-odd
- > Its couplings to gauge bosons (to O(5%)), to 3^{rd} gen. fermions (to O(10%)), to muons (to O(30%)) \rightarrow so far, Standard-Model (SM) -like
- Higgs potential is at the origin of the EW symmetry breaking, and Brout-Englert-Higgs mechanism is origin of known particle masses

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision! (*more later*)
- The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- Spin 0
- Not purely CP-odd
- Its couplings to gauge bosons (to O(5%)), to 3rd gen. fermions (to O(10%)), to muons (to O(30%)) → so far, Standard-Model (SM) -like
- Higgs potential is at the origin of the EW symmetry breaking, and Brout-Englert-Higgs mechanism is origin of known particle masses

What we still don't know:

- > Its couplings to 1^{st} and 2^{nd} gen. fermions
- > Its total width; BR(h \rightarrow inv.) < 9%
- Its CP nature
- > Its fundamental nature? (elementary or composite)
- > The structure of the Higgs sector? (minimal or extended)
- The form of the Higgs potential? (more in Part 5)

10

Higgs production at LHC

Diagrams from [CMS Nature '22], Plots from [LHC Higgs WG '16] See also reviews of [Djouadi '05]

Higgs production at LHC

a)

Diagrams from [CMS Nature '22], Plots from [LHC Higgs WG '16] See also reviews of [Djouadi '05]

Higgs decay channels

Decay channels

Loop-induced decays:

DESY. | QURS Graduate Week – Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024

[CMS Nature '22]

Comparison between experiment and theory carried out at the level of:

- Signal strengths
- κ parameters (signal strength modifiers)
- Simplified Template Cross-Sections (STXS)
- Fiducial cross sections
- Coefficients of EFT operators
- Requires high-precision theoretical predictions (with level of accuracy at least matching that of experimental results)
 → both in SM and BSM theories
 - \rightarrow huge efforts from precision calculation communities (QCD, EW, BSM)

Exp. measurement

Total cross section for (inclusive) single-Higgs production, in heavy top limit ($m_t \rightarrow +\infty$) Figure taken from [Weiglein '22], itself from [Wiesemann '22],

based on results from [Anastasiou et al. '15], [Mistlberger '18]

Public tools to confront experimental results with model predictions:

- ≻ HiggsSignals (signal strengths, STXS) [Bechtle et al '13, '20] → now included in HiggsTools [Bahl et al '22]
- Lilith (signal strengths) [Bernon, Dumont '15], [Kraml et al '19], [Bertrand et al '20]

 $\sigma \times B$ normalized to SM prediction

STXS e.g. [ATLAS Nature '22], [CMS Nature '22]

Future projections for Higgs coupling measurements

Global fit in SMEFT, using Higgs data, EW precision observables, di-boson data

e.g. [Snowmass Higgs topical report '22]

→ important to properly assess prospects at future colliders

Future prospects for Higgs coupling measurements

An example calculation of Higgs properties in a BSM model: leading two-loop corrections to $\Gamma(h \rightarrow \gamma \gamma)$ in the Inert Doublet Model

The Inert Doublet Model

> 2 SU(2), doublets Φ_{12} of hypercharge $\frac{1}{2}$

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG) \end{pmatrix} \qquad \text{and}$$

and
$$\Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix}$$

▷ Unbroken Z₂ symmetry $\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2$

$$V_{\text{IDM}}^{(0)} = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right)$$

Model parameters:

3 BSM masses m_{μ} , m_{A} , $m_{\mu+}$, BSM mass scale μ_{2} , inert doublet quartic self-coupling λ_{2}

BSM-scalar masses take form

$$m_H^2 = \mu_2^2 + \lambda_H v^2$$
, $m_A^2 = \mu_2^2 + \lambda_A v^2$, $m_{H^{\pm}}^2 = \mu_2^2 + \lambda_3 v^2$,

with $\lambda_{H,A} = \lambda_3 + \lambda_4 \pm \lambda_5$

Dark Matter in the Inert Doublet Model

Inert scalars: charged under Z₂ symmetry (Z₂-odd)

- Lightest inert scalar = Dark Matter candidate
 assume H here
- DM relic density obtained via freeze-out mechanism, while evading current detection bounds
- > 2 possible scenarios:
 - \rightarrow "Higgs resonance scenario" m_H~m_h/2
 - \rightarrow "Heavy Higgs scenario" m_H \geq 500 GeV
- IDM testable at current and future experiments via
 - DM direct and indirect searches
 - direct searches at colliders
 - precision/indirect tests
 - \rightarrow properties of 125-GeV Higgs boson

Higgs decay to two photons: existing one-loop results

- > DM scenarios of IDM investigated via Higgs properties at one loop (1L) in [Kanemura, Kikuchi, Sakurai '16]
- > Additional charged inert Higgs \rightarrow Higgs decay to 2 photons especially important!

Higgs Low-Energy Theorem

- > Calculation of 2L 3-point functions with external momenta not possible in general
- Assuming m_h << heavy BSM scalar masses, we can employ a Higgs Low-Energy Theorem (see e.g. [Kniehl, Spira '95])
- Compute effective Higgs-photon coupling C_{hyy} of the form

$$\mathcal{L}_{\rm eff} = -\frac{1}{4} C_{h\gamma\gamma} h F^{\mu\nu} F_{\mu\nu}$$

by taking derivative of (unrenormalised) photon self-energy w.r.t Higgs field

 $C_{h\gamma\gamma} = \frac{\partial}{\partial h} \Pi_{\gamma\gamma} (p^2 = 0) \bigg|_{h=0} \qquad \text{where } \Sigma_{\gamma\gamma}^{\mu\nu} (p^2) = (p^2 g^{\mu\nu} - p^{\mu} p^{\nu}) \Pi_{\gamma\gamma} (p^2)$

- Schematically:
- $\frac{\partial}{\partial h} \left[\dots \bullet \dots \bullet \right] = \left[\begin{array}{c} h(p^2 = 0) \\ \dots \bullet \dots \bullet \dots \bullet \end{array} \right]$
- > Neglects incoming momentum on Higgs leg, but fine for $m_h \ll m_{H,A,H\pm}$
- Similar to approach of effective-potential calculations of Higgs mass or trilinear Higgs coupling (→ see Parts 4 and 5)

Computing two-loop BSM corrections to $\Gamma(h \rightarrow \gamma \gamma)$

> All known SM contributions:

- QCD up to 3L [Djouadi '08] (+ refs. therein)
- EW SM-like to full 2L [Degrassi, Maltoni '05], [Actis et al. '09]
- Our new calculation: leading two-loop BSM contributions
 - genuine, dominant, 2L contributions involving inert scalars
 - purely scalar and fermion-scalar contributions to (1L)^2 terms from external-leg and VEV renormalisation

 $C_{h\gamma\gamma}^{(2), \text{ IDM}} = C_{h\gamma\gamma}^{\mathcal{O}(\lambda_3^2)} + C_{h\gamma\gamma}^{\mathcal{O}((\lambda_4 + \lambda_5)^2)} + C_{h\gamma\gamma}^{\mathcal{O}((\lambda_4 - \lambda_5)^2)} + C_{h\gamma\gamma}^{\mathcal{O}(\lambda_2)} + C_{h\gamma\gamma}^{\text{ext.-leg.+VEV}}$

Example: $O(\lambda_3^2)$ diagrams

Photon self-energy diagrams generated with FeynArts, computed with FeynCalc and Tarcer, reduced to (limits of) integrals known analytically; then derivative w.r.t. h taken

Results for the Higgs resonance scenario

Higgs boson and CP measurements

Higgs boson and CP measurements

Additional sources of CP needed for baryogenesis (c.f. Sakharov conditions) → could CP be broken in the Higgs sector ?

CP violation in Higgs-gauge (hVV) couplings:

- Already very constrained via VBF and VH Higgs-production and h→4ℓ decay see e.g. [ATLAS,CMS: 2002.05315, 2104.12152, 2109.13808, 2202.06923, 2205.05120]

- Can only appear at loop level \rightarrow typically small for most BSM models

How about CP violation in Yukawa interactions?

- Possible from tree level
- Numerous ongoing collider investigations at LHC (+ EDMs, c.f. later)
- Conveniently parametrised in terms of a Higgs characterisation model with modified Yukawa couplings

$$\mathcal{L}_{ ext{Yukawa}} = -rac{1}{\sqrt{2}} \sum_{f} y_{f}^{ ext{SM}} ar{f} (c_{f} + i\gamma_{5} ilde{c}_{f}) fh$$
 $_{c_{f}, \ ilde{c}_{f} : ext{CP-even and CP-odd coupling modifiers}}$

▶ NB: in an extended Higgs sector (e.g. 2HDM), there could also be CP violation in scalar couplings!

Constraining CP violation in the tau-Yukawa coupling

A **CP-odd observable** to probe CP structure of tau Yukawa:

Decay angle in h→TT

 \rightarrow sensitive to CP phase in tau Yukawa

 \blacktriangleright Using angular correlation between decay products in h \rightarrow TT decays, ATLAS and CMS have obtained the following experimental constraints:

П

 ϕ_{CP}

Constraining CP violation in the tau-Yukawa coupling

Include CMS results on CP phase to global fit in Higgs/tau characterisation model

Slide elements from H. Bahl and G. Weiglein

Constraining CP violation in the tau-Yukawa coupling

Electron electric dipole moment (EDM) also gives strong limit on CP violation

CPV phase from tau Yukawa enters Barr-Zee diagram

ACME [Nature '18]: $d_e \leq 1.1 imes 10^{-29} \, e \, { m cm} \, { m at} \, 90\% \, { m CL}$

Using [Panico, Pomarol, Riembau '18], [Brod, Haisch, Zupan '13], [Brod, Stamou '18],...

 \blacktriangleright How do constraints from electron EDM and from LHC h \rightarrow tt angular distributions compare?

Intermezzo: additional Higgs bosons at the LHC?

Possible hints of a Higgs boson at 95 GeV – diphoton channel

Possible hints of a Higgs boson at 95 GeV – several channels

Possible hints of a Higgs boson at 95 GeV – interpretations

DESY. | QURS Graduate Week – Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024

Example 2: in a Two-Higgs-Doublet Model extended by a complex singlet (S2HDM) [Biekötter, Heinemeyer, Weiglein '23]

Hints for two Higgs bosons at 450 and 650 GeV?

DESY. | QURS Graduate Week – Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024

[ATLAS '23]

Part 4: The Higgs boson mass, a new precision observable

Measurements of the Higgs boson mass

CMS

Higgs mass already measured at sub-permille level! \rightarrow new precision observable!

 $M_{h} = 125.09 \pm 0.21(stat.) \pm 0.11(syst.) GeV$

[ATLAS & CMS Run 1 combined, Moriond 2015]

$M_{h} = 125.11 \pm 0.11$ (stat.) ± 0.09 (syst.) GeV

Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) Stat. Only - Total 2016: 35.9 fb⁻¹ (13 TeV) ATLAS Combination Stat. only HH Total Total (Stat. Only) **Run 1:** \sqrt{s} = 7-8 TeV, 25 fb⁻¹, **Run 2:** \sqrt{s} = 13 TeV, 140 fb⁻¹ Run 1 H $\rightarrow \gamma \gamma$ 124.70 ± 0.34 (± 0.31) GeV Total (Stat. only) **Run 1** $H \rightarrow \gamma \gamma$ 126.02 ± 0.51 (± 0.43) GeV 125.59 ± 0.46 (± 0.42) GeV Run 1 H \rightarrow ZZ \rightarrow 4I **Run 1** $H \rightarrow 4\ell$ 124.51 ± 0.52 (± 0.52) GeV 125.07 ± 0.28 (± 0.26) GeV Run 1 Combined **Run 2** $H \rightarrow \gamma \gamma$ 125.17 ± 0.14 (± 0.11) GeV Run 2 $H \rightarrow 4\ell$ 124.99 ± 0.19 (± 0.18) GeV 2016 H→γγ 125.78 ± 0.26 (± 0.18) GeV **Run 1+2** $H \rightarrow \gamma \gamma$ 125.22 ± 0.14 (± 0.11) GeV 125.26 ± 0.21 (± 0.19) GeV 2016 H \rightarrow ZZ \rightarrow 4I **Run 1+2** $H \rightarrow 4\ell$ 124.94 ± 0.18 (± 0.17) GeV Run 1 Combined 125.38 ± 0.41 (± 0.37) GeV 125.46 ± 0.16 (± 0.13) GeV 2016 Combined Run 2 Combined -0-125.10 ± 0.11 (± 0.09) GeV 125.38 ± 0.14 (± 0.11) GeV Run 1 + 2016 Run 1+2 Combined ---125.11 ± 0.11 (± 0.09) GeV 124 125 126 128 123 127 122 123 124 125 126 129 127 128 m_н (GeV) $m_{\rm H}$ [GeV] [ATLAS 2308.04775] [CMS-HIG-19-004] Page 36

[ATLAS 2308.04775 from Run1+Run2 in $h \rightarrow yy$ and $h \rightarrow 4l$ channels]
Radiative corrections to the Higgs boson mass

Feynman-diagrammatic calculations, *i.e.* solve for M_h^2

NB: other possible approach → **EFT** (more later)

 $\hat{\Sigma}_{hh}(p^2)$ computed order-by-order in perturbation theory as Feynman diagrams. **Difficulty**: momentum dependence of self-energy diagrams not always known at two loops and higher + long numerical calculations

- effective potential approximation $V_{\text{eff}} = V^{(0)} + \Delta V$ where ΔV are quantum corrections, computed as
 - one loop: supertrace formula
 - two loops and beyond: 1PI vacuum bubble diagrams

$$\left. \frac{\partial^2 V_{\text{eff}}}{\partial h^2} \right|_{\min} \leftrightarrow \hat{\Sigma}_{hh}(0)$$

 \Rightarrow much simpler/faster calculations, but with lower accuracy

▷ tadpole equation(s) $\frac{\partial V_{\text{eff}}}{\partial h}\Big|_{\text{min}} = 0$ are needed to properly relate all couplings

Two interpretations of Higgs mass calculations

> Higgs mass M_h is computed as a function of Lagrangian parameters, in particular quartic Higgs coupling λ

 $M_h = M_h(\lambda, \cdots)$

> <u>Case 1</u>: λ is a free parameter of the theory

e.g. in SM and many extensions (SSM, 2HDM, etc.)

 \rightarrow one cannot predict M_h

 \rightarrow but one can use the equation $M_h(\lambda, \dots) = 125.09 \text{ GeV}$ to extract λ and study the high-scale behaviour of the theory

> <u>Case 2</u>: λ is predicted by the theory

e.g: - in SUSY, λ is related to other couplings (EW gauge couplings + eventually SUSY scalar couplings)

- in (classical) scale invariant models, λ =0 at the scale at which the symmetry is imposed

- but also the case in a non-SUSY extension of the SM taken as low-energy limit of a UV-model in which λ is predicted (*more on this later*)

 \rightarrow **M**_h can be predicted as a function of the model parameters

$$(m_h^2)_{\text{tree}} \le M_Z^2 c_{2\beta}^2, \qquad M_h^2 \simeq (m_h^2)_{\text{tree}} + \frac{3m_t^4}{4\pi^2 v^2} \left(\ln \frac{M_{\text{SUSY}}^2}{m_t^2} + |\widehat{X}_t|^2 - \frac{1}{12} |\widehat{X}_t|^4 \right) + \dots$$

 \rightarrow Comparing computed and measured values of M_h \rightarrow constrain allowed BSM parameter space

Case 1:

Extracting scalar quartic couplings from physical spectra (masses & mixing angles)

Extracting a scalar quartic coupling from M_h

In the absence of mixing

Higgs pole mass M_h related to Lagrangian coupling λ by

 \rightarrow highly non-linear equation in λ ...

but can be inverted analytically with a perturbative expansion of λ as

$$\begin{split} \lambda &= \lambda^{(0)} + \frac{1}{16\pi^2} \delta^{(1)} \lambda + \frac{1}{(16\pi^2)^2} \delta^{(2)} \lambda + \cdots \\ \rightarrow \text{ one obtains } \qquad \lambda^{(0)} &= \frac{M_h^2}{2v^2} \\ \delta^{(1)} \lambda &= -\frac{1}{2v^2} \delta^{(1)} m_h^2 \mid_{\lambda = \lambda^{(0)}} \\ \delta^{(2)} \lambda &= -\frac{1}{2v^2} \left[\delta^{(1)} \lambda \frac{\partial}{\partial \lambda} \delta^{(1)} m_h^2 + \delta^{(2)} m_h^2 \right]_{\lambda = \lambda^{(0)}} \end{split}$$

Extracting the SM quartic Higgs coupling from M_h

- Renormalisation-group running of SM quartic Higgs coupling λ determines the fate of the EW vacuum
 → stable / metastable / unstable
- > High-precision calculation of $M_h(\lambda)$ to extract λ is required for a reliable study of vacuum stability

State-of-the-art in the SM = Full 2L (+leading 3L and 4L) diagrammatic calculation of m_h and extraction of λ
 [Degrassi et al. '12], [Buttazzo et al. '13], [Martin '13], [Martin '14], [Martin, Robertson '14, '19], [Kniehl et al. '15, '16], [Alam, Martin '22]

 \rightarrow High-precision study of the stability of EW vacuum in SM since [Degrassi et al. '12], [Buttazzo et al. '13] (see also [Chigusa, Moroi, Shoji '18])

Extracting a scalar quartic coupling from M_h

> A BSM example without scalar mixing: the **Z**₂**SSM**

 $\mathbb{Z}_2 \mathsf{SSM} \equiv \mathsf{SM} + \mathsf{real singlet} \ S + \mathbb{Z}_2 \text{ symmetry under which } S \to -S \\ \Rightarrow \mathsf{no mixing between } S \text{ and } h$

$$V^{(0)} = \mu^2 |\mathbf{H}|^2 + \frac{1}{2} M_S^2 S^2 + \frac{1}{2} \lambda |\mathbf{H}|^4 + \frac{1}{2} \lambda_{SH} S^2 |\mathbf{H}|^2 + \frac{1}{2} \lambda_S S^4$$

Extract λ from m_h at two loops

Extracting scalar quartic couplings from physical spectra

In presence of mixing

Several relations between loop-corrected masses m_{ϕ}^2 and parameters/couplings λ_i

$$m_{\phi}^2 = \operatorname{eig}[(\mathcal{M}^2)^{\operatorname{loop}}(\{\lambda_i\})]_{\phi}$$

 $\phi: \text{ list of fields}$

 $i: \text{ list of couplings}$

 \Rightarrow very difficult to invert analytically

▶ Instead proceed by numerical iterations: compute $m_{\phi}^2(\{\lambda_i, \dots\})$ at given loop-order, for varying Lagrangian parameters, until results correspond to desired physical spectrum

Numerical calculations can now be performed up to two-loop order with SARAH/SPheno (more later) + can be done with scanning tools like BSMArt [Goodsell, Joury '23] [Staub '08, '15], [Porod '03], [Staub, Porod '11]

Extracting scalar quartic couplings from physical spectra

> An example BSM model with scalar mixing: the **Two-Higgs-Doublet Model (2HDM)**

$$\begin{split} V^{(0)} &= m_{11}^2 \Phi_1^{\dagger} \cdot \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \cdot \Phi_2 + m_{12}^2 \left[\Phi_1^{\dagger} \cdot \Phi_2 + \Phi_2^{\dagger} \cdot \Phi_1 \right] \\ &+ \lambda_1 \left(\Phi_1^{\dagger} \cdot \Phi_1 \right)^2 + \lambda_2 \left(\Phi_2^{\dagger} \cdot \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \cdot \Phi_1 \right) \left(\Phi_2^{\dagger} \cdot \Phi_2 \right) \\ &+ \lambda_4 \left(\Phi_1^{\dagger} \cdot \Phi_2 \right) \left(\Phi_2^{\dagger} \cdot \Phi_1 \right) + \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \cdot \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \cdot \Phi_1 \right)^2 \right] \\ & \tan \beta = \frac{v_2}{v_1} \end{split}$$

Numerical iterations with SARAH/SPheno [Staub '08, '15], [Porod '03], [Staub, Porod '11] At *N*-loop level (N = 0, 1, 2), an iterative extraction can be done

$$\begin{array}{c} \text{Take } m_{12}^2 \text{ and } \tan\beta \text{ as } \overline{\text{MS}} \text{ inputs} \\ \& \\ m_{11}^2 \text{ and } m_{22}^2 \text{ found by solving the } N\text{-loop tadpole equations} \\ \& \\ \text{Fix Higgs spectrum } - m_h^2, m_H^2, m_A^2, m_{H^{\pm}}^2, \tan\alpha - \\ & \text{at } N\text{ loops!} \end{array} \right\} \Rightarrow \begin{array}{c} \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \\ \text{at } N \text{ loops!} \\ \text{at } N \text{ loops!} \end{array}$$

Extracting scalar quartic couplings from physical spectra

 \rightarrow UV behaviour of 2HDM can be drastically changed by loop-level extraction of quartic couplings!

Case 2: SUSY Higgs mass calculations

SUSY Higgs mass calculations – fixed-order calculation

> SUSY models contain extended scalar sectors \rightarrow **physical masses** found as solutions for p² of equation

$$\det\left[p^2\delta_{ij} - (\mathcal{M}_{\text{tree}}^2)_{ij} - \Delta\mathcal{M}_{ij}^2(p^2)\right] = 0$$

> At tree level, $m_h \le M_z$, however, since early 1990's ([Okada, Yamaguchi, Yanagida '90], [Ellis, Ridolfi, Zwirner '90], [Haber, Hempfling '90]) it has been known that loop corrections can raise m_h to 125 GeV

$$M_h^2 \simeq (m_h^2)_{\text{tree}} + \frac{3m_t^4}{4\pi^2 v^2} \left(\ln \frac{M_{\text{SUSY}}^2}{m_t^2} + |\widehat{X}_t|^2 - \frac{1}{12} |\widehat{X}_t|^4 \right) + \dots$$

tan β : ratio of Higgs VEVs X_t: stop mixing parameter M_{SUSY}: SUSY-breaking scale $\widehat{X}_t \equiv X_t/M_{\rm SUSY}$

- Since then, huge efforts to improve precision of SUSY Higgs mass calculations
 - → summarised in recent report of "Precision SUSY Higgs Mass Calculation Initiative KUTS" [Slavich, Heinemeyer (eds.) et al 2012.15629]

 \rightarrow for the MSSM, state-of-the-art is now almost full 2L in effective-potential approximation, + leading 2L momentum-dependent effect + leading 3L corrections

 \rightarrow for the NMSSM and beyond (e.g. Dirac gaugino models), leading 2L corrections

+ reliable estimates of theoretical uncertainties (from missing higher orders & parametric uncertainties) \rightarrow 1-3 GeV depending on point

However, experimental searches now put lower bounds on stop (scalar partner of top quarks) masses beyond 1 TeV → fixed-order calculations start to suffer from large logs

SUSY Higgs mass calculations – the problem of large logs

Scale of New Physics M_{NP} driven higher by experimental searches

 \Rightarrow in fixed-order calculations, large logarithmic terms $\propto \log \frac{M_{\text{NP}}}{m_{\text{EW}}}$ can spoil the accuracy, or even the validity, of the perturbative expansion, *e.g.*

$$\mathcal{O} = \underbrace{\alpha^0 a_0}_{\text{tree-level}} + \underbrace{\alpha(b_1 L + a_1)}_{\text{one-loop}} + \underbrace{\alpha^2(c_2 L^2 + b_2 L + a_2)}_{\text{two-loop}} + \cdots$$

$$\alpha \equiv (g/4\pi)^2, L \equiv \log M_{\text{NP}}/m_{\text{EW}}, a_i, b_i, c_i \in \mathbb{C}.$$
Loss of perturbativity if
$$\alpha L \gtrsim 1 \cdots$$

The perturbative expansion must be reorganised \rightarrow EFT calculation

Intermezzo: an EFT primer

E

- Integrate out heavy fields at some scale $\Lambda \sim M_{\rm NP}$ and work in a low energy EFT below Λ
- \blacktriangleright Couplings in the EFT receive threshold corrections at the matching scale Λ

Coupling of the UV theory \tilde{g} **UV theory** (light & heavy particles) Match effective actions computed in UV th. and EFT, at ℓ loops: $\tilde{\Gamma}^{\mathsf{UV}}(Q=\Lambda) = \Gamma^{\mathsf{EFT}}(Q=\Lambda)$ $\Lambda \sim M_{\rm NP}$ RGE running in EFT ℓ -loop threshold correction **EFT** (light particles only) to coupling of the EFT g $q = \tilde{q} + \Delta q$

► Use **RGEs** to run the couplings from the high input scale, to the low scale ($\ll M_{NP}$) at which the calculation is performed \Rightarrow **large logs are resummed!**

SUSY Higgs mass calculations – EFT approach

Simplest example: UV theory \rightarrow MSSM, and EFT \rightarrow SM

see e.g [Bernal, Djouadi, Slavich '07], [Draper, Lee, Wagner '13], [Bagnaschi, Giudice, Slavich, Strumia '14], [Pardo Vega, Villadoro '15],

[Bagnaschi, Pardo Vega, Slavich '17], [Athron et al. '17], [Harlander, Klappert, Ochoa Franco, Voigt '18], etc.

More choices of EFTs also considered, see [KUTS report '20] and refs. therein

In many cases $M_S \gg v \Rightarrow$ effect of higher-dimensional operators $\propto v/M_S$ can be disregarded

SUSY Higgs mass calculations – hybrid approaches

- However, for lower MSUSY, EFT calculations lose accuracy (because of v/M_{SUSY} effects)
- Can one combine the advantages of fixed-order (reliable for low M_{SUSY}) and EFT (reliable for high M_{SUSY})?
 → Yes!
- > Different approaches

1) FeynHiggs approach [Hahn, Heinemeyer, Hollik, Rzehak, Weiglein PRL '13] $(M_h^2)_{\rm FH\ hyb.} = (m_h^2)_{\rm tree} + \underbrace{\hat{\Sigma}_{hh}^{\rm FO}(M_h^2)}_{\rm fixed-order} + \underbrace{[\lambda(M_t)v^2]_{\rm logs.}}_{\rm EFT\ log.\ resum.} - \underbrace{[\hat{\Sigma}_{hh}^{\rm FO}(M_h^2)]_{\rm logs}}_{\rm subtraction\ term}$ 2) FlexibleSUSY approach \rightarrow "pole mass matching" [Athron et al '17] $\lambda_{\rm SM}(M_S) = \frac{1}{2v^2(M_S)} \left[(M_h^2)_{\rm HET} - (\Delta M_h^2)_{\rm SM} \right]$ (also included in SARAH/SPheno) 3) Aachen group solution

[Harlander, Klappert, Voigt '19]

$$(M_h^2)_{\rm hyb} = (M_h^2)_{\rm EFT} + \Delta_v^{0\ell+1\ell} + \Delta_v^{2\ell}$$

Different types of SUSY Higgs mass calculations – summary

$$M_h^2 \simeq (m_h^2)_{\text{tree}} + \frac{3m_t^4}{4\pi^2 v^2} \left(\ln \frac{M_{\text{SUSY}}^2}{m_t^2} + |\widehat{X}_t|^2 - \frac{1}{12} |\widehat{X}_t|^4 \right) + \dots$$

3 types of calculations for M_h :

- Fixed-order approach:
 - + precise for low SUSY scales
 - but for high scales large logarithms $log(M_{SUSY}/m_t)$ spoil convergence of perturbative expansion
- > Effective field theory approach:
 - + precise for high SUSY scales (since logarithms are resumed)
 - but for low scales $O(v/M_{_{\rm SUSY}})$ terms are missed if higher-dimensional operators are not included
- Hybrid approach combing FO and EFT approaches:
 ++ precise for both low and high SUSY scales.
- Current status in FeynHiggs (c.f. figure)
 - \rightarrow FO: full 1L + 2L in gaugeless limit,
 - \rightarrow EFT: full leading-log (LL) + Next-to-LL (NLL) + NNLL + partial N³LL in gaugeless limit

Accessing the stop mixing parameter X, via the Higgs boson mass

> X_t enters prediction of M_h from 1L:

$$M_h^2 \simeq (m_h^2)_{\text{tree}} + \frac{3m_t^4}{4\pi^2 v^2} \left(\ln \frac{M_{\text{SUSY}}^2}{m_t^2} + |\widehat{X}_t|^2 - \frac{1}{12} |\widehat{X}_t|^4 \right) + \dots$$

- > Significant dependence of M_h on X_t , even for high SUSY scale, at 10 or 100 TeV!
- > If stop masses and tan β known $\rightarrow X_t$ can be extracted from M_h

Automating Higgs mass computations

The motivation for automation

- Interest for non-minimal SUSY and non-SUSY models is growing, driven by experimental results, but in most cases Higgs mass calculations beyond one-loop are still missing
 huge uncertainties
- Computing corrections from the beginning for every new model would be extremely inefficient and time consuming!

Idea:

Do the **calculation for a general renormalisable theory** and then apply that result to the considered model

 \rightarrow can be automated, in public tools like SARAH [Staub '08-'15] or FlexibleSUSY [Athron et al. '14, '17]

Generic calculations of the Higgs boson mass – conventions

Write the most general renormalisable interactions with real scalars ϕ_i , Weyl fermions ψ_I and vector bosons A^a_{μ} :

$$\begin{split} \mathcal{L}_{S} &= -\frac{1}{6} \lambda^{ijk} \phi_{i} \phi_{j} \phi_{k} - \frac{1}{24} \lambda^{ijkl} \phi_{i} \phi_{j} \phi_{k} \phi_{l}, \\ \mathcal{L}_{SF} &= -\frac{1}{2} y^{IJk} \psi_{I} \psi_{J} \phi_{k} + c.c., \\ \mathcal{L}_{SV} &= -\frac{1}{2} g^{abi} A^{a}_{\mu} A^{\mu b} \phi_{i} - \frac{1}{4} g^{abij} A^{a}_{\mu} A^{\mu b} \phi_{i} \phi_{j} - g^{aij} A^{a}_{\mu} \phi_{i} \partial^{\mu} \phi_{j}, \\ \mathcal{L}_{FV} &= g^{aJ}_{I} \bar{\psi}^{I} \overline{\sigma}^{\mu} \psi_{J} A^{a}_{\mu}, \\ \mathcal{L}_{gauge} &= g^{abc} A^{a}_{\mu} A^{b}_{\nu} \partial^{\mu} A^{\nu c} - \frac{1}{4} g^{abe} g^{cde} A^{\mu a} A^{\nu b} A^{c}_{\mu} A^{d}_{\nu} + g^{abc} A^{a}_{\mu} \omega^{b} \partial^{\mu} \bar{\omega}^{c} \end{split}$$

- Here, all fields are defined in mass-diagonal bases (some care needed to diagonalise scalar masses)
- Interactions between scalars and ghosts turned off by working in Landau gauge
- Parameters usually* renormalised in minimal subtraction schemes (\overline{MS} or \overline{DR}) (*: with one notable exception → anyH3 in Part 5)

Generic calculations of the Higgs boson mass – diagrams

Then we need to compute loop diagrams for $V_{\rm eff}$, the tadpole equations and the mass diagrams, e.g.

Generic 2L results available for:

- V_{eff}:
[Martin '01] (Landau gauge),
[Martin, Patel '18] (general gauge)
(3L V_{eff} in [Martin '17])

- **Tadpoles**: [Goodsell, Killian, Staub '15]

- **Self-energies**: [Martin '03, '05], [Goodsell, Paßehr '19]

Generic calculations of the Higgs boson mass with SARAH/SPheno

Thank you very much for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Johannes Braathen DESY Theory group Building 2a, Room 208a johannes.braathen@desy.de

DESY.

Bonus: The Goldstone Boson Catastrophe, and its solutions

New results obtained with generic calculations

New corrections in MSSM/NMSSM:

- \rightarrow effects of non-minimal flavour mixing or R-parity violating operators at 2L in MSSM
- \rightarrow complete 2L corrections from Yukawas in NMSSM
- \rightarrow some results only existed in OS scheme (e.g. for the complex MSSM) \rightarrow now a DR result as well

Corrections in models beyond (N)MSSM: e.g.

→ first two-loop studies in Dirac gaugino models using SARAH [Diessner, Kalinowski, Kotlarski, Stöckinger '14, '15] (independent explicit calculation in [JB, Goodsell, Slavich '16])

Computations can be done for SUSY models beyond MSSM, or non-SUSY models with almost the same precision as has been reached for the MSSM with explicit calculations

However, problems arise when including Goldstones

First attempt to go beyond the gaugeless limit in the MSSM (at 2L)

[Martin, hep-ph/0211366]

Illustration: the GBC in an Abelian Goldstone model

• 1 complex scalar $\phi = \frac{1}{\sqrt{2}}(v + h + iG)$, no gauge group and only a potential

$$V^{(0)} = \mu^2 |\phi|^2 + \lambda |\phi|^4,$$

where $\mu^2 < 0$ and $\lambda > 0$

• Tree-level masses:

▷ Higgs
$$m_h^2 = \mu^2 + 3\lambda v^2$$
,
▷ Coldstance $m_h^2 = m_h^2 + \lambda v^2$,

- $\triangleright \ \ {\rm Goldstone} \ \ m_G^2 = \mu^2 + \lambda v^2$
- V_{eff} at 2-loop order:

$$\begin{split} V_{\text{eff}} = V^{(0)} + \underbrace{\frac{1}{16\pi^2} \left[f(m_h^2) + f(m_G^2) \right]}_{\text{1-loop}} \\ + \underbrace{\frac{1}{(16^2)^2} \left[\lambda \left(\frac{3}{4} A(m_G^2)^2 + \frac{1}{2} A(m_G^2) A(m_h^2) \right) - \lambda^2 v^2 I(m_h^2, m_G^2, m_G^2) + \underbrace{ \cdots }_{\text{2-loop}} \right]}_{\text{2-loop}} \\ + \mathcal{O}(3\text{-loop}) \\ \text{where } f(x) = \frac{x^2}{4} (\log x/Q^2 - 3/2), \ A(x) = x(\log x/Q^2 - 1) \text{ and } I \propto \bigoplus \end{split}$$

Illustration: the GBC in an Abelian Goldstone model

Tree-level tadpole

$$\left. \frac{\partial V^{(0)}}{\partial h} \right|_{h=0,G=0} = 0 = \mu^2 v + \lambda v^3 = m_G^2 v$$

Loop-corrected tadpole

$$\begin{split} \frac{\partial V_{\text{eff}}}{\partial h}\Big|_{h=0,G=0} &= 0 = m_G^2 v + \underbrace{\frac{\lambda v}{16\pi^2} \left[3A(m_h^2) + A(m_G^2) \right]}_{\text{1-loop}} \\ &+ \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right] + \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{\cdots}}_{\text{2-loop}} + \mathcal{O}(3\text{-loop}) \end{split}$$

Illustration: the GBC in an Abelian Goldstone model

Tree-level tadpole equation

$$\frac{\partial V^{(0)}}{\partial h}\bigg|_{h=0,G=0} = 0 = \mu^2 v + \lambda v^3 = m_G^2 v$$

Loop-corrected tadpole equation

$$\begin{split} \frac{\partial V_{\text{eff}}}{\partial h}\Big|_{h=0,G=0} &= 0 = m_G^2 v + \underbrace{\frac{\lambda v}{16\pi^2} \left[3A(m_h^2) + A(m_G^2) \right]}_{\text{1-loop}} \\ &+ \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right] + \underbrace{\frac{\operatorname{regular for } m_G^2 \to 0}{\dots}}_{2\text{-loop}} + \mathcal{O}(3\text{-loop}) \end{split}$$

The Goldstone Boson Catastrophe

- The occurrence and severity of the GBC comes from 2 common choices, made for reasons of simplicity:
 - working in the Landau gauge, in order to decouple the ghosts
 - \Rightarrow Goldstones are treated as actual massless bosons *i.e.* $(m_G^2)^{OS} = 0$
 - using running $(\overline{\mathrm{MS}}/\overline{\mathrm{DR}}')$ masses for the particles in the loops

 $(m_G^2)^{\text{run.}} = (m_G^2)^{\text{OS}} - \Pi_{GG}(p^2 = (m_G^2)^{\text{OS}}) = -\Pi_{GG}(p^2 = 0),$

where Π_{GG} is the Goldstone self-energy \Rightarrow dependence on renorm. scale Q

- $V_{\rm eff}$, tadpoles, and self-energies contain $\log s$ of $(m_G^2)^{\rm run.}$, via loop functions
- Under RG flow, $(m_G^2)^{run.}$ may
 - $\rightarrow~$ become 0 \Rightarrow IR divergences
 - $\rightarrow~$ change sign $\Rightarrow~$ unphysical imaginary parts

\equiv Goldstone Boson Catastrophe

NB: working in another gauge would require long and painful calculations, and would **not** necessarily evade the GBC for all values of Q! (previous example had no gauge group, but still encountered the GBC...)

First solutions to the Goldstone Boson Catastrophe

- ▶ By hand: drop the imaginary part of V_{eff} or adjust Q
- ► Some work-arounds for automated codes (SARAH) → different ways of changing the Goldstone contributions to avoid the problem, but physically wrong! (especially wrong when Goldstone contributions to scalar masses are large → non-SUSY models)
- First theoretical solution: resum the Goldstone contributions to V_{eff} SM [Ellias-Miro, Espinosa, Konstandin '14], [Martin '14]; MSSM: [Kumar, Martin '16]; generic theories: [JB, Goodsell '16]

- ▷ Power counting → most divergent contribution to V_{eff} at ℓ -loop = ring of $\ell 1$ Goldstone propagators and $\ell 1$ insertions of 1PI subdiagrams Π_q involving **only** heavy particles
- ▷ Π_g obtained from Π_{GG} , Goldstone self-energy, by removing "soft" Goldstone terms \rightarrow can be done with *method of regions* [Espinosa, Konstandin '17]

[Adapted from arXiv:1406.2652]

However extending the resummation to generic theories is technically difficult, and doesn't solve the GBC for self-energies (more on this in a few slides)

[JB, Goodsell arXiv:1609.06977]

Adopt an on-shell scheme for the Goldstone(s)

• Replace $(m_G^2)^{\text{run.}}$ by $(m_G^2)^{\text{OS}}(=0)$ and $\Pi_{GG}(0)$

 This can be done directly in the tadpole equations or self-energy diagrams!

Next: show how this prescription cures the IR divergences, with the example of purely scalar self-energy diagrams (same idea for other self-energy diags. and tadpole diags.)

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - $\Rightarrow \mathsf{true} \text{ at } 1\text{-loop order}$

 \Rightarrow at 2-loop, \exists diagrams that still diverge for $m_G^2 \to 0$ even with external momentum included

Rewrite the divergent two-loop mass diagrams as one-loop diagrams with insertion of $\Pi_G(m_G^2)$

Setting the Goldstone(s) on-shell in mass diagrams

1. Goldstone contributions to the 1-loop scalar self-energy

2. Shifting the Goldstone mass to on-shell scheme gives

$$(m_G^2)^{\operatorname{run.}} = - \begin{array}{c} p^2 = 0 \\ \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} p^2 = 0 \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} p^2 = 0 \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \\ \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \\ - \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathsf{G}} \end{array} \end{array}$$

ightarrow 2-loop shift to the mass diagrams

 \checkmark cancels the divergence in the V, X, Y, W mass diagrams !

A generalised effective potential approximation

- Solving the GBC has required introducing external momentum $s = -p^2$ in diagrams with pseudo-scalars
- Two-loop diagrams with $p \neq 0$ in general found by solving diff. eqs., implemented e.g. in TSIL [Martin, Robertson '05] \Rightarrow very costly numerically!
- For the diagrams where the IR divergence from the Goldstones is cured by external momentum (M, Z, U and V topologies) we need to include the part of the momentum dependence that does the cancellation
- \Rightarrow Keep only terms divergent when $s \rightarrow 0$ or constant, neglect terms of $\mathcal{O}(s)$ and higher:

$$\Pi_{ij}^{(2)}(s) = \underbrace{\frac{\overline{\log}(-s)}{s} \Pi_{-1\,l,ij}^{(2)} + \frac{1}{s} \Pi_{-1,ij}^{(2)} + \Pi_{l^2,ij}^{(2)} \overline{\log}^2(-s) + \Pi_{l,ij}^{(2)} \overline{\log}(-s) + \Pi_{0,ij}^{(2)} + \sum_{k=1}^{\infty} \Pi_{k,ij}^{(2)} \frac{s^k}{k!}}_{\text{div. when } s = -p^2 \to 0;}$$
not included in calculation with V_{eff}