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Accessing the fundamental laws of Nature
➢Particle Physics aims to understand the 

fundamental building blocks of Nature 
(elementary particles) and the interactions 
between them 

➢Probe higher energies and infinitesimally 
short distances → probe the early Universe  

Known particles as of 2012

➢High-energy particle colliders like Large Hadron 
Collider at CERN (or HERA at DESY!)

➢ But not only! There is 
a multitude of 
experiments aiming for 
short distances and/or 
early times, like 
precision (low-
energy) 
measurements, or 
cosmological 
observations of 
early-Universe relics

Artist view of space-based 
interferometer LISA that will search 
for primordial gravitational waves
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Higgs discovery in 2012: a milestone for Particle Physics

➢4th July 2012: discovery of a Higgs boson of mass 125 GeV by 
ATLAS and CMS collaborations at CERN Large Hadron Collider was 
a major milestone for Particle Physics

→ discovery channels: h→γγ and h→ZZ*→4ℓ

➢2013 Nobel Prize for F. Englert and P. Higgs   
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Higgs discovery in 2012: a milestone for Particle Physics
➢4th July 2012: discovery of a Higgs boson of mass 125 GeV by 

ATLAS and CMS collaborations at CERN Large Hadron Collider was 
a major milestone for Particle Physics

→ Brout-Englert-Higgs mechanism confirmed as origin of masses 
of elementary particles

➢Particle content of Standard Model of Particle Physics (SM) is 
“complete” → is this the end of the story?

Higgs potentialHiggs potential
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The motivation for New Physics
➢ In spite of the Higgs discovery, many questions remain unsolved, e.g.

➢ Form and origin of Higgs potential (i.e. why do particles get masses, not just how)
➢ Gauge hierarchy problem, i.e. why is gravity so much weaker than the other forces (or why is the Planck scale 

so much higher than the electroweak scale) 
➢ Reason for three fermion families and origin of flavour
➢ Origin of matter-antimatter asymmetry of the Universe
➢ Dark Matter
➢ Structure of Higgs sector (no good guiding principle!)

Etc.

➢Not addressed by our current best description of Particle Physics, the Standard Model (SM)
→ New Physics must exist beyond-the-Standard-Model (BSM)! 

➢Many open problems relate to Higgs sector
→ the 125-GeV Higgs boson will certainly play a key role in understanding the nature of BSM Physics
→ BSM models often feature additional Higgs bosons/scalars 
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Goal of this lecture series: explain the central role of 
the Higgs boson to probe New Physics
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Disclaimer: 

There is no chance I could give justice, in 3 lectures, 
to the immense breadth of active research topics related to Higgs Physics

→ in the following, I will try to be thorough in what I mention, 
but I will only explain in detail a selection of topics 

(related to my past and current interests and/or those represented at DESY)

Disclaimer: 

There is no chance I could give justice, in 3 lectures, 
to the immense breadth of active research topics related to Higgs Physics

→ in the following, I will try to be thorough in what I mention, 
but I will only explain in detail a selection of topics 

(related to my past and current interests and/or those represented at DESY)
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Outline of the lectures

▻ Part 1: Why a Higgs boson is needed

▻ Part 2: Connections between Higgs Physics and unanswered questions of Particle 
Physics (and possible solutions to them)

▻ Part 3: What can be learnt from the Higgs boson at high-energy colliders – an 
overview

▻ Part 4: The Higgs boson mass as a precision observable – calculations and 
interpretations

▻ Part 5: The Higgs boson potential, its trilinear coupling, and relations with early-
Universe evolution
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Part 1: 
The need for a Higgs boson
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Masses of elementary particles
➢Strong, weak and electromagnetic fundamental interactions described as gauge theories

- Quantum Chromodynamics (QCD) → SU(3)
c

- Electroweak (EW) interactions → SU(2)
L
 x U(1)

Y 

➢Underlying gauge theories is the principle of gauge invariance, which strongly constrains allowed terms in the 
Lagrangian. 

For instance, under a finite local transformation V(x) of a gauge group G, a gauge field A
μ
 transforms as

thus a mass term                       is forbidden by gauge invariance  

➢Additionally, the currently-known fermions are chiral, i.e. weak interactions treat left-handed and right-handed 
fermions differently → mass terms for chiral fermions are also forbidden by gauge invariance
e.g.

➢How can we explain the observed masses of EW gauge bosons and fermions? 
→ Brout-Englert-Higgs mechanism

Y=+1 
& part of SU(2)

L
 doublet

Y=-2 
& part of SU(2)

L
 singlet
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Brout-Englert-Higgs mechanism

➢ Idea (in its minimal realisation): introduce a scalar* Φ – the Higgs field – doublet under SU(2)
L
 and with 

hypercharge Y=+1, and with potential

➢The potential V(Φ) itself (and thus also the Lagrangian of the theory) obeys
the fundamental SU(2)

L
 x U(1)

Y
 gauge symmetry but the vacuum does not

➢ In other words, the Higgs field acquires a non-zero vacuum expectation
value v that triggers the spontaneous breaking of the EW symmetry (EWSB)

➢Vacuum remains symmetric under U(1)
QED

 gauge group (otherwise there would be charge breaking with strong 

phenomenological consequences!)

* Why a scalar? → so that it can get a vacuum expectation value without breaking Lorentz symmetry
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Brout-Englert-Higgs mechanism and particle masses

➢Masses of gauge bosons via scalar kinetic term, with covariant derivative

with

which gives 

where 

➢Before EWSB: 
Φ → 4 degrees of freedom (d.o.f.) + 4 massless gauge bosons of SU(2)

L
 x U(1)

Y
 (W

1
, W

2
, W

3
, B) → 4x2=8 d.o.f.

➢After EWSB: would-be Goldstone bosons are “eaten” by gauge bosons which become massive
h → 1 d.o.f + 3 massive gauge bosons W±, Z → 3x3=9 d.o.f + 1 massless photon A → 2 d.o.f.

Exercise: rederive equation (▲) + find the expression of the photon A in terms of W
3
 and B

h: Higgs boson
G0, G±: Goldstone bosons
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Brout-Englert-Higgs mechanism and particle masses

➢Masses of gauge bosons via scalar kinetic term, with covariant derivative

with

which gives 

where 

➢Masses of fermions (e.g. electron) via Yukawa-interaction term

h: Higgs boson
G0, G±: Goldstone bosons

Y=+1
conjugate of

SU(2)L doublet

Y=+1
SU(2)

L
 doublet

Y=-2
SU(2)

L
 singlet
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Where to find “the” Higgs boson? A unitarity argument 
➢Higgs-less alternatives to BEH mechanism were also devised (e.g. technicolor)

→ How to test the BEH mechanism? At what scale can the Higgs boson be found?

➢Consider a massive W boson W
μ
 with momentum kμ

 
= (E,0,0,k)

→ 3 possible polarisations such that k
μ
·εμ=0 and ε

μ
·εμ=-1

→ 2 transverse polarisations ε
T1

μ = (0,1,0,0), ε
T2

μ = (0,0,1,0) 

 + 1 longitudinal polarisation ε
L
μ = (k/M

W
,0,0,E/M

W
) ~ kμ/M

W
 for E>>M

W
 

➢Consider the 2→2 scattering of longitudinally polarised W bosons W
L
W

L
 → W

L
W

L 

→ without a Higgs boson, only gauge-boson diagrams like

→ adding a Higgs boson in the theory: 

Loss of unitarity for 
large E (from ~M

W
/g

2
)!

A Higgs boson unitarises the 
theory if its mass < ~1 TeV 
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➢Consider the 2→2 scattering of longitudinally polarised W bosons W
L
W

L
 → W

L
W
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→ without a Higgs boson, only gauge-boson diagrams like

→ adding a Higgs boson in the theory: 

Loss of unitarity for 
large E (from ~M

W
/g

2
)!

A Higgs boson unitarises the 
theory if its mass < ~1 TeV 

No lose theorem (for LHC)
→either a Higgs boson exists below/around the TeV scale,
   to unitarise gauge boson scattering in EW gauge theory

or
→some new strong dynamics would appear at ~ TeV scale

In other words, theory guaranteed that the LHC would see something!

No lose theorem (for LHC)
→either a Higgs boson exists below/around the TeV scale,
   to unitarise gauge boson scattering in EW gauge theory

or
→some new strong dynamics would appear at ~ TeV scale

In other words, theory guaranteed that the LHC would see something!
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Part 2: 
Probing New Physics 
with the Higgs boson
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Goal of this lecture series: explain the central role of 
the Higgs boson to probe New Physics
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Hierarchy problems in Higgs Physics
Slide adapted from [Salam ‘23],
 itself adapted from [Giudice]

Quartic Higgs coupling:
UV behaviour and vacuum 
stability (more later)

Quartic Higgs coupling:
UV behaviour and vacuum 
stability (more later)

Yukawa couplings:
Hierarchy of fermion 
masses and flavour

Yukawa couplings:
Hierarchy of fermion 
masses and flavour

Higgs mass term:
Gauge hierarchy 
problem

Higgs mass term:
Gauge hierarchy 
problem

Vacuum energy:
Cosmological 
constant problem

Vacuum energy:
Cosmological 
constant problem

→ entirely constrained by gauge symmetry, tested to high precision (e.g. LEP)
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Naturalness and the gauge hierarchy problem
➢The EW scale is around m

EW
~100 GeV (v=246 GeV) while the Planck scale, at which effects of quantum gravity 

must manifest themselves is M
Pl
~1019 GeV → why are there 17 orders of magnitude between m

EW
 and M

Pl
? 

→ (gauge) hierarchy problem

➢At a more concrete level, the Higgs mass also poses a theoretical problem, as it is not protected from large 
(quadratic) corrections – unlike for fermions and gauge bosons, nothing forbids scalar mass terms

➢Let’s consider the effect of a heavy BSM fermion     , of mass M ~ M
pl 

with a Lagrangian

and let’s compute the leading corrections to the Higgs mass in this toy model

➢Getting the Higgs mass right at 125 GeV would imply a tuning between tree-level mass and loop corrections to 
32 digits!!! → technical hierarchy problem

with &
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Solutions to the gauge hierarchy problem: Supersymmetry
➢Supersymmetry (SUSY): [Wess, Zumino ‘74] and many more

Extend space-time symmetry (Poincaré group) by introducing new symmetry between fermions and bosons
(SUSY is only option to circumvent Coleman-Mandula theorem [Coleman, Mandula ‘67], see [Haag, Lopuszanski, Sohnius ‘75])

→ Each fermion (boson) has a bosonic (fermionic) superpartner, with same mass and related couplings,
e.g. for toy model of previous slide,     has a superpartner     , with interaction terms

such that 

➢NB: SUSY must be broken, otherwise selectron would have mass 511 keV and would have had to be seen 
already

➢But SUSY can be broken (super)softly, i.e. without reintroducing quadratic divergences in m
h

➢Numerous phenomenological models, such as Minimal Supersymmetric Standard Model (MSSM), Next-to-
MSSM (NMSSM), Dirac gaugino models, etc., however so far no sign of SUSY at the LHC...
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Solutions to the gauge hierarchy problem: Compositeness
➢Compositeness: see e.g. [Agashe, Contino, Pomarol ‘04], [Giudice, Grojean, Pomarol, Rattazzi ‘07] + refs therein

Light scalars already known in Nature, e.g. pions, but these are not fundamental, rather bound – or in other 
words composite – states 
→ Introduce a new strongly coupled sector, with a global symmetry group G, spontaneous broken down to H at 
a scale f

→ Higgs boson appears as a pseudo-Goldstone boson → naturally light

Minimal model (1 Higgs doublet): 
→ G = SO(5) (10d); H = SO(4) (6d) 

Composite Two-Higgs-Doublet Model:
→ G = SO(6) (15d); H = SO(4) x SO(2) (7d)

➢Ratio v/f determined by misalignment between
directions of G/H and SU(2)

L
xU(1)

Y
/U(1)

QED
 

breakings

➢Partial compositeness to explain quark mass
paterns F
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Minimal Composite 
Higgs Model

Spontaneous 
breaking of chiral 
symmetry in QCD

Pion Higgs 
boson

NB: only a part of H is gauged!
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Other solutions to the gauge hierarchy problem
➢Large Extra-dimensions: [Arkani-Hamed, Dimopoulos, Dvali ‘98]

(see e.g. Randall-Sundrum models, [Randall, Sundrum ‘99])

Add at least one more dimension of space-time, which is compactified
→ tower of excited states + effective Planck scale in 4d is lowered

➢Gauge-Higgs unification: [Manton ’79], [Fairlie ‘79], [Hosotani ’83], etc.
Hosotani mechanism: In 5d, a gauge boson contains 5 components 
→ 4 components of a 4d gauge boson + 1 component to 4d Higgs boson (which triggers EWSB)
→ Higgs mass is then again protected by gauge symmetry in 5d
 

➢Cosmological relaxation: 
see e.g. [Graham, Kaplan, Rajendran ‘15], [Espinosa et al. ‘15]
Promote the Higgs mass term μ2 to a dynamical field, 
the relaxion, and give this field a potential and interactions
 with the Higgs boson (and VEV) such that it selects the 
appropriate value of μ2 

➢and many more...

Relaxion stops scanning the Higgs 
mass μ2 when the Higgs VEV is large 
enough to create a sufficient potential 

barrier
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The Yukawa hierarchy problem and flavour

➢Fermion mass patterns completely unexplained
why is m

t
 ~ 3 x 105 m

e
 ? (not to mention neutrinos…)

➢Fermion masses in SM → entirely determined by 
Yukawa couplings between fermions and Higgs 
boson 
→ why does the Higgs treat the three fermion families 
(identical w.r.t gauge symmetries) so differently?

➢No guiding principle in Yukawa interactions in SM

➢Gauge symmetries act on all three fermion families in 
the same way → something must treat the families 
differently → for instance a “horizontal symmetry” ?
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Figure adapted from [Darme ‘24]

SM gauge group

New (accidental?) horizontal 
symmetries in flavour space
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The cosmological constant and its fine-tuning problem 

➢Cosmological observations → Universe expanding at accelerating pace

➢Explained in ΛCDM model by cosmological constant, corresponding to
a vacuum energy:

[Planck ‘15] ρ
vac

 ~ 2.5 × 10−47 GeV4 

➢Value of Higgs potential at EW minimum not fixed by theoretical arguments,
 nor constrained by colliders

➢Cancellation/fine-tuning of ~55 digits needed in V
0
 to reproduce the measured vacuum energy! 

→ cosmological constant problem

➢Possible solutions involve anthropic principle (multiverse), modifications of GR/ΛCDM, or of QFT, etc. 
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Form of the Higgs potential and trilinear Higgs coupling 

Vacuum expectation value

➢Brout-Englert-Higgs mechanism = origin of 
electroweak symmetry breaking ...
… but very little known about the Higgs potential 
causing the phase transition
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Vacuum expectation value

➢Brout-Englert-Higgs mechanism = origin of 
electroweak symmetry breaking ...
… but very little known about the Higgs potential 
causing the phase transition

➢Shape of the potential determined by trilinear Higgs 
coupling λ

hhh
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Form of the Higgs potential and baryon asymmetry

➢Brout-Englert-Higgs mechanism = origin of 
electroweak symmetry breaking ...
… but very little known about the Higgs potential 
causing the phase transition

➢Shape of the potential determined by trilinear Higgs 
coupling λ

hhh

➢Among Sakharov conditions necessary to explain 
baryon asymmetry via electroweak phase transition 
(EWPT): 
➢ Strong first-order EWPT 

→ barrier in Higgs potential
→ typically significant deviation in λ

hhh
 from SM  

Existence 
of a 

potential 
barrier 

depends 
on λ

hhh
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Baryogenesis
➢ Observed Baryon Asymmetry of the Universe (BAU)

➢ Sakharov conditions [Sakharov ‘67] for a theory to explain BAU:
1) Baryon number violation

2) C and CP violation

3) Loss of thermal equilibrium

[Planck ‘18]

n
b
: baryon no. density

n
b
: antibaryon no. density

n
γ
: photon no. density
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Baryogenesis
➢ Observed Baryon Asymmetry of the Universe (BAU)

➢ Sakharov conditions [Sakharov ‘67] for a theory to explain BAU:
1) Baryon number violation

2) C and CP violation

3) Loss of thermal equilibrium

➢ SM cannot reproduce the BAU → BSM physics needed!

[Planck ‘18]

n
b
: baryon no. density

n
b
: antibaryon no. density

n
γ
: photon no. density

→ Sphaleron transitions (break B+L)

→ C violation (SM is chiral), but not enough CP violation

→ No loss of th. eq. → in SM, the EWPT is a crossover

SM phase 
diagram
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Electroweak Baryogenesis

➢ Many scenarios proposed, including:
➢ Grand Unified Theories
➢ Leptogenesis
➢ Electroweak Baryogenesis (EWBG) [Kuzmin, Rubakov, Shaposhnikov, ‘85], [Cohen, 

Kaplan, Nelson ‘93]

➢ Sakharov conditions in EWBG

1) Baryon number violation

2) C and CP violation

3) Loss of thermal equilibrium

→ Sphaleron transitions (break B+L)

→ C violation + CP violation in extended Higgs 
sector

→ Loss of th. eq. via a strong 1st order EWPT
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The Higgs potential and the Electroweak Phase Transition

➢ λ
hhh

 determines the nature of the EWPT!

 ⇒ deviation of λ
hhh

 from its SM prediction typically needed to have a strongly first-order EWPT

[Grojean, Servant, Wells ’04], [Kanemura, Okada, Senaha ’04]

Possible thermal history of the Higgs potential:
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VEV is discrete
→ 1st order PT

VEV is discrete
→ 1st order PT

VEV is continuous
→ 2nd order PT

VEV is continuous
→ 2nd order PT

Existence 
of a 

potential 
barrier 

depends 
on λ

hhh
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Electroweak Baryogenesis – a brief sketch
➢ Sakharov conditions in EWBG

1) Baryon number violation

2) C and CP violation

3) Loss of thermal equilibrium

➢ EWBG only involves phenomena around the EW scale → testable in the foreseeable future

via λ
hhh

, collider searches, gravitational waves or primordial black holes (sourced by 1st order EWPT)

→ Sphaleron transitions (break B+L)

→ C violation + CP violation in extended Higgs sector

→ Loss of th. eq. via a strong 1st order EWPT
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1) Bubble nucleation 2) Baryon number generation 3) Baryon number conservation

CPV

Charge asym.

Sphaleron
transitions

Sphaleron transitions 
decouple (to keep n

b
)

Strong 1st order PT
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Higgs portal to dark sectors
➢Dark matter (DM)

• Non-relativistic matter (→ can’t be neutrinos)
• Only/mostly gravitational interactions → several types of 

astrophysical evidence (e.g. galaxy rotation curves, etc.)
• Collisionless (c.f. Bullet cluster) & pressureless
• Needed to seed large-structure formation
→ No SM particle can fit this!

➢ |Φ|2 is a gauge singlet → Higgs field provides a perfect way to write a 
portal term in the Lagrangian,
e.g. simplest example = add to SM a singlet S, charged under a 
global Z

2
 symmetry to stabilise DM

λ
portal

: controls DM relic density & detection 

➢Plethora of models: inert singlets, doublets, triplets; Next-to-Two-
Higgs-Doublet Model (N2HDM), S2HDM, etc.
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SM



Page 36| QURS Graduate Week – Advanced Higgs Physics | Johannes Braathen (DESY) | 5-8 February 2024

Cosmic inflation

[Planck ‘18]
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Cosmic inflation
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[Planck ‘18]
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The Higgs boson as the inflaton
➢Phase of exponential growth driven by scalar field – inflaton – with very 

flat potential → slow-roll inflation

➢What if the Higgs boson plays the role of the inflaton? 
[Bezrukov, Shaposhnikov ‘07]
→ Higgs inflation
→ Higgs coupled non-minimally to gravity

➢Change from Jordan frame (in which Lagrangian is 
written) to Einstein frame (with canonical coupling to gravity)

➢Numerous developments (non-minimal Higgs
 sectors, different couplings, etc.)

Usual picture of slow-roll inflation
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Ricci scalarRicci scalar

(in Jordan frame)

χ: Higgs field in Einstein frame

Potential of Higgs inflation
(in Einstein frame)
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→ Higgs coupled non-minimally to gravity

➢Change from Jordan frame (in which Lagrangian is 
written) to Einstein frame (with canonical coupling to gravity)

➢Numerous developments (non-minimal Higgs
 sectors, different couplings, etc.)

Usual picture of slow-roll inflation
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(1) Slow roll of Higgs field
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The Higgs boson as the inflaton
➢Phase of exponential growth driven by scalar field – inflaton – with very 

flat potential → slow-roll inflation

➢What if the Higgs boson plays the role of the inflaton? 
[Bezrukov, Shaposhnikov ‘07]
→ Higgs inflation
→ Higgs coupled non-minimally to gravity

➢Change from Jordan frame (in which Lagrangian is 
written) to Einstein frame (with canonical coupling to gravity)

➢Numerous developments (non-minimal Higgs
 sectors, different couplings, etc.)

Usual picture of slow-roll inflation
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The Higgs boson as the inflaton
➢Phase of exponential growth driven by scalar field – inflaton – with very 

flat potential → slow-roll inflation

➢What if the Higgs boson plays the role of the inflaton? 
[Bezrukov, Shaposhnikov ‘07]
→ Higgs inflation
→ Higgs coupled non-minimally to gravity

➢Change from Jordan frame (in which Lagrangian is 
written) to Einstein frame (with canonical coupling to gravity)

➢Numerous developments (non-minimal Higgs
 sectors, different couplings, etc.)

Usual picture of slow-roll inflation
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Neutrino masses and Higgs boson(s)
➢SM contains no right-handed neutrinos → no neutrino masses
➢However, since 1960’s early signs of neutrino oscillations (“solar 

neutrino deficit”), eventually confirmed ~25 years ago 
→ atmospheric neutrino oscillations in 1998
→ solar neutrino oscillations in 2001
→ 2015 Nobel Prize for Kajita and McDonald
→ neutrinos do have masses → extension of SM needed!

➢Most common solutions rely on variants of seesaw mechanism (types I, II, III)
→ basic idea (type I): introduce, heavy, right-handed Majorana neutrinos (RHN) N

R

          
with

➢Other possibility: generate tiny neutrino masses via
radiative effects from extended scalar sectors
→ [Zee ‘80], [Babu ‘88], [Aoki, Kanemura, Seto ‘08], etc.
→ no longer need for very heavy RHN
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An example of radiative neutrino mass 
generation: the Aoki-Kanemura-Seto model 
Figure from [Aoki, Enomoto, Kanemura ‘22]

However, this usually introduces a new 
hierarchy problem + is difficult to test 
experimentally



Contact

Deutsches 

Elektronen-Synchrotron

www.desy.de

Johannes Braathen

DESY Theory group

Building 2a, Room 208a

johannes.braathen@desy.de

Thank you very much for your 
attention!
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