Towards Precision Polarimetry at the ILC: Concepts, Simulations, Testbeam Results

C. Bartels, C. Helebrant, Dr. D. Käfer, Dr. J. List

DESY Hamburg

NSS, Dresden, October 23, 2008
The International Linear Collider

the goals:

- Unveil the nature of physics beyond the Standard Model
- precision measurements of known and new particles

the tools:

- Electron - positron collisions at $\sqrt{s} = 90$ GeV up to 1 TeV
- Polarisation: $P_e^- = 80-90\%$, $P_e^+ = 30-60\%$

the challenge:

- determine luminosity weighted average polarisation at the collision point to $\delta P/P = 0.1\%$
- ... and in some cases even to $\delta P/P = 0.01\%$
Compton Polarimetry at the ILC

- Compton scattering off laser beam:
 - hit $O(10^3)$ e^\pm per bunch of 10^{10}
 - \mathcal{P} proportional to energy asymmetry
 - scattered e^\pm colimated within 10 μrad
 - \Rightarrow spectrometer magnets: energy \rightarrow position
- achieved (SLD): $\delta\mathcal{P}/\mathcal{P} = 0.5\%$, ILC: $\delta\mathcal{P}/\mathcal{P} = 0.25\%$ (syst.)
- not possible at $e^+e^-\text{IP}$, but upstream and downstream
- typical timescales: few bunches / trains

Towards Precision Polarimetry at the ILC

Dr. J. List
Polarimetry with Annihilation Data

\[e^+ e^- \rightarrow W^+ W^- \]

- from total cross-section or \(\frac{d\sigma}{d \cos \theta} \)
- contribution of new physics?
 \(\Rightarrow \) common determination with triple gauge couplings
- longterm (\(\mathcal{O} \) (years)) absolute scale to \(\delta P/P = 0.1\% \)

\[c.f. \text{LC-PHSM-2001-022, update underway} \]

Blondel Scheme

- needs \(P_{e^+} \neq 0 \) and all four \(e^\pm \) helicity combinations
- determines \(P_{\text{eff}} = \frac{|P_{e^-}| + |P_{e^+}|}{1 + |P_{e^-}| + |P_{e^+}|} \) to \(\delta P_{\text{eff}}/P_{\text{eff}} = 0.01\% \)

\[c.f. \text{K. Mönig, LCWS S2004} \]
Complementarity of Polarimeters and Annihilation Data

Tasks
- tune spin rotators, monitor time dependence and correlations
- determine spin transport effects
- depolarisation due to collisions
- analysis of first years’ data
- direct access to luminosity weighted average polarisation
- ultimate calibration of absolute polarisation scale
- cross check, cross check, cross check!

Tools
- fast → polarimeters
- 2 locations → polarimeters
- non-colliding → polarimeters
- „fast“ → polarimeters
- annihilation data
- polarimeters and annihilation data

Towards Precision Polarimetry at the ILC

Dr. J. List

5
Complementarity of Up- and Downstream Polarimetry

Upstream Polarimeter

- 1.8 km upstream of IP

Downstream Polarimeter

- 140 m downstream of IP

Combination

- without collisions: spin transport in Beam Delivery System
- with collisions: depolarisation at IP
- cross check each other!

Towards Precision Polarimetry at the ILC

Dr. J. List
Complementarity of Up- and Downstream Polarimetry

Upstream Polarimeter

- 1.8 km upstream of IP
- clean environment
- stat. error 1% after 6 μs
- machine tuning (upstream of tune-up dump)

Downstream Polarimeter

- 140 m downstream of IP
- high backgrounds
- stat. error 1% after ≈ 1 min
- access to depolarisation at IP

Combination

- without collisions: spin transport in Beam Delivery System
- with collisions: depolarisation at IP
- cross check each other!\(^1\)

Design of the Upstream Polarimeter Chicane

Why a 4-Dipole-Chicane?

- Compton edge position (least energetic e^\pm) at detector independent of E_{beam} if B-field constant
- price to pay: Compton IP moves laterally with E_{beam}
Design of the Upstream Polarimeter Chicane

Scaled field operation?

- fixed Compton IP position
- facilitates energy collimation, emittance diagnostics

Towards Precision Polarimetry at the ILC

Dr. J. List
Scaled vs Fixed Field Operation

- detector acceptance varies with E_{beam} ⇒ inhomogeneous quality of polarisation measurement
- calibration of polarimeter: Compton edge position w.r.t. main beam
- simulation study for 1cm channels:
 - fixed field:
 $$\delta P/P = 0.1\% \Leftrightarrow \delta x 0.4 \text{ mm}$$
 - scaled field:
 $$\delta P/P = 0.1\% \Leftrightarrow \delta x 0.2 \text{ mm}$$
 - ⇒ systematic deviations for large scale factors
- not compatible with extreme precision requirements c.f. ILC-NOTE-2008-047
The Cherenkov Detector of the SLD Polarimeter

LED & DESY Testbeam

- Cherenkov gas \(\text{C}_4\text{F}_{10}, n = 1.0014 \), 10 MeV threshold
- 3 GeV single \(e^- \) at DESY II

9 channels of Al–coated Cherenkov gas tubes and photomultipliers
Single Electron Response
Channel 5, Data & Simulation

Channel 7, 0° & 90°

Towards Precision Polarimetry at the ILC
Dr. J. List
0° / 90° ratio vs channel number

- channels’ „middle“ sections longer ⇒ more light yield
- length of middle sections scales with channel number
- less reflections to PMT for 90° orientation
- goal: determine reflectivity, tune simulation (red line: \(R = 0.94\% \))
Results: Crosstalk & Channel Geometry

- observation: neighboring channels on the *outside* of the first bend observe part of signal
Results: Crosstalk & Channel Geometry

- observation: neighboring channels on the outside of the first bend observe part of signal
- explanation: cross-talk if e^{-} traverses neighboring channel close to mirror!
Results: Crosstalk & Channel Geometry

- observation: neighboring channels on the outside of the first bend observe part of signal
- explanation: cross-talk if e^- traverses neighboring channel close to mirror!
- ILC solution: use U-shaped channels, bend in 3rd dimension!
Spatial Distribution of Light in Channel

- SLD: inhomogenous light yield due to widening of channels
- avoid in ILC design!

Towards Precision Polarimetry at the ILC

Dr. J. List

13
Summary

- precision goals of ILC require combination of upstream and downstream polarimeters as well as annihilation data
- best design for upstream polarimeter is a four-magnet chicane with fixed field operation at all beam energies
- polarimeters should improve by factor of 2 w.r.t. SLD
- Cherenkov detector of SLD has been operated in testbeam
- good agreement with simulation
- several improvements for ILC design identified
Outlook

- ILC-like prototype under construction
- various photodetectors under test (c.f. poster session)
- testbeam measurements with multiple electron events at ELSA in spring 2009
Introduction

The Overall Polarimetry Concept

Simulation Studies

Testbeam

Summary & Outlook

Towards Precision Polarimetry at the ILC

Dr. J. List
Synchrotron Radiation

Synchrotron Radiation Geometry

Dipole 1: 8.1 m
Dipole 2: 16.1 m
Dipole 3: 8 m
Dipole 4: 16.1 m
Dipole 5: 8.1 m

Total length: 74.6 m

Laser

IP

Cherenkov Detector

e^+ / e^- IP

24 cm

2 mm

$a = 0.837 \text{ mrad}$

250 GeV

45.6 GeV

Towards Precision Polarimetry at the ILC

Dr. J. List

17