Towards Precision Polarimetry at the ILC: Concepts, Simulations, Testbeam Results

C. Bartels, C. Helebrant, Dr. D. Käfer, Dr. J. List

DESY Hamburg

NSS, Dresden, October 23, 2008

Introduction The Overall Polarimetry Concept Simulation Studies Testbeam Summary & Outlook

Introduction The Overall Polarimetry Concept Simulation Studies Testbeam Summary & Outlook
The International Linear Collider

the goals:

- Unveil the nature of physics beyond the Standard Model
- precision measurements of known and new particles

the tools:

- Electron positron collisions at $\sqrt{s} = 90$ GeV up to 1 TeV
- ▶ Polarisation: $P_{e^-} = 80-90\%$, $P_{e^+} = 30-60\%$

the challenge:

- ▶ determine luminosity weighted average polarisation at the collision point to $\delta P/P = 0.1\%$
- ... and in some cases even to $\delta \mathcal{P}/\mathcal{P} = 0.01\%$

Introduction The Overall Polarimetry Concept Simulation Studies Testbeam Summary & Outlook

Compton Polarimetry at the ILC

- Compton scattering off laser beam:
 - hit $\mathcal{O}(10^3) e^{\pm}$ per bunch of 10^{10}
 - \mathcal{P} propotional to energy asymmetry
 - scattered e^{\pm} colimated within 10 μ rad
 - ▶ \Rightarrow spectrometer magnets: energy \rightarrow position
- ▶ achieved (SLD): $\delta P/P = 0.5\%$, ILC: $\delta P/P = 0.25\%$ (syst.)
- ▶ not possible at e^+e^- IP, but upstream and downstream
- typical timescales: few bunches / trains

Polarimetry with Annihilation Data

 $e^+e^-
ightarrow W^+W^-$

- from total cross-section or $\frac{d\sigma}{d\cos\theta}$
- contribution of new physics?
 - \Rightarrow common determination with triple gauge couplings
- longterm (${\cal O}$ (years)) absolute scale to $\delta {\cal P} / {\cal P} = 0.1\%$

c.f. LC-PHSM-2001-022, update underway

Blondel Scheme

- ▶ needs $\mathcal{P}_{e^+} \neq 0$ and all four e^{\pm} helicity combinations
- ► determines $\mathcal{P}_{\text{eff}} = \frac{|\mathcal{P}_{e^-}| + |\mathcal{P}_{e^+}|}{1 + |\mathcal{P}_{e^-}| + |\mathcal{P}_{e^+}|}$ to $\delta \mathcal{P}_{\text{eff}} / \mathcal{P}_{\text{eff}} = 0.01\%$

c.f. K. Mönig, LCWS S2004

Complementarity of Polarimeters and Annihilation Data

Tasks

- tune spin rotators, monitor time dependence and correlations
- determine spin transport effects
- depolarisation due to collisions
- analysis of first years' data
- direct access to luminosity weighted average polarisation
- ultimate calibration of absolute polarisation scale
- cross check, cross check, cross check!

Tools

- fast \rightarrow polarimeters
- ▶ 2 locations \rightarrow polarimeters
- \blacktriangleright non-colliding \rightarrow polarimeters
- ▶ "fast" \rightarrow polarimeters
- annihilation data
- annihilation data
- polarimeters and annihilation data

- with collisions: depolarisation at IP
- cross check each other!¹

1. f. Cain Dense" Fine Dhue Den CT Assal Design 7 040000 (0004)

Complementarity of Up- and Downstream Polarimetry

Upstream Polarimeter

- 1.8 km upstream of IP
- clean environment
- ▶ stat. error 1% after 6 μ s
- machine tuning (upstream of tune-up dump)

Downstream Polarimeter

- 140 m downstream of IP
- high backgrounds
- \blacktriangleright stat. error 1% after \simeq 1 min
- access to depolarisation at IP

Combination

- without collisions: spin transport in Beam Delivery System
- with collisions: depolarisation at IP
- cross check each other!¹

¹c.f. "Spin Dance" Exp., Phys. Rev. ST Accel. Beams **7** 042802 (2004)

Design of the Upstream Polarimeter Chicane Why a 4-Dipole-Chicane?

- Compton edge position (least energetic e[±]) at detector independent of E_{beam} if B-field constant
- price to pay: Compton IP moves laterally with E_{beam}

Towards Precision Polarimetry at the ILC

Design of the Upstream Polarimeter Chicane Scaled field operation?

- fixed Compton IP position
- facilitates energy collimation, emittance diagnostics

Summary & Outlook

Scaled vs Fixed Field Operation

- ▶ detector acceptance varies with E_{beam} ⇒ inhomogeneous quality of polarisation measurement
- calibration of polarimeter: Compton edge position w.r.t. main beam
- simulation study for 1cm channels:
 - ► fixed field: $\delta P/P = 0.1\% \Leftrightarrow \delta x \ 0.4 \ mm$
 - ► scaled field: $\delta P/P = 0.1\% \Leftrightarrow \delta x \ 0.2 \ mm$
 - ► ⇒ systematic deviations for large scale factors
- not compatible with extreme precision requirements c.f. ILC-NOTE-2008-047

The Cherenkov Detector of the SLD Polarimeter

LED & DESY Testbeam

- Cherenkov gas C_4F_{10} , n = 1.0014, 10 MeV threshold
- ▶ 3 GeV single *e*⁻ at DESY II

Single Electron Response Channel 5, Data & Simulation

Channel 7, 0° & 90°

0° / 90° ratio vs channel number

- \blacktriangleright channels' "middle" sections longer \Rightarrow more light yield
- length of middle sections scales with channel number
- less reflections to PMT for 90° orientation
- ▶ goal: determine reflectivity, tune simulation (red line: R = 0.94%)

Results: Crosstalk & Channel Geometry

 observation: neighboring channels on the outside of the first bend observe part of signal

Results: Crosstalk & Channel Geometry

- observation: neighboring channels on the outside of the first bend observe part of signal
- explanation: cross-talk if e⁻ traverses neighboring channel close to mirror!

Results: Crosstalk & Channel Geometry

- observation: neighboring channels on the outside of the first bend observe part of signal
- explanation: cross-talk if e⁻ traverses neighboring channel close to mirror!
- ILC solution: use U-shaped channels, bend in 3rd dimension!

Simulation Studies

Summary & Outlook

Spatial Distribution of Light in Channel

 SLD: inhomogenous light yield due to widening of channels

avoid in ILC design!

Summary

- precision goals of ILC require combination of upstream and downstream polarimeters as well as annihilation data
- best design for upstream polarimeter is a four-magnet chicane with fixed field operation at all beam energies
- polarimters should improve by factor of 2 w.r.t. SLD
- Cherenkov detector of SLD has been operated in testbeam
- good agreement with simulation
- several improvements for ILC design identified

Introduction	The Overall Polarimetry Concept	Simulation Studies	Testbeam	Summary & Outlook
Outlook				
Outioon				

- ► ILC-like prototype under construction
- various photodetectors under test (c.f. poster session)
- testbeam measurements with multiple electron events at ELSA in spring 2009

Introduction	The Overall Polarimetry Concept	Simulation Studies	Testbeam	Summary & Outlook

BACKUP

Synchrotron Radiation

