Searches for New Physics at HERA

Jenny List

DESY

La Thuile 2008

HERA and its experiments HERA I results: H1 combined QCD & EW fit HERA II results: polarised CC cross sections HERA I + II: Single W Production Summary & Outlook

HERA	HERA I results	HERA II results	HERA I + II	Summary

The HERA Experiments

Electron Proton Collisions:

- ▶ *E_p* = 920 GeV, *E_e* = 27.5 GeV
- Experiments H1 & ZEUS

Luminosity per experiment

- HERA I:
 - $\blacktriangleright \simeq 20 pb^{-1} e^- p$ data
 - \blacktriangleright $\simeq 100 pb^{-1}~e^+p$ data
- after upgrade HERA II: longitudinal polarisation!
 - \blacktriangleright $\simeq 150 pb^{-1}~e^-p$ data
 - \blacktriangleright $\simeq 50 pb^{-1} e^+ p$ data

HERA	HERA I results	HERA II results	HERA I + II	Summary

The HERA Experiments

Electron Proton Collisions:

- $E_p = 920 \text{ GeV}, E_e = 27.5 \text{ GeV}$
- Experiments H1 & ZEUS

Luminosity per experiment

- ► HERA I:
 - $\blacktriangleright \simeq 20 pb^{-1} e^- p$ data
 - \blacktriangleright $\simeq 100 pb^{-1}~e^+p$ data
- after upgrade HERA II: longitudinal polarisation!
 - $\blacktriangleright \simeq 150 pb^{-1} \ e^-p$ data
 - \blacktriangleright $\simeq 50 pb^{-1} e^+ p$ data

HERA	HERA I results	HERA II results	HERA I + II	Summary

Deep Inelastic Scattering

Neutral Current

- scattered electron
- low Q^2 : photon exchange
- high Q²: also Z⁰ exchange and Z⁰-γ interference

Charged Current

- neutrino \Rightarrow missing E_T
- ▶ W[±] exchange
- ▶ high Q²: Electroweak Unification

HERA	HERA I results	HERA II results	HERA I + II	Summary
Disenta $\frac{d^2\sigma^N}{d\times dQ}$	angling Proton S $\frac{C}{Q^2} \sim \left \frac{A}{Q^2} + \frac{B}{Q^2 + M_Z^2}\right ^2$	tructure and $I \propto pdf's = \frac{d^2 \sigma^{CC}}{d \times dQ^2}$	Electroweak Ef $\sim G_F^2 (rac{M_W^2}{M_W^2+Q^2})^2$	fects × pdf′s
bulk	of data: $Q^2 << M_2^2$	2 Z/W ² ⁽	HERA * H1 e*p NC 94-00	
•	hard scattering = QE		ZEUS e*p NC 99- ZEUS e*p NC 99- ZEUS e*p NC 99- ZEUS e*p NC 99- D ZEUS e*p NC 99- D	00 99
►	\Rightarrow determine pdf's	¥ -1	— SM ep NC (CTEC	26D)
at h	igh Q ² :	10 ⁻² 10 ⁻³ 10 ⁻⁴	• H1 e'p CC 94-00 • H1 e'p CC	
	$QED \to electroweak$	10 -5	 ZEUS e*p CC 99-00 ZEUS e*p CC 98-99 SM e*p CC (CTEQ6D) 	
•	\Rightarrow sensitivity to elect	roweak 10 ⁻⁶	— SM e [*] p CC (CTEQ6D)	
	parameters	10 -7	10 ³ 10	<u> </u>

HERA	HERA I results	HERA II results	HERA I + II	Summary

HERA I results: H1 combined QCD & EW fit

- first combined fit of QCD & EW parameters at HERA
- ► ⇒ understand correlations
- uses all HERA I data

Charged Current Propagator Mass

- ▶ Is it **really** *W*[±]−exchange?
- fit M_{prop} , CC coupling G and pdf's
- ► $G = G_F$ fixed to PDG value $\Rightarrow M_{\text{prop}} = 82.87 \pm 1.82_{\text{exp}} + 0.30_{\text{model}}$ GeV

HERA	HERA I results	HERA II results	HERA I + II	Summary
H1 com	ibined QCD &	EW fit cont'd	> 1 H1 (v _u -v _u -v _u -v _u -PDF) - LEP preliminary - CDF 0.5 68% CL	
to up	and down quark	iplings	0	
ÞS	Standard Model: • $a_{u/d} = I_{u/d}^3$		-0.5	H1
► F	$ v_{u/d} = I_{u/d}^3 - 2\epsilon $ Fit a_u, v_u, a_d, v_d as	$e_{u/d} \sin^2 heta_w$ nd pdf's	-1 -0.5 0	0.5 1 a _u
	► superior sensitive Z ⁰ -γ interference	ty to a_u , v_u due to the formula a_u , a_u and a_u , a_u and $a_$	0.5	
	 correlations illus either up- or dov 	trated by fixing vn-quark couplings	-0.5	68% CL
▶ 1	HERA II: expect im	provement due to		-
F	polarisation!		-1 -0.5 0	H1 0.5 1 a _d
Searches for New	v Physics at HERA	J. List		7

HERA	HERA I results	HERA II results	HERA I + II	Summary

HERA II data sets

per experiment roughly

•
$$e_L^+$$
: 20 pb⁻¹, $P = -40\%$
• e_R^+ : 15 pb⁻¹, $P = +32\%$
• e_L^- : 70 pb⁻¹, $P = -27\%$
• e_R^- : 40 pb⁻¹, $P = +33\%$

HERA	HERA I results	HERA II results	HERA I + II	Summary

Testing the chiral structure of the weak interaction

Charged Current:

• weak interaction: only $e_L^-(e_R^+)$

•
$$\sigma_{CC}^{e^{\pm}p}(P) = (1 \pm P) \cdot \sigma_{CC}(P = 0)$$

good agreement with SM

extrapolation to $P_{e^+} = -1$:

•
$$\sigma_{CC}^{\mathrm{tot}} = -1.0 \pm 1.8_{\mathrm{stat}} \pm 1.1_{\mathrm{sys}}$$
 pb

HERA	HERA I results	HERA II results	HERA I + II	Summary

Searches for New Physics at HERA

J. List

HERA	HERA I results	HERA II results	HERA I + II	Summary
Single	W^{\pm} Production	e tyrz	е — <u>с</u>	γ,Z ζ ^γ ,Z q'
Sign	ature:		V f	W Z f
	isolated electron or muc	on (a)	Ē,	(b)
•	missing transverse momentum			
Bac	kgrounds:		 ,	
►	NC with fake missing E	T		¥ T
•	CC with jet misidentifie lepton	d as		
•	lepton pairs with one le	pton		
	lost in beam pipe		4 ¹ 2	¥,1,A
Searches for Ne	ew Physics at HERA	J. List		11

HERA	HERA I results	HERA II results	HERA I + II	Summary

Single W^{\pm} Production cont'd

ZEUS

- ▶ e^+p 99/00 + 03/04: 106 pb⁻¹
- ▶ isol. electrons, all P_T^X : 2 / 3 ± 0.39
- no excess at high P_T^X

HERA	HERA I results	HERA II results	HERA I + II	Summary

Single W^{\pm} Production cont'd

ZEUS

- ▶ e^+p 99/00 + 03/04: 106 pb⁻¹
- isol. electrons, all P_T^X : 2 / 3 ± 0.39
- no excess at high P_T^X

H1

• isol. $e \ / \ \mu$, all P_T^X : 40 / 34.3 ± 4.8

•
$$P_T^X > 25$$
 GeV:

 \blacktriangleright all data: 17 / 9.0 \pm 1.5

HERA	HERA I results	HERA II results	HERA I + II	Summary

Single W^{\pm} Production cont'd

ZEUS

- $e^+p \ 99/00 + 03/04$: 106 pb⁻¹
- isol. electrons, all P_T^X : 2 / 3 ± 0.39
- no excess at high P_T^X

H1

•
$$e^{\pm}p$$
 1994 – 2005: 279 pb⁻¹

• isol. $e \ / \ \mu$, all P_T^X : 40 / 34.3 ± 4.8

•
$$P_T^X > 25$$
 GeV:

- $\blacktriangleright\,$ all data: 17 / 9.0 $\pm\,1.5$
- agreement for e^-p : 2 / 4.4 ± 0.7

50 60

 P_{τ}^{X} (GeV) e and μ channels

HERA	HERA I results	HERA II results	HERA I + II	Summary

Single W^{\pm} Production cont'd ZEUS

- $e^+p \ 99/00 + 03/04$: 106 pb⁻¹
- isol. electrons, all P_T^X : 2 / 3 ± 0.39
- no excess at high P^X_T

Η1

• isol. $e \ / \ \mu$, all P_T^X : 40 / 34.3 ± 4.8

•
$$P_T^X > 25$$
 GeV:

- $\blacktriangleright\,$ all data: 17 / 9.0 $\pm\,1.5$
- agreement for e^-p : 2 / 4.4 \pm 0.7
- excess in e⁺p: 15 / 4.6 ± 0.8

HERA	HERA I results	HERA II results	HERA I + II	Summary

Summary & Outlook

Summary

- first combined QCD & EW fit to HERA I data
- polarised cross-sections from HERA II
- single W^{\pm} production still high at H1

Outlook

- all electroweak measurements will profit from
 - higher luminosity, esp. much more e⁻p data
 - electron / positron polarisation

 \blacktriangleright \Rightarrow new results to come in the next years — stay tuned!