Top 10 C++ Tips

Benno List

H1 OO Analysis Forum
8.12.2008

B. List 8.12.2008 Top 10 C++ Tips Pagel

Introduction

e KISS: Keep It Simple, Stupid!

» The following tips are for analysis grade software,
contributions to official H100O software need more stringent rules

» Analysis software:
Aim is a physics result, not the most beautiful design!
=> Follow the KISS principle: “Keep It Simple, Stupid!”

 But: your software must be written well enough to be

- stable and reliable (run over millions of events!)
- understandable (to you!) -> are you really sure what you are plotting?
- flexible (change of cuts, binning, systematic error evaluation)

My examples are untested and somewhat abbreviated (missing
header files etc)

B. List 8.12.2008 Top 10 C++ Tips Page?2

Tip O: Learn a Bit of C++

* You know enough C++ to get your code running.

* If you now look again into your C++ book:

- you'll understand more (“what does 'static' mean?” “what is 'const'?”)

- you'll learn some tricks (formatted output with cout, string handling in C++) that
you can use

» C++ is perhaps the most complicated programming language that
exists, much more difficult than FORTRAN, but:
- Good programmers can program FORTRAN in any language! :-)

- A lot of things you'll probably never need (to write yourself):

* operator overloading
» templates
* inheritance
- => without these things, even C++ is manageable

B. List 8.12.2008 Top 10 C++ Tips Page3

Tip 1: Collect Constants in one File

1T (@ >=5 & Q@ < 100) { Bad: very hard to change number of bins
It (pt >= 3.5 && pt < 4.5) or bin boundaries. Leads to bugs.

h_ptbinl->Fill (W; .
else if (pt >= 5 & pt < 6) Magic values hard to understand.

h ptbhin2->Fill (W;
else if (pt >= 6)
h ptbin3->Fill (W;
}

‘st at i ¢” avoids compiler errors if file is
/1 MyConst ants. h: | included in different .C files.
static €onst int nptbins = 3

static const double ptbins[nptbins+l] = {3.5, 4.5, 6., 1E10},;

static const double @m ncut = 5, @naxcut=100;

#i ncl ude “MyConst ants. h” Better: all numbers are collected in one
place.
1 (Q@ >= @2m ncut && Q@ < (Zrmaxcut)
for (int i = 0; i < nptbhins; ++i)
If (pt >= ptbins[i] && pt < ptbins[i+1])
h ptbin[i]->Fill (W;

B. List 8.12.2008 Top 10 C++ Tips Page4

Tip 2: Use Functions

» Avoid 2000 line main programs in a single file

* If you copy-and-past code: write a function instead!
=> you'll have to fix the bugs only in one place!

/

c/| ARl) Qs I A very simple function to calculate
void Efficiency (THL *hl, THL *h2, THL *h3); I th.e efficiency from .tWO hlstograms
with correct errors in case of weighted

/'l MyFunctions. C -
#i ncl ude “MyFuncti ons. h” events (h3 = h1/h2
#i ncl ude <cmat h>
usi ng nanmespace std;
void Efficiency (THL *hl, THL *h2, TH1 *h3) {
for (int i = 0; i <= hl.GetNbinsX()+1;, ++i) {
doubl e sumw 1 = hl->CGetBi nContent (i);
doubl e summ2_1 = pow (hl->CGetBinError(i), 2);
doubl e sumw 2 = h2->Get Bi nContent (i);
doubl e sumn2_2 = pow (h2->CGetBinError(i), 2);
doubl e eff = sumw_1/sunw 2;
double err = sqrt (sumv2_l1*pow (sunw 2-sunw 1, 2) +
(sumy2_2-suma2_1) *pow (sumw_1, 2))/
pow (sum2_2, 2);
h3->Set Bi nContent (i, eff);
h3->Set BinError (i, err);

1}

Page5

Tip 3: Use (Simple) Classes

/i BUEl DELEs . “Fill” called for every event;
cl ass EventData { . .
publ i c: public access to event data, i.e. x, Q2
void Fill();

doubl e x, @;

| Eventbata C ,, Fill() gets the data from HAT/mODS/ODS;
I ncl ude “EventData. h .
easy to change from Sigma method to
voifl tEyenL?ﬁlt a: Eil | ()Hai (- Yo) Electron method, or introduce scales
statl C oa r S), .
static HlFl oatPtr)C/QZHat (“@s); (S stematics!

X = (*QRHat)/ (*yHat * 4*27.55*920);
Q@ = (*QHat);

}
/I mai n. C. u _
#i ncl ude “Event Data. h” Now everywhere we need Bjorken x,

we access the EventData class
Event Dat a ed;

THLF *hx = new THLF(“xBj”, “Bjorken x”, 100, 0, 1); -> €asierto keep X, Q2 consistent

whil e (HLTree:: I nstance()->Next()) { (systematics!)
ed. Fill();

hx->Fi || (ed.Xx);

}

B. List 8.12.2008 Top 10 C++ Tips Page6

Simple Classes: 2" Example

/1 Event Loop. h:
cl ass Event Dat a;

“Fill” called for every event;

cl ass Event Loop { Histos are booked in constructor,
public: . . .
Event L_oop(Event Dat a& ed_); fl”Gd with F'”(),
o] A written out with Output()
Event Dﬁt a& ed; - EventData is accessed via an EventData reference
TH1F *hx;
/1 EventLoop. C This is how to initialize the reference I
#i ncl ude “Event Loop. h”
#1 ncl ude “Event Dat a. h”
Event Loop: {EW Histogram is booked,
" hx = new THLF (“xBj”, “Bjorken x”, 100, 0, 1): } filled,
void EventLoop::Fill () { :
hx->Fi |l (ed.x); } and written out

voi d Event Loop:: Qut put () {
hx->Wite(); }

[/ main. C
#include “E Dat a. h” .
el o © et o b Write separate classes for
Event Dat a ed; ° i i
Event Loop | oop (ed); Mam analySIS
while (HlTree::lInstance()->Next()) { e Control p|OtS
L o « Trigger efficiencies
b | etc ...
Tfile outfile (“output.root”, *“RECREATE’);

| oop. Qut put () ;
b.

Tip 4: Use Tstring (or std::string) i

Bad: very hard to change number of bins
or bin boundaries. Leads to bugs.
Magic values hard to understand.

new THLF (“ptbinl”, “W 3.5<=pt<4.5”, 100, 0, 200);

new THLF (“ptbin2”, “W 5<=pt<6”, 100, 0, 200):
new THLF (“ptbin2”, “W pt>=6", 100, 0, 200);

THLF h_ptbi nl
TH1F h_pt bi n2
THLF h_pt bi n3

#i ncl ude “MyConst ants. h” Better: all numbers are collected in one

#i ncl ude <TString> place.
. . Flexible, extensible
THLF *h_pt bi n[npt bi ns];

for (int i =0; i < nptbins; ++i) {
Tstring id (“ptbin”);
pt bi n+=(i +1) ;

Tstring title (“W “);
title += ptbins[i] += “<=pt<” += ptbins[i+1];
h_ptbin[i] = new TH1F (id, title, nWins, Wnn, Wmax);

B. List 8.12.2008 Top 10 C++ Tips Page8

Tip 5: Store only Numbers in RooT Trees

* RooT offers to store class objects in RooT trees

* Looks nice, but:

- RooT Trees become unusable every time you change the class,
l.e. all the time

- Difficult to look at the RooT Trees interactively (e.g. with Tbrowser)

- In 99.5% of all cases: you're better off with plain numbers
=> store px, py, pz, E of your objects instead of a TlorentzVector or your own
class object

B. List 8.12.2008 Top 10 C++ Tips Page9

Tip 6: Be Aware (not Afraid) of Memory Leaks

» Every time you create an object with “new’ and you have no
corresponding “del et e”, you create a memory leak

 Writing code without memory leaks is very difficult in C++

e But: Memory leaks are not always a problem!
-> Memory is reclaimed by the operating system after program stops.

 Just make sure that you don't run out of memory
« A program creating 100000 objects once (at the beginning) will run fine!
« A program creating 1 object in an event loop will

- run fine on a test sample (of 10k events)

— will always crash during your real job, running over 100M events!

e Tip: write out a message (cout << “MyRoutine: Calling newn”;)
everytime you call new. If your output file becomes large, you have a

problem.

B. List 8.12.2008 Top 10 C++ Tips Pagel0

Tip 7: Use (vector<> for) Collections

int main () {
vector<TH1 *> nyH st ogr ans;
TH1F *h1 = new THLF (“xBj”, “Bjorken x”, 100, 0, 1);
nmyH st ograns. push_back (hl);
TH1F *h2 = new TH2F (“xBj @”, “Bjorken x vs ", 100, O, 1, 100, 0, 10000);
nmyH st ogr ans. push_back (h2);

/1 main. C
#i ncl ude <vector>
usi ng nanespace std; <«— without this, you have to write std::vecto]

[l fill histograns
Tfile (“out.root”, “RECREATE’),
for (unsigned int i = 0; I < nyH stograns.size(); ++i) {
nyH st ograns[i]->SetLineColor (2); :
myHi st ogr ans[i] - >Set Li new dth (3): Example here stores pointers to
nyH stograms[i]->Wite(); histograms
| } (remember: all RooT histo classes

are subclasses of TH1

* It is often convenient to have an array of (pointers to) many objects
(histograms, numbers etc)

» vector<Type> allows easy storage, retrieval by number, knows always
B. L@@Wﬂ&lany ObJeCtS are Stored Top 10 C++ Tips Pagell

Tip 8: Use Command Line Arguments

[l main. C

#i ncl ude <H1St eeri ng/ HLCndLi ne. h>

#i ncl ude <H1Steeri ng/ HLOpti onStri ng. h>
#i ncl ude <H1St eering/ HLOpti onl nt. h>

int main (int argc, const char *argv[]) {
HiOptionString outfil enane (“out.root”);
HiOptionString systematics (0);
H1CndLi ne opts;
opts. AddOption (“outfile”, 'o', outfil enane);
opts. AddOption (“systematics”, 's', systematics);
opts. Parse (&argc, argv);
You have 1 executable,

Ttile outfile (outfilenane); which can be run several times
| f (systematics == 0) { (in parallel!)
/[l do nom nal anal ysis

with different settings.

}
slee Ui (sysieml 5 =5 U) | No recompiling needed!
/]l do systematics 1 -
} => send many jobs to the farm to do
S ECWr R G your analysis

Pagel?2

Tip 9: (Learn to) Use Text Files

/1 efficiencies.txt Efficiency file,
g 100 probably written by some other part
80.3 85.5 87.2 92.1 83.1 of your program

(efficiencies in percent

/1 main. C

#i ncl ude <fstreanr

int main () { : 0 :
i fstreameff file (“efficiencies.txt”); Reads in eﬂfICIenCY flle’)
int n; books and fills a histogram from it
doubl e xm n, xmax, eff;
eff file >> n >> xmn >> xnmax;

THLF *h_eff = new THLF (“eff”, “Efficiencies”, n, xmn, xmax);
for (int i =0; i<n; ++i) {

eff_file >> eff; | . | Writes the contents of a histogram
} h_eff->SetBinContent (i+1, 0.01%eff); into a TEX table, ready for inclusion
of streamout _file (“table_eff.tex”); in your thesis!

out file << “\\begin{tabular}{ccc}\n”
<< “$x_ {mMn}$ & $x_ {max}$ & ϵ \\\\\n\\hline\n”;

for (int i =1; i <= h eff->GtNoinsX(); ++i) { - two slashes needed for

out file << “$” <<h_eff->GetBinLowkdge (i) << “$ & $“ '

<< h_eff->Cet BinLowkdge (i+1l) << “$ & $* one OUtPUt slash!

<< 100*h_eff->GetBinContent (i) << “\,\\9%\\\\\n“;

}

out _file << “\\end{tabular}\n”;

Pagel3

UH

Tip 10: Always Write out Root Histograms "

* It is very conventient to write out a postscript file directly from your
analysis job

* But remember: for your thesis / H1preliminary / publication you'll
need (more) fancy formatting

* Therefore: always write out all your RooT histograms into a RooT
file that you can later use to produce nice plots without re-running
the analysis job!

B. List 8.12.2008 Top 10 C++ Tips Pagel4

Conclusions

* For analysis purposes, you don't need many fancy C++ features

» But knowing a bit more about C++ helps to improve
- your code
- your analysis!

* The crisis often comes when you have written your selection code
and start to do systematics

-> this may be a good time to re-work some of your analysis code

B. List 8.12.2008 Top 10 C++ Tips Pagel5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

