
B. List 8.12.2008 Top 10 C++ Tips Page1

Top 10 C++ Tips

Benno List

H1 OO Analysis Forum

8.12.2008

B. List 8.12.2008 Top 10 C++ Tips Page2

Introduction

● KISS: Keep It Simple, Stupid!

● The following tips are for analysis grade software,
contributions to official H1OO software need more stringent rules

● Analysis software:
Aim is a physics result, not the most beautiful design!
=> Follow the KISS principle: “Keep It Simple, Stupid!”

● But: your software must be written well enough to be

– stable and reliable (run over millions of events!)

– understandable (to you!) -> are you really sure what you are plotting?

– flexible (change of cuts, binning, systematic error evaluation)

● My examples are untested and somewhat abbreviated (missing
header files etc)

B. List 8.12.2008 Top 10 C++ Tips Page3

Tip 0: Learn a Bit of C++

● You know enough C++ to get your code running.

● If you now look again into your C++ book:

– you'll understand more (“what does 'static' mean?” “what is 'const'?”)

– you'll learn some tricks (formatted output with cout, string handling in C++) that
you can use

● C++ is perhaps the most complicated programming language that
exists, much more difficult than FORTRAN, but:

– Good programmers can program FORTRAN in any language! :-)

– A lot of things you'll probably never need (to write yourself):

● operator overloading
● templates
● inheritance

– => without these things, even C++ is manageable

B. List 8.12.2008 Top 10 C++ Tips Page4

Tip 1: Collect Constants in one File

if (Q2 >= 5 & Q2 < 100) {
 if (pt >= 3.5 && pt < 4.5)
 h_ptbin1->Fill (W);
 else if (pt >= 5 && pt < 6)
 h_ptbin2->Fill (W);
 else if (pt >= 6)
 h_ptbin3->Fill (W);
}

// MyConstants.h:
static const int nptbins = 3;
static const double ptbins[nptbins+1] = {3.5, 4.5, 6., 1E10};
static const double Q2mincut = 5, Q2maxcut=100;

#include “MyConstants.h”

if (Q2 >= Q2mincut && Q2 < Q2maxcut)
 for (int i = 0; i < nptbins; ++i)
 if (pt >= ptbins[i] && pt < ptbins[i+1])
 h_ptbin[i]->Fill (W);

Bad: very hard to change number of bins
or bin boundaries. Leads to bugs.
Magic values hard to understand.

Better: all numbers are collected in one
place.

“static” avoids compiler errors if file is
included in different .C files.

B. List 8.12.2008 Top 10 C++ Tips Page5

Tip 2: Use Functions

● Avoid 2000 line main programs in a single file

● If you copy-and-past code: write a function instead!
=> you'll have to fix the bugs only in one place!

// MyFunctions.h:
class TH1;
void Efficiency (TH1 *h1, TH1 *h2, TH1 *h3);

// MyFunctions.C:
#include “MyFunctions.h”
#include <cmath>
using namespace std;
void Efficiency (TH1 *h1, TH1 *h2, TH1 *h3) {
 for (int i = 0; i <= h1.GetNbinsX()+1; ++i) {
 double sumw_1 = h1->GetBinContent(i);
 double sumw2_1 = pow (h1->GetBinError(i), 2);
 double sumw_2 = h2->GetBinContent(i);
 double sumw2_2 = pow (h2->GetBinError(i), 2);
 double eff = sumw_1/sumw_2;
 double err = sqrt (sumw2_1*pow (sumw_2-sumw_1, 2) +
 (sumw2_2-sumw2_1)*pow (sumw_1, 2))/
 pow (sumw2_2, 2);
 h3->SetBinContent (i, eff);
 h3->SetBinError (i, err);
 }
}

A very simple function to calculate
the efficiency from two histograms
with correct errors in case of weighted
events (h3 = h1/h2)

B. List 8.12.2008 Top 10 C++ Tips Page6

Tip 3: Use (Simple) Classes

// EventData.h:
class EventData {
 public:
 void Fill();
 double x, Q2;
};

// EventData.C:
#include “EventData.h”

void EventData::Fill() {
 static H1FloatPtr yHat (“Ys);
 static H1FloatPtr Q2Hat (“Q2s);
 x = (*Q2Hat)/(*yHat * 4*27.55*920);
 Q2 = (*Q2Hat);
}

//main.C:
#include “EventData.h”

EventData ed;
TH1F *hx = new TH1F(“xBj”, “Bjorken x”, 100, 0, 1);
while (H1Tree::Instance()->Next()) {
 ed.Fill();
 hx->Fill (ed.x);
}

Fill() gets the data from HAT/mODS/ODS;
easy to change from Sigma method to
Electron method, or introduce scales
(systematics!)

“Fill” called for every event;
public access to event data, i.e. x, Q2

Now everywhere we need Bjorken x,
we access the EventData class
-> easier to keep x, Q2 consistent
(systematics!)

B. List 8.12.2008 Top 10 C++ Tips Page7

Simple Classes: 2nd Example

// EventLoop.h:
class EventData;
class EventLoop {
 public:
 EventLoop(EventData& ed_);
 void Fill();
 void Output();
 EventData& ed;
 TH1F *hx;
};

// EventLoop.C:
#include “EventLoop.h”
#include “EventData.h”
EventLoop::EventLoop (EventData& ed_)
: ed (ed_) {
 hx = new TH1F (“xBj”, “Bjorken x”, 100, 0, 1); }
void EventLoop::Fill() {
 hx->Fill (ed.x); }
void EventLoop::Output() {
 hx->Write(); }

//main.C:
#include “EventData.h”
#include “EventLoop.h”
EventData ed;
EventLoop loop (ed);
while (H1Tree::Instance()->Next()) {
 ed.Fill();
 loop.Fill();
}
Tfile outfile (“output.root”, “RECREATE”);
loop.Output();

This is how to initialize the reference

“Fill” called for every event;
Histos are booked in constructor,
filled with Fill(),
written out with Output()
EventData is accessed via an EventData reference

Write separate classes for
● Main analysis
● Control plots
● Trigger efficiencies
● etc ...

Histogram is booked,
filled,
and written out

B. List 8.12.2008 Top 10 C++ Tips Page8

Tip 4: Use Tstring (or std::string)
Bad: very hard to change number of bins
or bin boundaries. Leads to bugs.
Magic values hard to understand.

Better: all numbers are collected in one
place.
Flexible, extensible

TH1F h_ptbin1 = new TH1F (“ptbin1”, “W, 3.5<=pt<4.5”, 100, 0, 200);
TH1F h_ptbin2 = new TH1F (“ptbin2”, “W, 5<=pt<6”, 100, 0, 200);
TH1F h_ptbin3 = new TH1F (“ptbin2”, “W, pt>=6”, 100, 0, 200);

#include “MyConstants.h”
#include <TString>

TH1F *h_ptbin[nptbins];

for (int i = 0; i < nptbins; ++i) {
 Tstring id (“ptbin”);
 ptbin+=(i+1);
 Tstring title (“W, “);
 title += ptbins[i] += “<=pt<” += ptbins[i+1];
 h_ptbin[i] = new TH1F (id, title, nWbins, Wmin, Wmax);
}

B. List 8.12.2008 Top 10 C++ Tips Page9

Tip 5: Store only Numbers in RooT Trees

● RooT offers to store class objects in RooT trees

● Looks nice, but:

– RooT Trees become unusable every time you change the class,
i.e. all the time

– Difficult to look at the RooT Trees interactively (e.g. with Tbrowser)

– In 99.5% of all cases: you're better off with plain numbers
=> store px, py, pz, E of your objects instead of a TlorentzVector or your own
class object

B. List 8.12.2008 Top 10 C++ Tips Page10

Tip 6: Be Aware (not Afraid) of Memory Leaks

● Every time you create an object with “new” and you have no
corresponding “delete”, you create a memory leak

● Writing code without memory leaks is very difficult in C++

● But: Memory leaks are not always a problem!
-> Memory is reclaimed by the operating system after program stops.

● Just make sure that you don't run out of memory

● A program creating 100000 objects once (at the beginning) will run fine!

● A program creating 1 object in an event loop will

– run fine on a test sample (of 10k events)

– will always crash during your real job, running over 100M events!

● Tip: write out a message (cout << “MyRoutine: Calling new\n”;)
everytime you call new. If your output file becomes large, you have a
problem.

B. List 8.12.2008 Top 10 C++ Tips Page11

Tip 7: Use (vector<> for) Collections

Example here stores pointers to
histograms
(remember: all RooT histo classes
are subclasses of TH1)

// main.C:
#include <vector>
using namespace std;

int main () {
 vector<TH1 *> myHistograms;
 TH1F *h1 = new TH1F (“xBj”, “Bjorken x”, 100, 0, 1);
 myHistograms.push_back (h1);
 TH1F *h2 = new TH2F (“xBjQ2”, “Bjorken x vs Q2”, 100, 0, 1, 100, 0, 10000);
 myHistograms.push_back (h2);

 // fill histograms

 Tfile (“out.root”, “RECREATE”);
 for (unsigned int i = 0; i < myHistograms.size(); ++i) {
 myHistograms[i]->SetLineColor (2);
 myHistograms[i]->SetLineWidth (3);
 myHistograms[i]->Write();
 }
}

without this, you have to write std::vector

● It is often convenient to have an array of (pointers to) many objects
(histograms, numbers etc)

● vector<Type> allows easy storage, retrieval by number, knows always
how many objects are stored

B. List 8.12.2008 Top 10 C++ Tips Page12

Tip 8: Use Command Line Arguments

You have 1 executable,
which can be run several times
(in parallel!)
with different settings.

No recompiling needed!
=> send many jobs to the farm to do
your analysis

// main.C:
#include <H1Steering/H1CmdLine.h>
#include <H1Steering/H1OptionString.h>
#include <H1Steering/H1OptionInt.h>

int main (int argc, const char *argv[]) {
 H1OptionString outfilename (“out.root”);
 H1OptionString systematics (0);
 H1CmdLine opts;
 opts.AddOption (“outfile”, 'o', outfilename);
 opts.AddOption (“systematics”, 's', systematics);
 opts.Parse (&argc, argv);

 Tfile outfile (outfilename);
 if (systematics == 0) {
 // do nominal analysis
 }
 else if (systematics == 0) {
 // do systematics 1
 }
 return 0;
}

B. List 8.12.2008 Top 10 C++ Tips Page13

Tip 9: (Learn to) Use Text Files

Efficiency file,
probably written by some other part
of your program
(efficiencies in percent)

// efficiencies.txt
5
0 100
80.3 85.5 87.2 92.1 83.1

// main.C
#include <fstream>
int main () {
 ifstream eff_file (“efficiencies.txt”);
 int n;
 double xmin, xmax, eff;
 eff_file >> n >> xmin >> xmax;
 TH1F *h_eff = new TH1F (“eff”, “Efficiencies”, n, xmin, xmax);
 for (int i = 0; i<n; ++i) {
 eff_file >> eff;
 h_eff->SetBinContent (i+1, 0.01*eff);
 }
 ofstream out_file (“table_eff.tex”);
 out_file << “\\begin{tabular}{ccc}\n”
 << “x_{min} & x_{max} & ϵ \\\\\n\\hline\n”;
 for (int i = 1; i <= h_eff->GetNbinsX(); ++i) {
 out_file << “$” <<h_eff->GetBinLowEdge (i) << “$ & $“
 << h_eff->GetBinLowEdge (i+1) << “$ & $“
 << 100*h_eff->GetBinContent (i) << “\,\\%$\\\\\n“;
 }
 out_file << “\\end{tabular}\n”;
}

Reads in efficiency file,
books and fills a histogram from it

Writes the contents of a histogram
into a TEX table, ready for inclusion
in your thesis!

two slashes needed for
one output slash!

B. List 8.12.2008 Top 10 C++ Tips Page14

Tip 10: Always Write out Root Histograms

● It is very conventient to write out a postscript file directly from your
analysis job

● But remember: for your thesis / H1preliminary / publication you'll
need (more) fancy formatting

● Therefore: always write out all your RooT histograms into a RooT
file that you can later use to produce nice plots without re-running
the analysis job!

B. List 8.12.2008 Top 10 C++ Tips Page15

Conclusions

● For analysis purposes, you don't need many fancy C++ features

● But knowing a bit more about C++ helps to improve

– your code

– your analysis!

● The crisis often comes when you have written your selection code
and start to do systematics
-> this may be a good time to re-work some of your analysis code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

