The H1 Silicon Tracker Benno List

ETH Institute for Particle Physics

Tracking In High Multiplicity Environments 03-07 October 2005 Zurich, Switzerland

> HERA and H1 The H1 silicon tracker Recent results Water damage Radiation damage

THUR

The HERA ep Collider

Located at DESY in Hamburg
 27.5 GeV electrons/positrons on 920 GeV protons
 HERA-I: 1992-2000, 120pb⁻¹
 2000: Luminosity upgrade
 HERA-II: 2001-2007

Benno List, ETH Zürich

TIME05: The H1 Silicon Tracker

The H1 Detector

Physics Requirements (I)

•FST:

Extend tracking (with vertexing capability) into forward direction: high track density!
 => good pattern recognition

CST:

- Provide vertexing capability in central region (charm, beauty)
- Resolution dominated by multiple scattering: thin detector!

Physics Requirements (II)

BST:

Measure and trigger scattered electron at low angles: suppress fake electrons from $\pi^0 \rightarrow \gamma \gamma$

≻Generally low track density in backward direction

Separation of pions and elctrons by measuring energy E in the calorimeter and momentum p in BST. D. Eckstein, DESY-THESIS-2002-8.

FST: Forward Silicon Tracker

Collaboration of DESY-Zeuthen, DESY, Prag, RAL

Connectors (Electrical + Cooling)

- 7 sensor wheels,2 types: u/v and r
- •3384cm² silicon
 - ≻from CIS (Erfurt)
- 92160 channels
- Readout with APC
- (Analog Pipeline Chip)
- ≻developed at PSI
- ≻SACMOS: 1.2µm CMOS
- ≻Manufactured by Faselec
- ≻Store signal in 128×32
- ² capacitors, readout sequentially

FST Sensor types

- •5 wheels with u/v coordinate:
 - ➤ single sided silicon
 - ➤u and v sensors mounted back-to-back
 - > good signal/noise> 72µm pitch
- •2 wheels with r strips
 - ➤ single sided silicon
 - ≻readout with 2nd metal layer
 - ≻reasonable S/N
 - ➢needed for pattern recognition in high multiplicity events (ambiguity resolution)

u/v sensors

BST/FST Sensor Wheel

Asymmetric hole to accomodate elliptical beampipe

FST Performance

Water Damage to FST in 2004

- Imperfect crimp + hardening of plastic => water leak
- •Water condensation => damage
- FST being rebuilt nowWill be reinserted in Nov

Benno List, ETH Zürich

TIME05: The H1 Silicon Tracker

New Readout Chips in 0.25µm Technology

- Some radiation damage observed, vulnerability of SACMOS chips also seen in CST => Design new chips in 0.25µm technology
- Translation from earlier design in only 3 months (2 chips!)
 Sep-Dec 2004
- Joint project Zeuthen-PSI-KIP HeidelbergFabricated by UMC
- Production finished

x: 5.45 Y: -582.54 (F) Select: 0 dX: dV: Dist: Cmd: Tools Design Window Create Edit Verify Connectivity Options Route Calibre I	3 Help
Tools Design Window Create Edit Ventry Connectivity Options Route Calibre	Help
· · · · · · · · · · · · · · · · · · ·	
● 「 1 1 1 1 1 1 1 1 1 1 1 1 1	
mouse L: mouseSingleSelectPt M: mousePopUp() R:hiZoomAbsoluteScale(hiGet(Curr
	0.5

BST: Backward Silicon Tracker

Sensor Wheels

Electronics

Electron Beam

6 double wheels with u/v coordinates, same as in FST: tracking
> no r wheels needed, typically low multiplicity in backward direction
4 wheels with pad detectors: triggering
> Hit detection + track finding done on frontend, at 10.4MHz

BST Pad Hit Detection

ASIC PRO/A:
> 1.2µm CMOS process
ring 1 > from IDE AS (Oslo)
> 32 channels per chip
> noise: 600e + 15e/pF
> shaping time 30ns

Benno List, ETH Zürich

BST Pad Trigger Concept

•One motherboard for 2 sectors (8 sensors), mounted directly behind sensor volume

- Complex Programmable Logig Devices (CPLDs) from ALTERA for trigger
- ➢Recognises tracks from IP
- Rejects tracks from outside interaction region
 Flexible, for shifted vertex runs

Uses Content Adressable Memory (CAM) to compare hit patterns with predefined hit patterns from tracks

Backgrounds

Radiation Damage to BST

Page 16

- •In 2002: Dosimeters in BST showed up to 30kGy of dose
- •High dose only in small region at -z end (around collimator), FST, CST, forward region of BST received <100Gy
- •Damages:
 - ➢APC chips of BST: do not hold charge long enough (1ms) for readout (same problem lead to installation of radhard chips in CST)
 - ≻BST slow control circuitry damaged
 - ≻line receivers, drivers damaged
 - ≻ALTERA CPLD chips survived!
 - Voltage regulators for CST damaged (located at same z position as BST electronics)
- •New hybrids+sensors inserted in 2003
- •Now rad-hard design

Beam optimization using BST Pad Rates

- •Use single pad rate to monitor beam conditions
- •Very useful for beam tunig
- •Problem:

Large background spikes (from beam missteering) deprogram CPLDs
 This was an unforeseen application, shows advantage of CPLDs: can be easily adapted to new demands

The CST

•Analog readout with rad-hard DMILL APC

>manufactured by ATMEL Optical signal transmission Built by ETH Zurich, PSI, Uni. Zurich, DESY,

- 2 barrel layers, 12+20 ladders
- 192 sensors 3.4x5.9cm², 3850cm² silicon
- Double sided sensors, $50(\phi)/88(z)\mu m$ pitch
- 3 sensors read out together: 81920 channels
- Very thin: $1.4\% X_0$ in radial direction
- Floating ground for readout circuitry

Benno List, ETH Zürich

CST Movement

- A nasty surprise: H1 beampipe too high by 4mm since switch to e- operation last November, beampipe moves due to magnetic forces on superconducting final focus quadrupoles => alignment difficult, but possible (once per lumi fill!)
- Next shutdown in Nov: Change CST support to avoid moving

TIME05: The H1 Silicon Tracker

CST Hardware Problems

- •Hairline fractures on capton cables
- •Reason: Capton sticky tape put on capton cable for insulation
- •Repair: New 3-layer cables (made by Dyconex)
- •Will be *soldered* onto old cables (avoids difficult re-bonding of complete ladders)
- •Planned for coming shutdown in November

Summary

•HERA-II had a slow start, but is now on track

- •Radiation damage occured mainly from a single incident where synchrotron radiation directly hit a collimator
- •Normal operation of HERA leads to doses ~100Gy/y
- •Brittle cooling pipe -> water damage at FST in 2004
- •Now complete rebuilding of FST + BST, including new rad-hard chips in 0.25µm technology
- •CST fully equipped with radhard DMILL chips, running
- •Alignment very difficult due to beampipe movement: Repeat global alignment for each lumi fill
- •Fractures in capton cables in CST due to sticky tape & bending: Will be replaced in November

BST 1, 2, 3, 4

- BST-1: Installed 1995:
 - >4 wheels of r detectors \times 16 sensors = 64 sensors, 40960 channels
- BST-2: Upgrade 1998:
 - > 4 + 4 wheels of r detectors \times 16 sensors = 128 sensors, 81920 channels
 - ▶8 prototype ϕ sensors (u coordinate): 5120 channels
- Upgrade 2001:
 - > 8 wheels of r detectors \times 12 sensors = 96 sensors, 61440 channels
 - ▶BST-Pad: 4 wheels of pad detectors × 12 sensors: 48 sensors, 1536 pads
- BST-3: Upgrade 2003:
 - $> 5 \frac{1}{2}$ double wheels of u/v detectors $\times 12$ sensors = 132 sensors, 84480 channels
 - ▶BST-Pad: 4 wheels of pad detectors × 12 sensors: 48 sensors, 1536 pads
- BST-4: Repair 2005
 - ≻Compete rebuilding with new radiation-hard Chips

Some Lessons

Frontend electronics is subject to

- ≻power glitches
- ≻damaged control or power cables
- ➤magnetic field changes
- ≻particle bursts.
- It must survive all these without intervention from outside:
- •System must be in safe state at power-up
 - ➢ Missing voltages should not damage the electronics
- •Reset by a single signal should bring it back to this state
- •Software errors should not lead to electronics damage

Things to have

- •Some **monitoring** lines (power, temperature, radiation) that are **independent** of running frontend, DAQ etc.
- •**Redundancy** for vital power and control lines (vital: failure leads to failure of large part of the detector)
- •Self-identifying frontend units (serial number on chip or module):
 - Simpler logistics during assembly and testing
 - ≻Control over cabling and software errors

The HERA ep Collider

HERA (at DESY, Hamburg):
ep collider: 27.5GeV e, 920GeV p
10.4MHz bunch crossing frequency

HERA-I:

- ▶1992-2000
- >70pb⁻¹ per year at end
- •Lumi upgrade Nov. 2000-June 2001.
- •HERA-II:
 - ≻goal: 250pb⁻¹ per year
 - magnets within experiments, complex interaction region

> slow start: Ounderstanding new machine Ovacuum => background

HERA Status, cont'd

•2002/2003: Background problems limited currents => low lumi

- •Bad vacuum leads to proton-induced background (hadrons),
 - Limit of 2000Gy for sensors imposes similar limits as ageing of jet chamber
 - ≻Most of dose received in incidents/accidents
- •March-June 2003: Shutdown
 - Detectors opened, some systems repaired
 - >Numerous improvements to machine
 - ≻H1 silicon detectors: All removed, repaired/augmented
- •Since July: Bakeout to improve vacuum, progressing well
- •Restart lumi operation in October

Overview

Φ

3 Silicon detectors: FST, CST, BST (Forward/Central/Backward Silicon Tracker)
●FST:
>7 wheels with single sided strip detectors
●CST:
>2 barrel layers with double sided strip detectors
●BST:
>6 wheels with single sided strip detectors

≻4 wheels with pad detectors for triggering

Analog readout after trigger