
B. List 28.7.2009 An Introduction to C++ Page 1

An Introduction to ROOT

Benno List

DESY Summer Student Tutorial
28.7.2009

B. List 28.7.2009 An Introduction to C++ Page 2

Introduction

ROOT is a Package for Data Analysis

ROOT Provides:

� Several C++ Libraries

� To store data in histograms

� To store data in n-tuples, called �ROOT Trees�

� To visualize histograms and n-tuples

� To perform fits

� An Interactive Environment

� To run C++ programs interactively

� To visualize data

� To perform fits

B. List 28.7.2009 An Introduction to C++ Page 3

The Analysis Chain in High Energy Physics

Monte Carlo
Generator

Raw Data

4-Vectors

Simulation

Simulated Raw
Data

Reconstruction

High-Level
Reconstruction

Reconstructed
Data (DST)

Condensed Data
(ROOT Trees)

Analysis Code Histograms,
Plots

Journal
Pub lication

B. List 28.7.2009 An Introduction to C++ Page 4

Histograms are Important in HEP

B. List 28.7.2009 An Introduction to C++ Page 5

What is a Cross Section?

� Imagine small area on proton's surface

If area � is hit by electron, an event of a certain type happens

Unit of �: cm2, or barn: 1 barn = 10-24 cm2 = (10fm)2

Area of proton: approx 0.02 barn (radius 0.8fm)
Typical cross sections at HERA: pb (10-36 cm2)

� Instantaneous luminosity L:
Number of events per second per cross section
Unit of L: cm-2 s-1, or nb-1 s-1

HERA-II Design Lumi:
5·1031 cm-2 s-1, or 50 �b-1 s-1

� Integrated luminosity: � L dt
Number of events per cross section
Unit of � L dt: cm-2, or pb-1

HERA-II values: order 100pb-1
Hit here for
ep -> e' + 2 jets + X

Hit here for
ep -> eX (50<Q2<100GeV)

The Proton

B. List 28.7.2009 An Introduction to C++ Page 6

How Do we Measure a Cross Section?

� The Master Formula:

 Number of events: N = · � � L dt

� We count events for a given data sample
=> observed number of events Nobs

� For this data sample, we know the integrated luminosity � L dt

� We are generally interested for cross sections for theoreticaly well
defined processes, e.g. for ep->e' X, 0.001<x<0.002, 5<Q2<6GeV2

� But we can only count events which we have observed, and where
we have reconstructed certain x, Q2 values, which are not exact

� => We have to correct the observed number of events for
background, trigger and reconstruction inefficiencies, and
resolution effects

B. List 28.7.2009 An Introduction to C++ Page 7

How Do we Correct for Detector Effects?

� Analytical calculations generally not possible

� The Monte Carlo Method:
�Generate events� randomly, which have
the expected distributions of relevant
properties (x, Q2, number of tracks,
vertex position...)

� Simulate detector response to each such
event (hits in chambers, energy in calo)

� Pass events through same reconstruction
chain as data

� Now we have events where we can count events that truly fulfill
our cross section criteria, and those which pass the selection
criteria. The ratio is called �efficiency� and is used to correct the
data

Measuring with the Monte Carlo method:�
The fraction f of random points within
the circle is /4.�
We measure: f = 16/20 = 0.8
Uncertainty on f: sqrt(f*(1-f)/N) = 0.09
So: /4 ~ f = 0.80 ± 0.09 �
and ~ 4f = 3.2 ± 0.3�

Exercise:

Write a C++ program that generates randomly points in a square and determines the
fraction that lies within a circle of radius 1. From the fraction, calculate pi and its
error.

How many point do you have to generate to calculate pi to a precision of 0.01, or
0.001?

How long does the program need for that?

Hint: use ROOT class TRandom (discussed later in this talk)

B. List 28.7.2009 An Introduction to C++ Page 8

How Do we Count Events?

Typically: Write (and run) a program that

� Selects events with certain properties, e.g.:

� Scattered electron with energy E'e>10GeV

� Tracks visible that come from a reconstructed vertex with -35<z<35cm

� Reconstructed Bjorken-x > 0.001

� Counts events in �bins� of some quantity, e.g. Q2:
Q2 = 10...20, 20...30, 30...40, ...

� Shows the number of events as a histogram

B. List 28.7.2009 An Introduction to C++ Page 9

The Sketch of an Analysis Program

int main() {

 // some initializations here:

 // reading steering parameters

 // open event files

 // Book histograms

 for (int i = 0; i < events; ++i) {

 // Load event number i into memory

 // Get/calculate event properties

 if (selection_is_filfilled) {

 // fill histograms

 }

 }

 // draw the histograms

 // write out histogram file

 // write out info like number of events etc...

 return 0;

}

The skeleton of such an analysis program
will typically be provided to you by your
supervisor

B. List 28.7.2009 An Introduction to C++ Page 10

Linking with ROOT

� Will normally be done by a Makefile

� Command �root-config� tells you necessary compiler flags:
$> root-config --incdir

/opt/products/root/5.18.00/include

$> root-config --libs

-L/opt/products/root/5.18.00/lib -lCore -lCint -lHist -lGraf

-lGraf3d -lGpad -lTree -lRint -lPostscript -lMatrix -lPhysics

-pthread -lm -ldl -rdynamic

� To compile a file Example.C that uses root, use:
$> g++ -c -I `root-config --incdir` Example.C

� To compile and link a file examplemain.C that uses root, use:
$> g++ -I `root-config --incdir` -o examplemain

 examplemain.C `root-config --libs`

� The inverted quotes tell the shell to run a command and paste the
output into the corresponding place

B. List 28.7.2009 An Introduction to C++ Page 11

ROOT Information

� Web page: http://root.cern.ch/

� We use ROOT 5.18/00

� You can download ROOT yourself and install it,
also for MacOS and Windows (though I never tried it...)

� There is a User's guide at
http://root.cern.ch/drupal/content/users-guide

� A complete overview over all classes is available at
http://root.cern.ch/drupal/content/reference-guide

B. List 28.7.2009 An Introduction to C++ Page 12

Remark: ROOT Coding Conventions

ROOT uses some unusual coding conventions
just get used to them...

� Class names start with capital T: TH1F, TVector

� Names of non-class data types end with _t: Int_t

� Class method names start with a capital letter: TH1F::Fill()

� Class data member names start with an f: TH1::fXaxis

� Global variable names start with a g: gPad

� Constant names start with a k: TH1::kNoStats

� Seperate words with in names are capitalized: TH1::GetTitleOffset()

� Two capital characters are normally avoided: TH1::GetXaxis(),
not TH1::GetXAxis()

B. List 28.7.2009 An Introduction to C++ Page 13

ROOT Histograms

� 1-Dimensional Histograms:class TH1F

� Gives the number of entries versus one variable

� By far the most common type

� 2-Dimensional Histograms: class TH2F

� Gives the number of entries versus two variables

� Used to show dependencies/correlations between variables

� Profile Histograms: class TProfile

� Gives the average of one variable versus another variable

� Used to quantify correlations between variables

� Often used to quantify reconstruction resolutions/biases:
Plot reconstructed quantity versus true (�generated�) quantity in Monte Carlo
events

B. List 28.7.2009 An Introduction to C++ Page 14

A 1-Dimensional Histogram Example

file gausexample.C:

#include <TH1.h>

#include <TFile.h>

#include <TRandom.h>

int main() {

 TH1F *histo = new TH1F (“hgaus”, “A Gauss Function”, 100, -5.0, 5.0);

 TRandom rnd;

 for (int i = 0; i < 10000; ++i) {

 double x = rnd.Gaus (1.5, 1.0);

 histo->Fill (x);

 }

 TFile outfile (“gaus.root”, “RECREATE”);

 histo->Write();

 outfile.Close();

 return 0;

}

Compile and run:

$> g++ -I `root-config --incdir` -o gausexample gausexample.C `root-config --libs`

$> ./gausexample

Here we �book� the histogram
�ID is �hgaus� (must be unique, short, no spaces)
�Title is �A Gauss Function�
�100 bins between -5 and 5

Open the ROOT output file
Write the histogram to it
Close the output file

rnd is an object of type TRandom,
a random number generator.
rnd.Gaus returns a new Gaussian distributed
random number each time it is called.

Of course, typically you will have a Makefile from your advisor which automatically
links to ROOT

Exercise:

Get this program from
/afs/desy.de/user/b/blist/public/rootintro

Compile it and run it

B. List 28.7.2009 An Introduction to C++ Page 15

What TH1F Histograms Can Do

� Booking
TH1F(const char* name, const char* title, int nbinsx, double xlow, double xup);

TH1F(const char* name, const char* title, int nbinsx, const double* xbins);

� Filling
virtual int Fill(double x);

virtual int Fill(double x, double w);

� Getting information
virtual double GetBinContent(int bin) const;

virtual double GetMaximum(double maxval = FLT_MAX) const;

virtual double GetMaximum(double maxval = FLT_MAX) const;

� Adding etc.
virtual void Add(TF1* h1, Double_t c1 = 1, Option_t* option);

likewise: Multiply, Divide

� Drawing
virtual void Draw(Option_t* option);

� Writing to a file (inherited from TObject)
virtual int Write(const char* name = "0", int option = 0, int bufsize = 0);

For detailed information, look at

http://root.cern.ch/root/html518/TH1F.html

http://root.cern.ch/root/html518/TH1.html

http://root.cern.ch/root/html518/TObject.html

B. List 28.7.2009 An Introduction to C++ Page 16

Looking at the Histogram: Interactive ROOT

� Start ROOT interactively with
$> root

� A DESY specialty: You can chose a special ROOT version with
$> ini ROOT40008

(other versions: ROOT40402, ROOT51200 etc)

� At the ROOT prompt, enter
root [1] TBrowser t;

� this opens a browser

B. List 28.7.2009 An Introduction to C++ Page 17

Clicking

Click here to
open a file

Click here to
display a
histogram

Enter this
to get the
browser
window

B. List 28.7.2009 An Introduction to C++ Page 18

No Clicking

$> root

root [0] TFile *file0 = TFile::Open("gaus.root")

root [1] hgaus.Draw()

root [2] hgaus.Draw(“E”)

root [3] hgaus.Draw(“C”)

root [4] gStyle->SetOptStat(1111111)

root [5] hgaus.GetXaxis()->SetTitle("Abscissa")

root [6] hgaus.GetYaxis()->SetTitle("Ordinate")

root [7] gPad->SetLogx(1)

root [8] hgaus.Draw(“E2”)

root [9] hgaus.SetLineColor(3)

root [10] hgaus.SetLineStyle(2)

root [11] hgaus.SetLineWidth(2)

root [12] hgaus.SetMarkerStyle(20)

root [13] hgaus.SetMarkerSize(1.5)

root [14] hgaus.SetMarkerColor(4)

root [15] hgaus.Draw(“E1”)

root [16] hgaus.SetFillColor(4)

root [17] hgaus.Draw(“C”)

root [18] gPad->Print(“gaus1.ps”)

root [19] .q

From ROOT manual, Section 3 (Histograms):

Statistics Display

By default, drawing a histogram includes drawing the statistics box. To eliminate the
statistics box use: TH1::SetStats(kFALSE).
If the statistics box is drawn, you can select the type of information displayed with
gStyle->SetOptStat(mode). The mode has up to seven digits that can be set to on (1)
or off (0). mode = iourmen (default = 0001111)
� n = 1 the name of histogram is printed
� e = 1 the number of entries printed
� m = 1 the mean value printed
� r = 1 the root mean square printed
� u = 1 the number of underflows printed
� o = 1 the number of overflows printed
� i = 1 the integral of bins printed
WARNING: never call SetOptStat(000111); but SetOptStat(1111), 0001111 will be
taken as an octal number.

B. List 28.7.2009 An Introduction to C++ Page 19

Drawing Options for 1D-Histograms

"AXIS" Draw only axis

 "AH" Draw histogram, but not the axis labels and tick marks

"]["

"B" Bar chart option

"C" Draw a smooth Curve througth the histogram bins

"E" Draw error bars

"E0" Draw error bars including bins with o contents

"E1" Draw error bars with perpendicular lines at the edges

"E2" Draw error bars with rectangles

"E3" Draw a fill area througth the end points of the vertical error bars

"E4" Draw a smoothed filled area through the end points of the error bars

"L" Draw a line througth the bin contents

"P" Draw current marker at each bin except empty bins

"P0" Draw current marker at each bin including empty bins

"*H" Draw histogram with a * at each bin

"LF2”

When this option is selected the first and last vertical lines of the histogram are not
drawn.

Draw histogram like with option "L" but with a fill area. Note that "L" draws also a fill
area if the hist fillcolor is set but the fill area corresponds to the histogram contour.

For detailed information, look at
http://root.cern.ch/root/html518/THistPainter.html

ROOT manual, Section 9:
Graphics and Graphical User
Interfaces

B. List 28.7.2009 An Introduction to C++ Page 20

Drawing Options for 2D-Histograms

AXIS Draw only axis

ARR arrow mode. Shows gradient between adjacent cells

BOX a box is drawn for each cell with surface proportional to contents

COL a box is drawn for each cell with a color scale varying with contents

COLZ same as "COL". In addition the color palette is also drawn

CONT Draw a contour plot (same as CONT0)

CONT0 Draw a contour plot using surface colors to distinguish contours

CONT1 Draw a contour plot using line styles to distinguish contours

CONT2 Draw a contour plot using the same line style for all contours

CONT3 Draw a contour plot using fill area colors

CONT4 Draw a contour plot using surface colors (SURF option at theta = 0)

CONT5 Draw a contour plot using Delaunay triangles

LIST Generate a list of TGraph objects for each contour

FB Draw current marker at each bin including empty bins

BB Draw histogram with a * at each bin

SCAT Draw a scatter-plot (default)

TEXT Draw bin contents as text

TEXTnn Draw bin contents as text at angle nn (0 < nn < 90)

[cutg] Draw only the sub-range selected by the TCutG named "cutg"

ROOT Manual, Section 9:
Graphics and Graphical User
Interfaces

B. List 28.7.2009 An Introduction to C++ Page 21

CINT

� ROOT uses a C++ interpreter CINT for interactive use

� You can enter any C++ command; trailing �;� is not required

� Resetting the interpreter (erasing variables etc):
root[] gROOT->Reset()

Do that often! But often a restart of ROOT is needed...

� Special commands:
.q Quit

.x script.C Execute script �script.C�

.L script.C Load script �script.C� (if script.C contains class definitions)

� More in Chapter 7: �CINT the C++ Interpreter� of ROOT manual

B. List 28.7.2009 An Introduction to C++ Page 22

Two kinds of scripts

� Un-named scripts:
{

 #include <iostream.h>

 cout << “Hello, World!\n”;

}

� Code must be enclosed in curly braces!

� Execute with
root[] .x script.C

� Named scripts:
#include <iostream.h>

int main() {

 cout << “Hello, World!\n”;

}

� More like normal C++ programs, recommended form!

� Execute with:
root[] .L script.C

root[] main()

B. List 28.7.2009 An Introduction to C++ Page 23

CINT Extensions to C++

� If you create a pointer and assign to it with �new�, you don't need
to declare the pointer type:
h = new TH1F (“h”, “histogram”, 100, 0, 1)

� h is automatically of type TH1F*

� �.� can be used instead of �->�
=> Don't do that habitually!

� If you use a variable that has not been declared earlier,
ROOT tries to create one for you from all named objects it knows
=> If you have opened a file that contains a histogram �hgaus�,
you can directly use
hgaus->Draw()

� But be careful: Sometimes you get a different object than you thought :-(

B. List 28.7.2009 An Introduction to C++ Page 24

TF1 Functions and Fitting

file tf1example.C:

#include <TH1F.h>

#include <TF1.h>

#include <TFile.h>

Double_t mygauss (Double_t *x, Double_t *par) {

 // A gauss function, par[0] is integral, par[1] mean, par[2] sigma

 return 0.39894228*par[0]/par[2]*exp(-0.5*pow((*x -par[1])/par[2], 2));

}

int main() {

 TF1 *gaussfun = new TF1 ("gaussfun", mygauss, -10, 10, 3);

 gaussfun->SetParameters (100, 0., 1.);

 gaussfun->SetParNames ("Area", "Mean", "Sigma");

 TFile *file = new TFile ("gaus.root");

 TH1F *hgaus = dynamic_cast<TH1F *>(file->Get("hgaus"));

 if (hgaus) {

 hgaus->Fit(gaussfun);

 }

}

Defines a Gauss function
Note that the argument must be handed over by a pointer!!!

Defines a TF1 function object
� ID is �gaussfun�
� It executes function mygauss
� It is valid for x between -10 and 10
� It has 3 parameters

Here we load the histogram �hgaus�
from the file �gaus.root�,
and if it was found, we fit it.

file->Get() returns only a pointer to a TObject, which is a base class of TH1F.

With dynamic_cast we convert the pointer to the correct type.

If the object pointed to is not a TH1F (it could something completely different!), the dynamic_cast

returns a null pointer.

Exercise:

Get this program from
/afs/desy.de/user/b/blist/public/rootintro

Compile it and run it with
g++ -I `root-config --incdir` -o tf1example tf1example.C `root-config

--libs`

./tf1examaple

Run it in root interactively with
$> root

root [0] .L tf1example.C

root [1] main()

Learn more about TF1 and fitting in Chapter 5 �Fitting Histograms� of the ROOT manual.

B. List 28.7.2009 An Introduction to C++ Page 25

Five Minutes on ROOT Trees

� A ROOT Tree holds many data records of the same type, similar
to an n-tuple. One record is described by a C++ Class:
class EventData {

 public:

 Int_t run;

 Int_t event;

 Float_t x;

 Float_t Q2;

};

� The ROOT Tree knows how many enries (here: events) it
contains.
It can fill one instance (one object) of class EventData at a time
with data, which we then can use to plot the data.
TH1F *histox = new TH1F (“histox”, “Bjorken x”, 1000, 0., 1.);

TFile *file (“eventdata.root”);

TTree *tree = dynamic_cast<TTree *>(file->Get(“eventdata”));

EventData *thedata = new EventData;

TBranch *branchx = tree->GetBranch(“x”);

branchx->SetAddress (&(event->x));

for (int i = 0; i < tree->GetEntries(); ++i) {

 branchx->GetEntry(i);

 histox->Fill (x);

}

B. List 28.7.2009 An Introduction to C++ Page 26

Trees, Branches, and Leaves

� The Tree is the whole data set

� A Branch contains the data of one or several variables, e.g. the x
and Q2 values of all events.

� A Tree consists of several Branches.

� How the Branches are set up is determined by the program that writes the
Tree

� A Leaf is the data of a single variable (like x)

� A Branch consists of several Leaves

B. List 28.7.2009 An Introduction to C++ Page 27

Using Trees

� You will surely given a program by your advisor which reads in a
ROOT Tree so don't worry how to create a ROOT Tree.

� You will have an �event loop� which loops over all entries of the
tree. Within the loop, you'll find all data that you need in some
object.

� Use this data to select �good� events and plot their properties in
histograms

