An Introduction to C++

Benno List

DESY Summer Students Tutorial

27.-28.7.2009

B. List 28.-28.7.2009 An Introduction to C++ Page 1

Introduction |

» C++: Created by Bjarne Stroustrup
in 1983

* Based on the language “C”
(Kernighan & Ritchie 1978)

 Extends C:

- Object orientation (classes)

- Operator overloading

- Templates Y & *

- Many many features 2 Ggimmm;
« Standardized by I1SO in 1998 . LANeSRUE

* Very important language for systems ﬁhmu i\ |
and high performance programming STROUSTRUP

B. List 28.-28.7.2009 An Introduction to C++ Page 2

Introduction Il

» C++ is one of the most complicated programming languages
around

* FORTRAN is like a VW beetle:
simple, reliable, easy to master

« C++ s like a Formula 1 racer:
incredibly powerful, but difficult to drive

FORTAN

B. List 28.-28.7.2009 An Introduction to C++ Page 3

Introduction ll|

* The best way to learn programming is to look at programs
* |'ll show many code examples

* In your work, you will mostly start with an example program and
adapt it to your needs

- | concentrate on showing you how to understand what existing programs do

- Programming languages are like all languages:
You cannot write if you can't read!

* For reasons of space, examples are ususally not production-
quality code!

- | often omit (essential!) error checking
— | often prefer simple code over the most concise code

- Sometimes | avoid syntactic complications (omit “const”, don't use references)
for the sake of brevity and clarity
B. List 28.-28.7.2009 An Introduction to C++ Page 4

Hello, World! o

m
Note: C++ is case-sensitive:
our first C++ program: cout , Cout and COUT are 3 different things!I
file: hell o. C
#i ncl ude <i ostreanp Reads in file “i ost r ean?, which declares cout
usi ng nanmespace std; Without this, we would have to write st d: : cout

int main() {
cout << “Hello, Wrld'\n”;

This is the main program, returning an integer
Prints out “Hel | o, Worl d”, “\ n” ends the line

return O;
) returns “0” to the shell: no error
Note: a semicolon ends each statement. I
In the shell:
$> g++ -0 hello hello.C «g++ is the compiler, hel | o is the excutable file
$> ./hello eexecute “hel | 0o”
g'e' lo, World! eyes, it works!
>

B. List 28.-28.7.2009 An Introduction to C++ Page 5

Functions

 In C++: almost everything returns a value
=>no "SUBROUTINE"s in C++, only “FUNCTION"s

* No implicit typing, every function and variable has to be declared

file: area. h

doubl e area (doubl e radi us); Decla(es the function: y .,
function takes one argument “r adi us” of

file: ar ea. C type “doubl e”, returns a “doubl e” value

#i ncl ude “area. h”

Includes the declaration file

doubl e area (double radius) {] _
doubl e result = 3.14159276* Defines the function

radi us*r adi us;

return result; Note: linebreaks are allowed almost
} everywhere I

B. List 28.-28.7.2009 An Introduction to C++ Page 6

Using Functions

file: cal carea. C

#include <iostrean» Includes the declaration fiIesI
usSi Ng nanespace Std;
#i ncl ude “area.h”

Note: <> for standard headers,
int main() { “” for user headers!

cout << “Enter radius: :
doubl e r adi us;

cin >> radi us; ci n reads from standard input
cout << "Area of circle wth radius * é

<< radius << “ |s “
<< area (radius) << endl;
return O;

}

| n the shell:

$> g++ -0 calcarea calcarea.C area.C
$> ./cal carea

Enter radius: 1.5
Area of circle with radius 1.5 is 7.06858

$>

B. List 28.-28.7.2009 An Introduction to C++ Page 7

Basic Types

 Some of the types available in C++

C++ Type |Meaning Size |Range (appr.)|Resolution
Int, long |Integer YY bit | £Y)EVEATTELA \

f| oat Floating-point Y'Y bit +3-10%38 1107
doubl e Floating-point ¢ bit +2-10%308 2:10716
bool Boolean value YY bit (1) false, true

char Character, integer| A bit VYA ZAYY)
short Integer '\ bit +YYYIA \

Note: Sizes are not the same on all systems,
e.g. | ong could also be 64 bit I

B. List 28.-28.7.2009 An Introduction to C++ Page 8

Operators |: Arithmetic operators

 Arithmetic operators:

Operator Meaning
- Sign Change
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

note: no exponentiation! use “pow” function

« Assignment: = evaluates right side, assigns value to left side

doubl e radius = 1.5;

doubl e result = 3.14159276*r adi us*r adi us;
int 1 = 1;

I =1 + 1; [/ nowi is 2!

B. List 28.-28.7.2009 An Introduction to C++ Page 9

Operators |I:

e Special cases:

int 1 = 1;

i 4= 1 sameasi = i+1l; now i is2

i x= 3. sameasi = i*3; now i is6

T increments i . Nowi is 7.

int | = ++i; assigns new valueofi to j. =>j is now 8.
called “pre-increment’

jo= 0+ assigns old value to k. => k is now 8, buti is 9!

called “post-increment”

« The operators “+=", “* =" etc work also for f | oat , doubl e etc.

* Precedence as usual, evaluation from left to right:
a = b+2*-c +d%; IS same as
a = (b+(2%(-c))) +(d%);

B. List 28.-28.7.2009 An Introduction to C++ Page 10

Operators lll: Relational Operators

» Relational (comparison) operators: return “false” or “true”

Operator | Meaning
== Equal
= Not equal
< Less than
<= Less or equal
> Greater than
>= Greater or equal
o Careful: “=="is a comparison, “=" is an assignment! . —

* In C/C++, an assignment has also a value: the assigned value:
a=(b=7 + 1; is legal (b becomes 7, a becomes 8)

e Therefore: i f (a=7) ... is also legal, but not what you want!

B. List 28.-28.7.2009 An Introduction to C++ Page 11

Operators |V: Logical Operators

 Logical operators: used for boolean expressions

Operator | Meaning
! Not
= Exclusive or
&& And
| | Or

 Bitwise operators: Perform bit-by-bit operations on integer types

Operator | Meaning
~ Bitwise complement
& Bitwise and
N
|

Bitwise exclusive or
Bitwise or

« Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: O is false, everything else is true
=>7 && 8istrue, 7 & 8is 0 is false!

B. List 28.-28.7.2009 An Introduction to C++ Page 12

Operators V: Input and Output

_ _ Every UNIX program has 3 pre-defined inputs/outputs:
#i ncl ude <i ostreanp ci n is the standard input.
cout is the standard output.

usi ng nanespace std; cerr is the error output.

Int main() {
int i;
doubl e d;
cout << “Enter an integer and a double: *“;
cin >> i >> d;
cout << “The integer is “ << |

<< * and the double is “ << d << endl;
cerr << “This is an error nessage\n”;
return O;

“<<” is the output operator.
“>>" |s the input operator.

B. List 28.-28.7.2009 An Introduction to C++ Page 13

Numerical Functions

« Available from <cmat h>
Don't forget “usi ng namespace std; !

Function |Meaning Remark FORTRAN
si n(X) Sine SI N(X)
cos (Xx) Cosine COS(X)
tan (x) Tangent TAN(X)
asi n(x) Arc sine ASI N(X)
acos(x) Arc cosine ACO5(X)
at an(x) Arc tangent -11/2 < Result < 11/2 ATAN(X)
at an2(x, y) |Arc tangent (x/y) -1 < Result < 11 ATANZ (X, Y)
exp(x) Exponential EXP(X)
| 0g(x) Natural logarithm LOX X)
| 0g10(x) Logarithm, base 10 LOGLO(X)
abs(x) Absolute value ABS(X)
sqrt (x) Square root SQART(X)
pow (X, Yy) |xtothe powery only for x >= 0 X**Y
pow (X, i) |xto the integer power i | also for x<0 X** |

B. List 28.-28.7.2009

An Introduction to C++

Page 14

Type Conversions I: Automatic Conversions

m
m

* integer types (int, short, char, long long) to floating point types (float, double):
gives the same number
careful: for large integers, the conversion is not exact!

C/C++ has many pre-defined type conversions that are applied
automatically, when necessary:

« floating point types to integer types:
the number is truncated (not rounded!) towards O:
1.3->1,1.7->1,-1.8 -> -1

 Number types to bool: 0 -> false, non-zero -> true Too many traps to list

. . . , . ~ them here! Find them
 arithmetic expressions between integers result in integers: Ul
713 > 2, 4/5 -> 0 y -

o arithmetic expressions between floats (and integers) result in floats:
1.3*56->6.5, 4.0/5->0.8,4/5.0->0.8

» Arguments of arithmetic functions are (often) automatically converted:
sqrt (2) -> 1.41

B. List 28.-28.7.2009 An Introduction to C++ Page 15

Type Conversions |I: Casts

You can explicitly ask for a type conversion.
This is called a cast. (Like “casting bronze™)

» C-style casts: (type)expression:

double d = 3.7,
int i = (int)d™* 2; // i is 3*2=6, not 7!

- discouraged!!! hard to read, ambiguous

o C++ style casts:

int I = static _cast<int>(d) * 2;

- the recommended form.
— other casts exist (dynam c_cast, reinterpret _cast, static_cast)

B. List 28.-28.7.2009 An Introduction to C++ Page 16

Control Strutures I: If-then-else

doubl e maxi mum (doubl e a, double b) {]
doubl e result; condition in parantheses after “i f”
'fr(egurt b)= g e note: r esul t must be declared before the if-block
} | « multiple statements afteri f () and el se must be
el se { enclosed in curly braces.

result = b;

} | Note: no semicolon needed (but allowed)
} TERUrD FesUli: after curly braces I
doubl e maxi mum (doubl e a, double b : :

doubl e resul t;() for single statements after i f ()

if (a>Db) result = a; and el se, we don't need the curly

el se result = b; braces. (But use them anyway!)
return result;

}

doubl e nBX|nun1(doubIe a, double b) { wo . w - -
double result = (a >b) 2 a : b is a special operator (taking
return result; three arguments), especially for

} cases such as this one.

doubl e maxi mum (doubl e a, double b) {
return (a > b) ? a: b;

}

The variable r esul t is unnecessary. I
B. Lis ~28.1. n Introduction to C++ Page 17

Control Structures Il: while, do-while

doubl e power (double x, int n) { [o . _
/| evaluates x”n, for nonnegative n By the way: This is a single-line comment
doubl e result = 1;
int 1 = 0O;
while (i < n) {
result == x; « This block is executed only if i<n;
} il once i >= n, go to next statement
return result: » Block may be executed 0 times (for n == 0)

}

doubl e exponential (double x) {

/* cal cul ates exp(Xx) By the way: This is a multi-line

exp (x) =1+ x +x"2/2 + ... xMilil */
double result = 1, xx = 1; comment
int i = 1;
do {
XX *= x/i; : :
result 4= xx: * This block is repeated as long as
o xx > 0.0000001 * result.
} while (xx > 0.0000001 * result); * Block is executed at least once!
return result;

Page 18

Control Structures lll: for

doubl e power (double x, int n) {
/'l evaluates x*n, for nonnegative n
double result = 1;

/] eval uates x"n, for fhonnegdtive n

doubl e re = 1: . |
A @; G | A f or -loop is exactly equivalent to

result *= X a whi | e-loop
} " » Just a convenient short-hand
return result; notation

}

B. List 28.-28.7.2009 An Introduction to C++ Page 19

More Complicated Data Structures: Classes |

* In a class, several variables (“data
file Vector. h: members”) can be grouped together

« “publ i c” means: other parts of the
cl ass Vector {

publ i c: program may access the variable
A class creates a new variable type!

double x, vy, z;
O_Note: Here the semicolon is mandatory!!!
file cal cVect (ﬁ
doubl e cal cVectorLength (Vector v); I

file cal cVect or Lengt h. C.

#i ncl ude “Vector.h”
I ncl ude <cnat h>
usi ng nanespace std;

doubl e cal cVectorLength (Vector v) {
return sqgrt (pow (v.x, 2) +

pow (V.y, 2)+pow (V.z, 2)): Here we have to pass only one variable

} of type Vect or, instead of 3

B. List 28.-28.7.2009 An Introduction to C++ Page 20

Classes |

#i ncl ude “Vector.h”
#i ncl ude “cal cVect orLengt h. h”
#i ncl ude <i ostreanr
usi ng nanespace std;

int main() {

Vect or v,
cout << “Enter three vector conponents:”;
cin >>v.x >> v.y >>v.z » Creates a Vector named v.

cout << “Length of this vector is *

 Reads in the components:
<< cal cVectorLength (v) << endl; P

Vector w = v: V.X is x-component of v!
cout << “Length of vector wis “ Calculates the length.

<< cal cVectorLength (w) << endl; » Creates a new Vector w, which is a
return O, copy of v.

Classes lll: Function Members / Methods

file Vector. h:
class Vector { |
publ i c: * This is a “constructor”
Vector (double xIn, double yln, double zln)e This calculates the length of a
siowzle | eugtal): Vector; it is a function: therefore
double x, vy, z; [\
¥ the “()”, but takes no arguments

file Vector. C:

#i ncl ude “Vector. h” Note: Here we really need the header file,

#1 ncl ude <cmat h> -
18]) RS REE S because it declares the layout of the class

ector (doubl e xIn, double yln, double zIn) {

} REAm Y =y z =200 Note: in the definition of the function outside
the “cl ass Vector {};”, we have to give the
doubl e Vector::length() { class name explicitly

return sqgrt (pow (x, 2) + pow (y, 2)+pow (z,

}

Here we use X, y, z directly, without any “v.”! I
B. List 28.-28.7.2009 An Int

Classes IV

file vectorl ength. C

#i ncl ude “Vector.h”
#i ncl ude <i ostreanr
usi ng nanespace std;

int main() {
double x, vy, z;

cout << “Enter three vector conponents:”;

cin >> x >y > z;

Vector v (x, vy, z);

cout << “Length of
<< v.length()

Vector w = v;

cout << “Length of
<< w. |l engt h()

return O;

« Now we can also create a Vector
directly from its components, using
the constructor

 Calculates the length.

this vector is “
<< endl ;

vector wis “
<< endl ;

B. List 28.-28.7.2009

An Introduction to C++ Page 23

Classes V: Private

file Vector. h:

cl ass Vector {

oubl i c: Now we have spherical
Vector (double x_, double y_, double z); coordinates.
doubl e length(); » The coordinates may not be
TPl Ve (5 accessed from outside the class

double r, phi, theta;] .
anymore: they are private!

file Vector. C

#i ncl ude “Vector.h” Now the constructor is much
a1 el wele selut = more complicated.
usi ng nanmespace std;
Vector::Vector (double x , double y , double z) {
r = sqrt (pow (x_, 2) + pow (y_, 2)+pow (z_, 2));
phi = atan2 (y_, X);
theta = (r > 0) ? acos (z_/r) : O;

}
d°“b'r§t L/ff,t (r)r e o * But calculating the length is
} easy!

B. List 28.-28.7.2009 An Introduction to C++ Page 24

Classes VI

#i ncl ude “Vector.h”
#i ncl ude <i ostreane
usi ng nanespace std;

Int main() {

double x, vy, z;

cout << “Enter three vector conponents:”;

cin >> x >y > z;

Vector v (X, vy, 2);

cout << “Length of
<< v. |l ength()

Vector w = v;

cout << “Length of
<< w. |l engt h()

return O;

Note: old routine

What has changed in our main
program?

NOTHING:! it still works!

This is GREAT!

this vector is “
<< endl ; . .
This concept is

So great,it even
has a name: It is called

Encapsulatio

vector wis “
<< endl ;

W= calcVectorLength does not work
anymore, because it accesses
the data members of Vector

directly!

B. List 28.-28. to C++ Page 25

Reflection on Objects and Classes

* Objects: Instances of class variables:
Vector is a class, v is an Obect

e With classes, we have

- a close coupling between data and functions that work on the data

- the possibility to hide how some piece of code works,
we see only what it does

- the possibility to divide our code
into many small pieces
that are individually simple and
therefore well to maintain

* Object Oriented Programming
Is the modern way to write
programs

Encapsulation hides the details of the implementation of an object.

B. List 28.-28.7.2009 An Introduction to C++ Page 26

The lllusion of Simplicity

A R

e

- -

The task of the software development team is to engineer the illusion of simpliciy.

B. List 28.-28.7.2009

-

b i

An Introduction to C++

Page 27

Interlude

« Compliling

* Linking GNU Make

¢ Make A Program for Directed Compilation

Don't expect to understand all this; m _

| jJust want to give you an idea what : ("
“make” does and why we use it all the time) _Tj'_l_i

_. for CNU Mﬂke Version 3.81
[EWl bv Richard M. Stallman,
Roland McCrath and Paul D. 5mith

1111111111

B. List 28.-28.7.2009 An Introduction to C++ Page 28

More on Compiling

« Compiler g++: Translates source code (text file) into machine code
» 2 Steps: Compiling and Linking

* Qutput of compiling step: .o files (object files):
$> g++ -c Vector.C
$> g++ -c vectorlength.C

produces files Vect or. o and vectorl ength. o

» Qutput of linking step: executable (no extension)
$> g++ -0 vectorlength vectorlength.o Vector.o

combines the object files vect or | engt h. o and Vect or. o into
the executable file vect or | engt h

* In the linking step, also source files may be used, e.g.
$> g++ -0 vectorlength vectorlength. C Vector. o

B. List 28.-28.7.2009 An Introduction to C++ Page 29

. UH
Archives it

* Problem: If we have hundreds of object files, the linking commands
gets veeeeeeeery long

» Solution: Collect all the object files (usually without object files that

contain a mai n() function) in an archive
$> ar r |libnyroutines.a Vector.o area.o

 Now file I i bmyr out | nes. a contains the files Vect or. o and
ar ea. o;

they can be listed with:
$> ar t |ibnyroutines.a
Vector.o
area. o

* We can use the archive in the linking step:
$> g++ -0 vectorlength vectorlength.C |ibnyroutines. a

 Alternatively:
$> g++ -0 vectorlength vectorlength.C -L. -I|nyroutines

B. List 28.-28.7.2009 An Introduction to C++ Page 30

Recompilation

* Second Problem: If we have hundreds of source files and object
files, re-compilation of all routines can take a lot of time

« But if we change Vect or . C, why should we recompile ar ea. C?
This is unnecessary!

» Solution: we recompile only Vector.C and replace it in the archive:
$> g++ -c Vector.C

$> ar r Vector.o libnyroutines. a

The “r’ option (without a “-") tells ar to replace Vect or. o in
| 1 brryrouti ne. a

B. List 28.-28.7.2009 An Introduction to C++ Page 31

UH
make it

*Third Problem: After an editing session, | may have changed 7 out
of 150 .C files. It is very tedious to find out which files to recompile
and to do it by hand. Solution: The make utility

file Makefil e: OBJS is a variable that contains the name of the
object files we want to have in the library.
OBJS=Vector.o area.o This line says that | i bnmyr out i nes. a depends

l'ibnyroutines.a: $(0BJS) — on all object files. If any of the object files has
co T gyl ULl mes. & &l Q) changed (is newer than | i brryr out i nes. a),
. L O .
git -C 3T S(CFrACS— the library has to be recreated.

vectorl ength: vectorlength. C |ibmyroutines.a This line say how to recreate libomyroutines.a.

g++ -0 vectorlength vectorlength. C Note that the command has to be preceeded
-L. -lnyroutines by a “tab” character, which can be very clumsy
Vector.o: Vector.h to enter in some editors! (*| sometines works)
area.o: area.h This is a “suffix rule”: It tells make how to make a
.C file into an .o file. $< stands for the .C file.
o ow we can enter in the s : This line says that Vect or . o also depends on
$> make vectorlength Vect or. h, notonly on Vector. C

g++ -c Vector.C

g++ -c area.C

ar r libnyroutines.a Vector.o area.o
g++ -0 vectorlength vectorlength.C -L. -I|nyroutines
$>

B. List 28.-28.7.2009 An Introduction to C++ Page 32

Back to C++

B. List 28.-28.7.2009 An Introduction to C++ Page 33

Getters and Setters

cl ass Vector { This “const” means that getX() does
public: not change the Vector object.
Vector (double e y_, double z_); IWe'll hear more about that later.
doubl e | engt h()
doubl e get X() consT, I
doubl e get Y() const; By using “Getter” and “Setter” methods
doubl e getZ() const; instead of allowing direct access to the
voi d set X (doubl e newx); data members, we “decouple” the class
private: . _ Vect or from its “clients”, i.e. from the
¥ double r, phi, theta; code that uses Vect or objects.
If we now want to go back to a Vector
Vect or::get X() const { representation which internally uses x, v,
return r*cos(phi)*sin(theta); z, we have to change only code in the
} files Vect or . h and Vect or. C. The

potentially hundreds of files in which we

Vector setX (double newx) { use Vect or objects can stay unchanged!

doubl e new = getY();
doubl e newz = getZ();
r = sgrt (newx*newx + newy*newy + newz*newz);
phi = atan2 (newy, newx);

theta = (r > 0) ? acos (newz/r) : O;

B. List 28.-28.7.2009 An Introduction to C++ Page 34

A more complicated class: Particle

file Particle. h:

#i ncl ude “Vector.h”
class Particle { I
public: — This is called the “default constructor”
Particle();

Particle (Vector v_, double m);
Vect or get Monentun() const;
doubl e get Energy() const;

doubl e getlnvariant Mass () const; — invariant mass of particle itself
doubl e getlnvariant Mass (Particle p); - invariant mass of combination with
private: another particle

doubl e px, py, pz, m e;

b

Note: we can have several functions

with the same name, but different arguments,
that do different things!

(This is forbidden in Cl!)

This is called (function) overloading.

B. List 28.-28.7.2009 An Introduction to C++ Page 35

Several Particles: Arrays

Problem: in general, we have several particles in an event

file particlearray. C

#i ncl ude “Vector.h”

#incl ude “Particle. h al | Parti cl es is an array with 100

#i ncl ude “fillParticles.h” Particles.
#i ncl ude <i ostreane
using namespace std; fillParticl es somehow fills the
int main() { array, and returns the number of
Particle allParticles[100]; particles.
int n =fillParticles (allParticles);
for (int i =0; i <n; ++i) {
for (int j =i+1; j <n; ++) {
cout << “lnvariant nmass of particles * <<
<< * and “ << j << * js *
<< allParticles[i].getlnvariantMass (allParticles[j])
<< endl;
}
}
} Indices start at 0 in C++!

For an array with 100 elements, valid index values are 0 to 99.

B. List 28.-28.7.2009 An Introduction to C++ Page 36

Pointers

* A Pointer points to some object anywhere in memory: It contains
only the object's memry address, but knows to what kind (class) of
object it points to

* \We can use this to refer to other objects

« Example: Decay KOg -> 1r*11- : we want to point to the 2 possible

decay pions, and we may have several pion pairs sharing the
same pion candidate

L Al . w A VT (7
A A I i dBL e et ammerean “For God's sake, Edwards, put the
. . . b /))
An english pointer Another Pointer lase-rpomter away!
B. List 28.-28.7.2009 An Introduction to C++ Pointers can be dangerous!!!

The Pointer Sisters

Example: A KOS class

#i ncl ude “Particle.h”

cl ass KOSParticle {
publi c:
KOSParticle (Particle *piplus , Particle *pimnus);
get I nvari ant Mass() const;

private:
Particle *piplus;

Particle *pininus: pi pl us is a pointer to a Particle object.
}: " Read:“*piplusisaParticle”. I

KOSParticle:: KOSParticle (Particle *piplus_, Particle *pimnus_) {

pi pl us = piplus_;
pi mnus = pimnus_;

pointers can be copied without copying
) the ob'lect to which thez point I
KOSParticle::getlnvariant Mass() const {

return (*piplus).getlnvariant Mass (*pi m nus);

}
*pi pl us is the object itself.

B. List 28.-28.7.2009 An Introduction to C++

Page 38

Using the Kshort class

#1 ncl ude “Vector.h”

#i nclude “Particle.h”

#i ncl ude “KOSParticl e.h”
#i ncl ude <i ostreanp
usi ng nanespace std,;

int main() {
Particle allParticles[100];
int n =fillParticles (allParticles[100]);

for (int i =0; i <n; ++i) {

for (int j =i+1; j <n; +4) { :
KOSParticle kOs (& allParticles[i]), &allParticles[j])); kOs is created

cout << “Invariant nass of KOS is “ here.
<< kOs. getlnvari ant Mass() << endl;

} kOs is destroyed here!
) (“it goes out of scope”)

Page 39

B. List 28.-28.7.2009 An Introduction to C++

Storing the Kshort Candidates

Int main() {
Particle allParticles[100];
int n=fillParticles (allParticles);
KOSParticle *all Kshorts[10000];

for (int i = 0; I < 10000; ++i) allKshorts[i] = O;
I nt kOsNunber = O;
KOSParticl e *kOs;
A new KOSParticle is created
for (int i =0; i <n; ++i) { here, kOs points to it.
for (int j =1i+1;, j <n; +4) {
kOs = new KOSParticle(& allParticles[i]), & allParticles[j]));
I f (abs (kOs->getlnvariantMass() - 0.493) < 0.05) {

al | Kshort s[kOsNunber] = kOs; Note: k02- >get | nvari ant Mass
++kOsNumber ; We keep the good Kshort candidates gis just shorthand for
} é*koz)) get I nvari ant NB'SS()
el se {

\ delete kOs; _.and throw away the bad Kshort candidates! I

}
}

cout << “We have found “ << kOsNumber << “ Kshort candi dates.\n";

}

B. List 28.-28.7.2009 An Introduction to C++ Page 40

A KOSParticle is also a Particle

A This means that a KOSParticle
#i nclude “Particle.h” is also a Particle.

cl ass KOSParticle: @@ublic Particle . .
publ i c: @) This is called Inheritance.

KOSParticle (Particle *piplus_, Particle *pimnus);
get | nvari ant Mass();

private:
Particle *piplus;
Particle *pimnus;

b
Particle
The class “Particle” is called the base class of class “KOSParticle”. Zﬁ
Class “KOSParticle” is a subclass of class “Particle”.
It “inherits” from class Particle, which is the superclass. :
P KOSParticle
This is the “UML Diagram?” for this relationship —

“UML” stands for “Unified Modeling Language”

B. List 28.-28.7.2009 An Introduction to C++ Page 41

Inheritance

class Particle {
publ i c:
doubl e getPt() { return sqrt(px*px+py*py); }
doubl e getPhi () { return atan2(py, px); }
doubl e getlnvariantMass() { return sqrt (e*e-px*px-py*py-pz*pz); }
pr ot ect ed: “protected” means

1 double e, px, py, pz; “private, but may be accessed from subclasses”.

cl ass KOSParticle: public Particle {
publ i c:
KOSParticle (Particle *piplus , Particle *pimnus) {
pi pl us = piplus_;

pi M nus = pimnus._; Here we set the properties that are specific for a
e = pi plus->e + pimnus->e; KOSPart i cl e, and those inherited from
pX = piplus->px + pimnus->px; Particle.
py = piplus->py + pim nus->py;

} pz = piplus->pz + pimMnUS->pz; cja65 KOSParti cl e inherits e, px, py, pz

orivate: from class Parti cl e!
Particle *piplus;
Particle *pim nus; KOSParti cl e also inherits get Pt (),
}s get Phi (), getlnvariant Mass() from

Parti cl e!

Inheritance llI

A new keyword.
“vi rt ual ” means that a subclass may implement

class Particle { this method differently.

public:
article *get Daughter (int i) {
return O; A more generic Particle:

}/ a particle may have daughter
or ot ect ed: particles into V\(hlch it decays.
doubl e e, px, py, pz: Normally, a particle has no
} daughters.

cl ass KOSParticle: public Particle {
publi c:
virtual Particle *getDaughter (int i) {
if (i == 0) return pipus;
else if (i == 1) return pimnus;
el se return O;

}
1. .. A KOSPar ti cl e has 2 daughters, 0 and 1. Therefore

it overrides the method get Daught er from the
base class.

private:
Particle *piplus;
Particle *pimnus;

Page 43

A Simple Jet Class

class Jet: public Particle { A simple class for jets; jets are composed of
pu?' It<(3) : particles, but may also be treated as a pseudo-
e i |
ndaughters = 0; particle (e.g. a quark!)
}

virual void addParticle (Particle *newDaughter) {
i f (nDaughters >= 100) {
cerr << “Jet::addParticle: too many daughters!\n”;

}
el se {
al | Daught er s[nDaught er s++] = newbDaught er; TvDi . : :
. _ ypical C/C++: Doing 2 things at the
= ht er - : .
SX I: Egﬁﬂgh: 2:_;;;(. same time: assigning to
py += newDaught er - >py: al | Daught er s[nDaught er s] ,
pz += newDaught er - >pz; incrementing nDaught er s
} afterwards.

}
virtual Particle *getDaughter (int i) {

return (i >= 0 &% i < nDaughters) ? all Daughters[i] : O;

}
pr ot ect ed:
I nt nDaught ers;
Particle *all Daughters[100]; This is an array of pointers to Particles. Uff!

b

B. List 28.-28.7.2009 An Introduction to C++ Page 44

Using the Jet Class: A Jet Algorithm (a la JADE)

int findlJets (Particle *particles[], int nParticles, double ycut, double s) {
int imn, jmn;
while (nParticles > 1) {
double mmn = sqrt (s);
for (int i =0; I < nParticles; ++i) {
for (int | =i+1; Jj < nParticles; ++j) {
double m = particles[i]->getlnvariantMass (particles[j]);

if (m< mmin) { Loop over all pairs of particles,

} s mAm R = 6 d the pair with the least invariant mass.
} For this pair, store the indices i and |.

i}f (nmmin*nmin < ycut*s) { Combine particles imin and jmin into a new jet;
Jet *jet = new Jet; remove both particles from the list of particles:
jet->addParticle (particles[imn]); replace particle imin by the new jet,
jet->addParticle (particles[jmn]); replace particle jmin by last particle in the list,
particles[jmn] = particles[--nParticl es]; decrease the number of particles by 1.
particles[imn] = jet;

} <« This is the trick!

el se break; Because a Jet isalsoaParticle,

} we may use it wherever a Parti cl e is needed!

return nParticl es;

}

B. List 28.-28.7.2009 An Introduction to C++ Page 45

Reflection

* We just saw great things a work:
One object behaving like an object from a different class!

* A Jet IsA special sort of Particle:
class Jet: public Particle {...};

 Therefore, wherever a Parti cl e is needed, | can use a Jet !

e But a Jet also contains more information than an ordinary
Particl e, e.g.the number of Parti cl es that it is composed of.

* \What happens to this additional information?

i — : A pointer to a newly created Jet object
Jet) et * new {e'g . Another pointer, pointing to this object
Particle *part = jet; . : : :
- — xi At - A copy of the Jet object, with all the information
Jet jetCopy = "jet; A copy of the Particle info of the Jet, i.e. only e, px, py, pz
Particle part Copy = *jet; Py , 1.€. ONly €, PX, Py,

B. List 28.-28.7.2009 An Introduction to C++ Page 46

The Jet Algorithm at Work

all Particles all Particles

.’

Dy =0. 5, pz:i..

e e=1.4, px=0.8,
- pz=-0.1, pz=0.4

— e (e=4. 7, px=2. 3,
py=-0. 5,

nParticles = 7 nParticles = 6

B. List 28.-28.7.2009 An Introduction to C++ Page 47

Destructors

 After the Jet finder:
a complicated tree.

 All the objects use memory

e If we want to run the the jet
finder on many events, we
have to free the memory

again! b e=9.9, px=-1.7 article
g =0.8, pz=-7. e=8.5, px=-1.2,
class Jet: public Particle { =0.5, pz=-8-1
publ i c: . article
Cee ~Partict =1.4, px=-0.5,
virtual ~Jet(); SO 5!“;5-:3' =0.3, pz=0.
}; nParticles = 4
Jett::~Jet() {
for (int i = 0; i < nDaughters; i++) { I
del ete al |l Daughters[i]; ~Jet() is the Destructor of class Jet.
} It is called when a variable of class Jet goes out of scope,
} or when we explicitly delete an objet of class Jet

which a pointer points to.
T e e up”.

B. List 28.-28.7.2009 An Intro

Passing Arguments to Subroutines

 Normal case in C/C++: “Pass by Value™:
- Only the value of a variable is passed to a subroutine
- For objects: a copy is passed

- If we change the object, only a copy is changed => no effect for calling routine!
- If we pass an object of a subclass (Jet/Particle!), we lose information

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

« To pass “the object itself’, we can pass a pointer to the object:

- the value of the pointer is the the address of the object

- the pointer is copied, i.e. the address, but not the object pointed to!

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

An Introduction to C++ Page 49

References

» Passing pointers is completely OK, but leads to clumsy notation:
void sort (double *dl, double *d2) {
if (*d2 > *d1) {
double d = *di,

*dl = *d2;
*d2 = d;
}
}
int main() {
double a = 2. 3;
double b = 5;
sort (&a, &b);
cout << “After sorting: “ << a “ <=*" b << endl;

* A reference is another name for an object:

int main() {

double a = 2. 3;

double b = 5;

doubl e& ¢ = a;

a = 17.5;

cout << “Value of c: “ << ¢ << endl;

B. List 28.-28.7.2009 An Introduction to C++ Page 50

References I

* With references, our sort function looks much nicer:
void sort (doubl e& dl, doubl e& d2) {
if (d2 > d1) {
double d = di;:
dl d2;
d2 d:

}

}

int main() {
double a = 2. 3;
double b = 5;
sort (a, b);
cout << “After sorting: “ << a “ <="*" b << endl;

» References don't exist in C, only in C++

» Passing a reference is essentially like passing a pointer, but nicer:

- No copying is involved

- The reference behaves like the object itself

B. List 28.-28.7.2009 An Introduction to C++ Page 51

const

A function that takes a reference to an object can in principle
change the object

* Very often, we want to write functions that only “look” at an object,
I.e. get some properties of the object, but do not change the
object.

* If we use “const”, we promise not to change the object:
doubl e scal ar Product (const Vector& vl, const Vector& v2) {
return vl1.get X()*v2. get X()
+ vl1.getY()*v2.getY()
+ vl.getZ()*v2.getZ();

« But how do we know that getX() does not change the Vector?

cl ass Vector { T

e he “const” tells the compiler that getX() may be used
public: for constant objects. It is a promise that getX() will not
e change the object.
doubl e get X() const;
; In the implementation file, the compiler will report an error
doubl e Vector:: getX() const { if V\;e t:ry io go anything that changes the object, e.g. write
return r*cos(phi)*sin(theta); -
B. Lis WEONE duction to C++ age

Things we Have not Covered

 operator overloading
* templates
 the standard template library

e much much more...

I'll try to give you a flavour about these things in the next slides.

These things are very useful, but not trivial to use, because we have
not covered many technical details in this 2 day boot camp.

But let's see...

B. List 28.-28.7.2009 An Introduction to C++ Page 53

A Flavour of Templates

file maxi mum h:
This defines a generic “maximum?” function for any data

t enpl at e<cl ass T> type T that has a “>” operator.

T maxi mum (const T& a, const T& b) { Note that the complete definition is in the header file,
return (a > b) ? a: b; there is no .C file!

}

file trymaxi mum C.

#i ncl ude<i ostr anp
usi ng nanespace std;
#i ncl ude “nmaxi mum h”

int main() {
doubl e d1, d2;
cout << “Enter two floating point nunbers: *“;

cin > di >> d2 ’ Here we use the new maximum function:
cout << “The maxi mumof “ << dl << “ and . :

<< d2 << “ is * << maxi mum (d1, d2) << endl; |!Nhe compilerautomatically creates a
int i1 2 maximum function from the template that
cout << “Enter two integer numbers: “; takes two doubles and returns a double.
cin >> il >>i2; _ _
cout << “The maxi mumof “ << i1l << “ and “ The compiler automatically creates a

<< i2 << “ js “ << maxinmum (i1, i2) << endl; |different maximum function that takes two
return O; integers and returns an integer!

}

—

B. List 28.-28.7.2009 An Introduction to C++ Page 54

A Flavour of Operator Overloading

file Vector. h:

cl ass Vector {
public:

a.oijbl e get X() const;

doubl e get Y() const;
doubl e getZ() const;

Hi

Vector operator+ (const Vector& | hs, const Vector& rhs); [Here we declare the “+" operator for
two Vectors.
file Vector.C

doubl e Vector::getX() const { return r*cos(phi)*sin(theta); }

The access functions are simple. I

Vector operator+ (const Vector& | hs, const Vector& rhs) {

goug: e X = :ES get X8 + rES- get X8i The “+” operator is also
ouble y = S. getY + rhs.getY(); traightf
double z = I hs.getZ() + rhs.getZ(); straightforward

return Vector (x, vy, z);

Now we can write:
Vector vl (1, 2, 3), v2 (-0.5, 2.3, 0);
Vector w = vl + v2;

B. List 28.-28.7.2009 An Introduction to C++ Page 55

A Flavour of the STL

 STL: Standard Template Library

file nunbervector. C

#i ncl ude <vector>

#i ncl ude <al gorithne
#i ncl ude <i ostreanp
usi ng nanespace std;

int main() {

int n;

cout << “Enter the nunber of elenments: “; vect or <T> is a template type.

cin >> n; It stores elements of type T. Here T is a
vect or <doubl e> al | Nunber s(n); double P

for (int i =0; i <n; i++) { '

.) . — Here we create a vector with n elements.
cout << “Enter nunber << [+l <<

cin >> all NunbersJ[i];

The vector behaves like an array, but it can be

}
sort (all Nunmbers. begin(), allNunbers.end()); : ,
cout << “Here are all nunbers in order: \n("; copied, resized, sorted etc etc.
for (int i =0; i < allNunbers.size()-1; i++) {

cout << al | Nunbers[i] << *, *“; Here we sort the vector.
} : :
cout << al | Nunbers[al | Numbers. size()-1] << “)\n”; The vector knows its own size! Very useful...
return O;

}

=
B. List 28.-28.7.2009 An Introduction to C++ Page 56

Reserve

RESERVE

B. List 28.-28.7.2009 An Introduction to C++ Page 57

Operators |: Arithmetic operators

 Arithmetic operators:

Operator |Meaning FORTRAN
- Sign Change -
* Multiplication *
/ Division /
% Modulus MCD
+ Addition +
- Subtraction -

note: no exponentiation (** in FORTRAN)! use “pow” function

« Assignment: = evaluates right side, assigns value to left side

doubl e radius = 1.5;

doubl e result = 3.14159276*r adi us*r adi us;
int 1 = 1;

I =1 + 1; [/ nowi iIs 2!

B. List 28.-28.7.2009 An Introduction to C++ Page 58

Operators lll: Relational Operators

» Relational (comparison) operators: return “false” or “true”

Operator Meaning FORTRAN
== Equal . EQ
I = Not equal . NE.
< less than LT.
<= less or equal . LE.
> Igreater than . GT.
>= \greater or equal . GE.
» Careful: “=="is a comparison, “=" is an assignment!

* In C/C++, assignment has also a value: the assigned value:
a=(b=7 + 1; is legal (b becomes 7, a becomes 8)

e Therefore: i f (a=7) ... is also legal, but not what you want!

B. List 28.-28.7.2009 An Introduction to C++ Page 59

Operators |V: Logical Operators

 Logical operators: used for boolean expressions

Operator [Meaning FORTRAN
! not . NQT.
| = exclusive or . XOR
&& and . AND.
| | or R

 Bitwise operators: Perform bit-by-bit operations on integer types

Operator Meaning FORTRAN
~ complement | NOT
& bitwise and | AND
A bitwise exclusive or | EOR
| bitwise or | OR

« Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: O is false, everything else is true
=>7 && 8istrue, 7 & 8is 0 is false!

B. List 28.-28.7.2009 An Introduction to C++ Page 60

Numerical Functions

« Available from <cmat h>
Don't forget “usi ng nanespace std; !

Function [Meaning FORTRANRemark
si n(x) Sine SIN(X)
cos (x) |[Cosine CO5(X)
tan (x) [Tangent TANCX)
asin(x) |Arc sine ASI N[X)
acos(x) |Arc cosine ACOS(X)
atan(x) |Arc tangent ATAN(X) |-1/2 < Result < /2
atan2(x,y) |Arctangent (xly) |ATAN2 (X, Y)|-m <Result<m
exp(x) |Exponential EXP(X)
log(x) |Natural logarithm LOGE X)
| 0910(x) [Logarithm, base 10 | LOGLO(X)
abs(x) |Absolute value ABS(X)
sqrt(x) [Square root SQRT(X)
pow (X, Y) [xtothe powery X**Y Jonly for x>= 0
pow (X, i) [xtothe integer power XE* | also for x<0

B. List 28.-28.7.2009

An Introduction to C++

Page 61

An Introduction to C++ o

Benno List

DESY Summer Students Tutorial

27.-28.7.2009

B. List 28.-28.7.2009 An Introduction to C++ Page 1

Benno List:
Benno.List@desy.de

See also
http://ww. desy. de/ ~bl i st/ summer st udent s/ summer _| ect ur es. 2008cpp. ht m

Introduction |

« C++: Created by Bjarne Stroustrup
in 1983

* Based on the language “C”
(Kernighan & Ritchie 1978)

* Extends C:
- Object orientation (classes)
- Operator overloading
- Templates

- Many many features

« Standardized by ISO in 1998

* Very important language for systems
and high performance programming

B. List 28.-28.7.2009 An Introduction to C++

PROGRAMMING

T

|ihlmf

STROUSTRUP

The Creator of G4

10 VN
!\
L W

Page 2

Introduction || "

» C++ is one of the most complicated programming languages
around

* FORTRAN is like a VW beetle:
simple, reliable, easy to master

o C++is like a Formula 1 racer:
incredibly powerful, but difficult to drive

Ra,

AR L]
o,
- i g .[.r

FORTAN

B. List 28.-28.7.2009 An Introduction to C++ Page 3

Introduction | "

* The best way to learn programming is to look at programs
* |l show many code examples

* In your work, you will mostly start with an example program and
adapt it to your needs

- | concentrate on showing you how to understand what existing programs do

- Programming languages are like all languages:
You cannot write if you can't read!

* For reasons of space, examples are ususally not production-
quality code!

- | often omit (essential!) error checking
- | often prefer simple code over the most concise code

- Sometimes | avoid syntactic complications (omit “const”, don't use references)
for the sake of brevity and clarity

B. List 28.-28.7.2009 An Introduction to C++ Page 4

Examples: / af s/ desy. de/ user/ b/ bli st/ public/c++intro

£ g
BUT WE BOTH EMOLJ #1 WHEN T RETURN, YOU
WALLY, T CAME TO g YOU'LL SEND ME TO |3| WILL HAVE ESCAPED
ASK YOL) FOR THE £| SOMEONE WHO DOESNT |&| TO YOUR SECRET
NEW DESIGN SPECS. |3| WAVE THEM. AND THAT |G HIDING PLACE.
| PERSON LJILL REFER ME |£
BACK TO YOU. § | TED HAS
;) 3 ' THE SPECS.
- ey / & Y 3
o R i | b
| = * “ t—l; iz
. LM— ik (TS, Lt lEq};‘-
[S i

© Scoft Adams, Inc./Dist. by UFS, Inc.

Hello, World! o

n
Note: C++ is case-sensitive:
Our first C++ program: cout, Cout and COUT are 3 different things!I
file: hello.C
#i ncl ude <iostreanp Reads in file “i ost r eand, which declares cout
using namespace std; Without this, we would have to write st d: : cout
TS Gish) “{ .. 1 This is the main program, returning an integer
cout << “Hello, Wrld!'\n"; . ; y w w)
return 0: Prints out “Hel | o, Wor | d”, “\ n” ends the line
} returns “0” to the shell: no error
Note: a semicolon ends each statement. I
In the shell:
$> g++ -0 hello hello.C +g++ is the compiler, hel | o is the excutable file
$> ./hello sexecute “hel | 0”
Hel lo, Verld! *yes, it works!
$>
B. List 28.-28.7.2009 An Introduction to C++ Page 5
Exercise:

* Make your own working directory (as subdirectory of your “public” directory)

« Copy / af s/ desy. de/ user/ b/ bli st/ public/c++intro/hello.Cto your
working directory

e Compile it and run it

» Edit the program to print something different

Functions o

* In C++: almost everything returns a value
=>no “SUBROUTINE”s in C++, only “FUNCTION’s

* No implicit typing, every function and variable has to be declared

file: area. h

doubl e area (doubl e radius); Decla(es the function: o 1
function takes one argument “r adi us” of

file: ar ea. C type “doubl e”, returns a “doubl e” value

#i ncl ude “area.h”

Includes the declaration file

doubl e area (doubl e radius) {] _
doubl e result = 3.14159276* Defines the function

radi us*radi us;

return result; Note: linebreaks are allowed almost
} everywhere I

B. List 28.-28.7.2009 An Introduction to C++ Page 6

Functions are declared with:

return-type function-name (argumentl-type argumentl, ...);

Using Functions i

file: cal carea. C

#include <iostream Includes the declaration files
usi ng namespace std; I
#i nclude “area.h”

Note: <> for standard headers,

int min() { “” for user headers!
cout << “Enter radius: ";
doubl e radi us

cin >> radius; ci n reads from standard input
cout << “Area of circle with radius * é

<< radius << “ js *“
<< area (radius) << endl;
return 0;

}

| n the shell:

$> g++ -0 cal carea calcarea.C area.C

$> ./cal carea

Enter radius: 1.5

Area of circle with radius 1.5 is 7.06858
$>

B. List 28.-28.7.2009 An Introduction to C++ Page 7

Exercise:

« Copyarea.h, area.C andcal carea. Cfrom
| af s/ desy. de/ user/ b/ blist/public/c++intro
to your working directory

* Compile and run calcarea

* Write a new function “volume” that calculates the volume of a pyramid with base lenth b and
hei ght h. Create 2 new files vol unme. h and vol une. Cfor that.

* Write a new main program where you can enter the dimensions of the pyramid, and you get
the volume printed out afterwards. Store that program in file cal cvol une. C, compile it
and run it.

Basic Types

» Some of the types available in C++

C++ Type [Meaning Size |Range (appr.) Resolution

int, long |Integer Y bit | V) EVEATTEA \

fI oat Floating-point | ¥ bit | 310" 1107

double |Floating-point Vbt | +2:10%308 2-10-16

bool Booleanvalue (32 bit (1)) false, true

char Character, integer| A bit YA AYY \

short Integer) bit £YYVIA \
Note: Sizes are not the same on all systems,
e.g. | ong could also be 64 bit I

B. List 28.-28.7.2009 An Introduction to C++ Page 8

If you already know C, you are probably bored.

Feel free to color this Mandala while I'm talking. :-)

Operators |: Arithmetic operators "

* Arithmetic operators:

Operator |Meaning
- Sign Change
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

note: no exponentiation! use “pow” function

« Assignment: = evaluates right side, assigns value to left side
double radius = 1.5;
doubl e result = 3.14159276*radi us*radi us;
int i =1;
=1 + 1 [l nowi is 2!

B. List 28.-28.7.2009 An Introduction to C++ Page 9

Operators |I: "

* Special cases:

int i =1

i 4= 1 sameasi = i+l; now i is2

i = 3 sameasi = i*3; now i is6

. increments i . Nowi is7.

int j = 4+ assigns new value ofi to j. =>j is now 8.
called “pre-increment”

j o= it assigns old value to k. => k is now 8, but i is 9!

called “post-increment”

« The operators “+=", “* =" etc work also for f | oat , doubl e etc.

* Precedence as usual, evaluation from left to right:
a = b+2*-c +d%; is same as
a = (b+(2*(-c))) +(d%);

B. List 28.-28.7.2009 An Introduction to C++ Page 10

Operators Ill: Relational Operators "

» Relational (comparison) operators: return “false” or “true”

Operator | Meaning
== Equal
= Not equal
< Less than
<= Less or equal
> Greater than
>= Greater or equal
« Careful: “=="is a comparison, “=" is an assignment!

* In C/C++, an assignment has also a value: the assigned value:
a=(b=7 +1; is legal (b becomes 7, a becomes 8)

 Therefore: i f (a=7)... is also legal, but not what you want!

B. List 28.-28.7.2009 An Introduction to C++ Page 11

Operators |V: Logical Operators "

* Logical operators: used for boolean expressions

Operator | Meaning
! Not
I = Exclusive or
&& And
| | Or

* Bitwise operators: Perform bit-by-bit operations on integer types

Operator | Meaning
~ Bitwise complement
& Bitwise and
JAN
|

Bitwise exclusive or
Bitwise or

» Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: 0 is false, everything else is true
=>7 && 8istrue, 7 & 8is0is false!

B. List 28.-28.7.2009 An Introduction to C++ Page 12
E i
15 IT MORE TMPORTANT] 1 ONLY ASK BECAUSE g WHERE'S
TO FOLLOW OUR DOCU— | & OUR DEADLINE 15 3 YOUR TEAM-—
MENTED PROCESS OR TO g ARBITRARY AND OUR |z ARTIFICIAL WORK
MEET THE DEADLINE? |3| DOCUMENTED PROCESS |3| SENSE OF KILLED
§] WASPULLED OUTOF |£] URGENCY? R
SOMEONE'S LOWER E (
T & TORSO. 2
| £ §
| il % o)

© Scott Adams, Inc./Dist. by UFS, Inc.

Operators V: Input and Output "

. _ Every UNIX program has 3 pre-defined inputs/outputs:
#include <iostream ci n is the standard input.
cout is the standard output.

usi ng namespace std; cerr is the error output.

| il ma? p() { “<<”is the output operator.
o T “>>" is the input operator.
doubl e d;

cout << “Enter an integer and a double: *“;
cin>> i > d;
cout << “The integer is “ <<|

<< “ and the double is “ << d << endl;
cerr << “This is an error message\n”;
return 0;

B. List 28.-28.7.2009 An Introduction to C++ Page 13

Exercise:

* Copy file inout.C from
/af s/ desy. de/ user/ b/ blist/public/c++intro/hello.C
to your working directory
e Compile it and run it
* try error output redirection: run
$> ./inout 2> inout.err
and look at file inout.err
* try standard output redirection: run
$> ./inout 2> inout.out
and look at file inout.out. You will not get the prompt “Enter an integer and a double”, but
you have to enter the numbers nevertheless.
e ftrytorun
$> echo 2 3.14 | inout

Numerical Functions

+ Available from <cmat h>
Don't forget “usi ng nanespace std; !

Function |Meaning Remark FORTRAN
si n(x) Sine SI N(X)
cos (x) |Cosine CO5(X)
tan (x) |Tangent TAN(X)
asi n(x) Arc sine ASI N(X)
acos(x) | Arc cosine ACOS(X)
atan(x) | Arc tangent -11/2 < Result < 11/2 ATAN(X)

atan2(x, y) |Arc tangent (xly) -r < Result < 1 ATANZ (X, YY)
exp(x) Exponential EXP(X)
| 0g(x) Natural logarithm LOE X)

| 0g10(x) |Logarithm, base 10 LOGLO(X)
abs(x) Absolute value ABS(X)
sqrt (x) Square root SQRT(X)
pow (X, V) |xtothe powery only for x >= 0 Xy

pow (X, i) [xtothe integer power i |also for x<0 X

B. List 28.-28.7.2009

An Introduction to C++

Page 14

Type Conversions |: Automatic Conversions "

C/C++ has many pre-defined type conversions that are applied
automatically, when necessary:

* integer types (int, short, char, long long) to floating point types (float, double):
gives the same number
careful: for large integers, the conversion is not exact!

« floating point types to integer types:
the number is truncated (not rounded!) towards O: Y -
1.3->1,1.7->1,-1.8 > -1 - _\j

* Number types to bool: 0 -> false, non-zero -> true Too many traps to list
. ~ them here! Find them
« arithmetic expressions between integers result in integers: el -
713 > 2, 4/5 > Y ——
« arithmetic expressions between floats (and integers) result in floats:

1.3"5->6.5, 4.0/5->0.8,4/5.0->0.8

* Arguments of arithmetic functions are (often) automatically converted:
sqrt (2) -> 1.41

B. List 28.-28.7.2009 An Introduction to C++ Page 15
g g
TODAY I HAD A CHOICE |z ... OR DOING SOME— g S0 T ATTENDED
OF DOING SOMETHING |&| THING USELESS THAT |z MEETINGS UNTIL
IMPORTANT THAT NO E| LJOULD LOOK LIKE AN i I COULD NO LONGER
OME WOULD EVER E ACCOMPLISHMENT. 2 APPRECIATE THE
REALIZE. . H s DIFFERENCE.
E ¥
E §) Az [KEEP UP
] & ot THE GOOD
r»’-i '!l!’fi'dz"-"{?"z‘-r-ﬁ?ﬂ E jﬂiﬂ . E [, WORK, -4
= w -
| R S /)
37 e

© Scoft Adams, Inc./Dist. by UFS, Inc.

Type Conversions Il: Casts

You can explicitly ask for a type conversion.
This is called a cast. (Like “casting bronze”)

* C-style casts: (type)expression:

double d = 3.7,
int i =(int)d* 2; // i is 3*2=6, not 7!

- discouraged!!! hard to read, ambiguous

» C++ style casts:

int i = static_cast<int>(d) * 2;

- the recommended form.

- other casts exist (dynam ¢_cast, reinterpret cast, static_cast)

B. List 28.-28.7.2009 An Introduction to C++ Page 16

Exercise:

* Write your own program that takes integers and/or doubles as input, converts them to other
data types and prints them out.
* Hint: You can directly print out the conversion result:

double d = 3.7,

cout << “d = “ << d
<< “, static_cast<int>(d) = “ << static_cast<int>(d)
<< ", static_cast<int>(d*2) = *“ <<

static_cast<int>(d*2)
<< endl;

Control Strutures I: If-then-else i
n
doubl e maxi mum (doubl e a, double b) { |
doubl e resul t; « condition in parantheses after i f”
'frgzurt b)= g; « note: resul t must be declared before the if-block
} « multiple statements afteri f () and el se must be
el ?:sﬂ b enclosed in curly braces.

} _ Note: no semicolon needed (but allowed)
} SELUT D el after curly braces I
doubl e b)

doubl e maxi mum (doubl e a, : .
doubl e resul t;({ for single statements after i f ()
if (a>b) result = a; and el se, we don't need the curly
el se result =D, braces. (But use them anyway!)
return result;

}

doubl e maxi mum (doubl e a, double b) { «r . «. . :
double result = (a >b) 2 a: b; ? . “is a special operatgr (taking
return result; three arguments), especially for

} cases such as this one.

doubl e maxi mum (doubl e a, double b) {
return (a>h) ? a: b;
}

The variable r esul t is unnecessary. I
B. List 28.-28.7. n Introduction to C++ Page 17

Exercise:

* Write your own program that asks the user for two values and prints out the maximum of both
numbers.

* Try out the different forms of the “maximum” function given above.

* Can you write a function that evaluates the maximum of three numbers?

L u LH
Control Structures II: while, do-while "
n
doubl e power (double x, int n) { il

/1 evaluates x*n, for nonnegative n By the way: This is a single-line comment
double result = 1;

int i =0;
while (i <n) {
result *=x; .« This block is executed only if i<n;
) B once i >=n, go to next statement
return result: * Block may be executed 0 times (for n == 0)

}

doubl e exponential (double x) {
[* cal cul ates exp(x L .
exp (x) = 1 +p§(l A2+ AL % By the way: This is a multi-line
doubl e result =1, xx = 1; comment
int i =1,
do {
XX *= x/i; : _
result += xx; * This block is repeated as long as
+H ; xx > 0.0000001 * result.

} while (xx > 0.0000001 * result); * Block is executed at least once!
return result;

Page 18

Exercise:

* Write your own program that asks the user for two values and prints out the result of x to the
power n, or the exponential of x.

* Print out the resukt of exponential(x) and compare it to the result of the standard function
exp(x)

Control Structures lI: for "

doubl e power (double x, int n) {
Il evaluates x"n, for nonnegative n

double result = 1;

return result;

}

doubl e power (double x,
I evaluates x"n, for fnonnegdtive n

,oubli.iiiiiil.' . .
() @ A for-loop is exactly equivalent to
fo {

a whi | e-loop

resul t
} t " » Just a convenient short-hand
} return result, notation
B. List 28.-28.7.2009 An Introduction to C++ Page 19
Exercise:

* Tryout a for-loop

More Complicated Data Structures: Classes | "

* In a class, several variables (“data

file Vector. h: members”) can be grouped together
* “publ i ¢” means: other parts of the
class Vector { .
publ i c: program may access the variable
double x, vy, z; * A class creates a new variable type!

}

: ' ' 1T
e O1E: Here the semicolon is mandatory!!!
file cal cVect
doubl e cal cVectorLength (Vector v); I

file cal cVect orLength. C.
#include “Vector.h”

i ncl ude <cmat h>

usi ng namespace std,;

doubl e cal cVectorlLength (Vector v) {
return sqrt (pow (v.x, 2) +

_ Here we have to pass only one variable
} pow (v.y, 2)+pow (.2, 2)); of type Vect or, instead of 3 |

B. List 28.-28.7.2009 An Introduction to C++ Page 20

Classes |l "

#include “Vector.h”
#include “cal cVectorLength. h”
#incl ude <iostreanp
usi ng namespace std,;

int main() {
Vector v,
cout << “Enter three vector conponents:”;
cin >>v.x >>v.y >> v.z; * Creates a Vector named v.

cout << “Length of this vector is *

* Reads in the components:
<< cal cVectorLength (v) << endl; P

Vector w = v: V.X is X-component of v!
cout << “Length of vector wis “ » Calculates the length.

<< cal cVectorLength (w) << endl: * Creates a new Vector w, which is a
return O; copy of v.

Exercise:

« Create files Vect or. h, cal cvectorlength. h, cal cvectorl ength. C and
vect or | engt h. C(the main program), enter the code given in the slides, and run the code.

Classes IlI: Function Members / Methods "
n
file Vector. h:
class Vector { |
public: * This is a “constructor”

Vect or (dOUb| e xIn, double yln, doubl e zl n). Th|S Ca|cu|ates the |ength Of a
Vector: it is a function: therefore

doubl e length();
double x, vy, z;

}: the “()”, but takes no arguments
file Vector.C
#include “Vector. h* Note: Here we really need the header file,

#i ncl ude <cmat h>
usi ng namespace std;

ector (doubl e xIn, double yln, double zIn) {

because it declares the layout of the class

} Es Y = s 2 = 200 Note: in the definition of the function outside
the “cl ass Vector {};”, we have to give the
doubl e Vector::length() { class name explicitly
return sqrt (pow (x, 2) + pow (y, 2)+pow (z, ;

}

Here we use x, y, z directly, without any “v.”! I
B. List 28.-28.7.2009 An Int

Classes IV "

file vectorlength.C

#i ncl ude “Vector.h”
#i ncl ude <i ostreanr
usi ng namespace std,;

int min() {
double x, vy, z;
cout << “Enter three vector conponents:”;
cin >> x >y > z; * Now we can also create a Vector
VeC: or v (LX' %"h Z]Zith_ Cor directly from its components, using
cout << “Length o is vector is “
<2 W[BFELI) < el - the constructor
Vector w = v: + Calculates the length.
cout << “Length of vector wis “
<< w. length() << endl;
return 0;

B. List 28.-28.7.2009 An Introduction to C++ Page 23

Exercise:

« Edit file Vect or . h and Vect or . Cso that they contain the new functions.
» Edit the main program and run it.

Classes V: Private ™

file Vector. h:

class Vector {

publ i c: * Now we have spherical

Vector (double x_, double y_, double z_); coordinates.

doubl e | ength(); * The coordinates may not be
PR accessed from outside the class

doubl e r, phi, theta;] .
anymore: they are private!

b

file Vector. C

#include “Vector. h’ * Now the constructor is much
#incl ude <cnath> more complicated.

usi ng namespace std;

Vector::Vector (double x_, double y , double z_) {
r =sqrt (pow (x_, 2) + pow (y_, 2)+pow (z_, 2));
phi = atan2 (y_, x);
theta = (r > 0) ? acos (z_/r) : O;

}
doumr 2t L/ff,t ?r HEnZE * But calculating the length is
} easy!

B. List 28.-28.7.2009 An Introduction to C++ Page 24

Classes VI "

#incl ude “Vector. h” What has changed in our main
#include <iostreanp program?

usi ng namespace std,;
NOTHING! it still works!

int main() {

double x, vy, z;

cout << “Enter three vector conponents:”; Thisis GREAT!

cin > x >y > z;

Vector v (X, vy, z);

cout << “Length of this vector is *“
<< v.length() << endl;

Vector w = v;

cout << “Length of vector wis
<< w. length() << endl;

return 0;

This concept is
SO great,it even
has a name: It is called

Encapsulatio

1

Note: old routine
W= calcVectorLength does not work
anymore, because it accesses
the data members of Vector
directly!

B. List 28.-28. to C++ Page 25

Exercise:

e Copy the files Vect or . h and Vect or . Cto backup files Vect or - xyz. h and
Vector-xyz.C

e Change Vect or. h and Vector. C

* Verify that the main program can be compiled without changes, and gives the same result

Reflection on Objects and Classes "

* Objects: Instances of class variables:
Vector is a class, v is an Obect

» With classes, we have

- a close coupling between data and functions that work on the data

- the possibility to hide how some piece of code works,
we see only what it does

- the possibility to divide our code
into many small pieces
that are individually simple and
therefore well to maintain

* Object Oriented Programming
is the modern way to write
programs

Encapsulation hides the details of tha implementation of an cbject.

B. List 28.-28.7.2009 An Introduction to C++ Page 26

The lllusion of Simplicity o

n
o [S |
- I_I"L_T—" - i - .J_[_l. . |
d — e = _T_ - |
The task of the software development team is to engineer the illusion of simpicily.
B. List 28.-28.7.2009 An Introduction to C++ Page 27

Interlude "

« Compliling

+ Linking GNU Make

o Make A Program for Directed Compilation

Don't expect to understand all this;

| just want to give you an idea what
‘make” does and why we use it all the time

A iy -
for GNU Make version 251

I;_?.r-l_. by Richard M. Staliman,

Roland McCrath and Paul D. Smith

B. List 28.-28.7.2009 An Introduction to C++ Page 28

More on Compiling "

» Compiler g++: Translates source code (text file) into machine code
« 2 Steps: Compiling and Linking

* Qutput of compiling step: .o files (object files):
$> g++ -c Vector.C
$> g++ -c vectorlength.C

produces files Vect or. o and vectorl ength. o

« Output of linking step: executable (no extension)
$> g++ -0 vectorlength vectorlength.o Vector.o

combines the object files vect or | engt h. 0 and Vect or. o into
the executable file vect or| engt h

* In the linking step, also source files may be used, e.g.
$> g++ -0 vectorlength vectorlength. C Vector.o

B. List 28.-28.7.2009 An Introduction to C++ Page 29

The option “-¢” tells the compiler only to compile (and not link) a file.
A file xyz.C is automatically translated into xyz.o

In the linking step, we have to give the name of the executable explicitly with the “-0” option. If this is
omitted, an executable file “a.out” is produced. This is because the linker does not remember the
filename of the .C file that contained the main() routine. Stupid, isn't it?

: UH
Archives o

* Problem: If we have hundreds of object files, the linking commands
gets veeeeeeeery long

« Solution: Collect all the object files (usually without object files that
contain a mai n() function) in an archive
$> ar r libnyroutines.a Vector.o area.o

« Now file | i brmyr out i nes. a contains the files Vect or . o0 and
area. o;
they can be listed with:
$> ar t libnyroutines.a
Vector.o
area. o

 We can use the archive in the linking step:
$> g++ -0 vectorlength vectorlength.C libnyroutines.a

* Alternatively:

$> g++ -0 vectorlength vectorlength.C -L. -Imyroutines
B. List 28.-28.7.2009 An Introduction to C++ Page 30

For more information on ar, enter
$> man ar
in the shell

In the notation
$> g++ -0 vectorlength vectorlength.C -L. -Inyroutines

the flag “-L” is used to say in which directory libraries can be located; here we say “.”, i.e. the
library is in the current directory.

The flag “-1” is used to say which libraries we want to link. Note that there is no space between “-
I” and “myroutines”. “-Imyroutines” says “use library libmyroutines.a”. Note that
“myroutines” is automatically amended by “lib” in the front and ““.a” at the end.

g UH
Recompilation m

* Second Problem: If we have hundreds of source files and object
files, re-compilation of all routines can take a lot of time

« But if we change Vect or . C, why should we recompile ar ea. C?
This is unnecessary!

* Solution: we recompile only Vector.C and replace it in the archive:
$> g++ -c Vector.C

$> ar r Vector.o libnyroutines.a
The “r" option (without a “-") tells ar to replace Vect or. o in

| i byroutine. a

B. List 28.-28.7.2009 An Introduction to C++ Page 31

UH
make idi

*Third Problem: After an editing session, | may have changed 7 out
of 150 .C files. It is very tedious to find out which files to recompile
and to do it by hand. Solution: The make utility

file Makefile: OBJS is a variable that contains the name of the
/ object files we want to have in the library.
OBJS=Vector.o area.o This line says that | i bnyr out i nes. a depends

l'ibnyroutines.a: $(0BJS) on all object files. If any of the object files has
ar r libnyroutines.a $(CBJS) changed (is newer than | i bmyr out i nes. a),
2 o'g T ey — the library has to be recreated.
vectorlength: vectorlength.C |ibnyroutines. a This line say how to recreate libmyroutines.a.
g++ -0 vectorlength vectorlength. C Note that the command has to be preceeded
-L. -Inyroutines by a “tab” character, which can be very clumsy
Vector.o: Vector.h to enter in some editors! (*I sometines works)
area.o: area.h This is a “suffix rule”: It tells make how to make a
.C file into an .o file. $< stands for the .C file.
* Now we can enter In the shets This line says that Vect or . 0 also depends on
$> make vectorlength Vector. h, notonlyonVector.C

g+t -c¢ Vector.C

g++ -c area.C

ar r libnyroutines.a Vector.o area.o
g++ -0 vectorlength vectorlength.C -L. -lnyroutines
$>

B. List 28.-28.7.2009 An Introduction to C++ Page 32

“make” is one of the most versatile, powerful and cryptic UNIX utilities.

You can learn more about (GNU) make from
http://www.gnu.org/software/make/
in particular from the manual at

http://www.gnu.org/software/make/manual/html_node/index.html i
The gnu is the logo of
Exercise: the GNU foundation.
Cute, isn't it?

http://www.gnu.org/

* Copy the file Makefile and vectorlength.C from é}nu Jthegnuproject.html

/af s/ desy. de/ user/ b/ bli st/ public/c++intro/ hell o.
to your working directory

. try
$> make vectorlength
and see what happens

e with the command
$> touch Vector.C
you can change the time stamp of file Vector.C to the current time, i.e. make it look as if you
just had changed Vector.C. Use touch with different files, and use make to re-compile
vectorlength. Observe which files are recompiled.

Back to C++

B. List 28.-28.7.2009 An Introduction to C++ Page 33

Getters and Setters i
n
class Vector { This “const” means that getX() does
PU{J) ic: R " tout) J not change the Vector object.
ect or ouni e X goupni e , double z_), !
doubl & | ength() 73/ iNe Il hear more about that later.
doubl e get X() consST;
doubl e getY() const; By using “Getter” and “Setter” methods
doubl e getZ() const; instead of allowing direct access to the
voi d setX (double new); data members, we “decouple” the class
pri vl e , _ Vect or from its “clients”, i.e. from the
}: double r, phi, theta; code that uses Vect or objects.
If we now want to go back to a Vector
Vector::getX() const { representation which internally uses x, v,
return r*cos(phi)*sin(theta); z, we have to change only code in the
} files Vect or. h and Vect or. C. The

potentially hundreds of files in which we

reeier SeiX (Honlle e use Vect or objects can stay unchanged!

doubl e newy = getY();
doubl e newz = getZ();
r = sqrt (newx*newx + newy*newy + newz*newz);
phi = atan2 (newy, newx);

theta = (r > 0) ? acos (newz/r) : 0;

B. List 28.-28.7.2009 An Introduction to C++ Page 34

Exercise:

* Add these getters and setters to your Vector class.
* Implement the missing methods (getY(), getZ(), setY(), setZ())
* You can also implement additional getters and setters like getPhi(), setPhi(), etc.

A more complicated class: Particle "

file Particle.h:

#i ncl ude “Vector.h”

cl ass Earticle{ I
public: - This is called the “default constructor”
Particle();

Particle (Vector v_, double m);
Vector get Momentum() const;
doubl e get Energy() const;

doubl e getlnvariantMass () const; - invariant mass of particle itself
doubl e getlnvariantMss (Particle p); - invariant mass of combination with
private: another particle

doubl e px, py, pz, m e;

}s

Note: we can have several functions

with the same name, but different arguments,
that do different things!

(This is forbidden in C!)

This is called (function) overloading.

B. List 28.-28.7.2009 An Introduction to C++ Page 35

Exercise:

Create new Files Particle.h and Particle.C
Implement the functions declared in Particle.h within Particle.C

Several Particles: Arrays "

Problem: in general, we have several particles in an event

file particlearray.C

e uee HEEar. i al | Parti cl es is an array with 100
#include “Particle.h” .
#include “fillParticles.h’ Particles.
#incl ude <i ostreanp
using namespace std; fillParticles somehow fills the
int main() { array, and returns the number of
Particle al | Particles[100]: particles.
int n=fillParticles (allParticles);
for (int i =0; i <n; ++H) {
for (int j =i+l j <n; +4) {
cout << “Invariant mass of particles * << i
<< " and " << j << " is “
<< allParticles[i].getlnvariantMss (allParticles[j])
<< endl ;
1
}
} Indices start at 0 in C++!
For an array with 100 elements, valid index values are 0 to 99.
B. List 28.-28.7.2009 An Introduction to C++ Page 36
Exercise:

* Copy files fillParticles.h and fillParticles.C to your working directory
* Create the main program in file particlearray.C and run it

Pointers i

* A Pointer points to some object anywhere in memory: It contains
only the object's memry address, but knows to what kind (class) of
object it points to

» We can use this to refer to other objects

« Example: Decay K% -> r*1- : we want to point to the 2 possible

decay pions, and we may have several pion pairs sharing the
same pion candidate

L. & \ ' X X oy N .. s
/ ! ‘ L ‘“
vl ~ § el ssoiteskameiton. o God's sake, Edwards, put the
) . . s
An english pointer The Pointer Sisters Another Pointer lase.r pointer away!
B. List 28.-28.7.2009 An Introduction to C++ Pointers can be dangerous!!!

Example: A KOS class

* Implement class KOSParticle

m
n
#include “Particle.h”
class KOSParticle {
public:
KOSParticle (Particle *piplus_, Particle *pimnus_);
get I nvari ant Mass() const;
private:
. . .
Eg;“ g: 2 *S: ﬁ: ﬁzs pi pl us is a pointer to a Particle object.
}: " Read: ““piplusisaParticle”. I
KOSParticle::KOSParticle (Particle *piplus_, Particle *pimnus_) {
pi plus = piplus_;
} prmnus = prmnus_, pointers can be copied without copying
the ob'lect to which thex point I
KOSParticle::getlnvariant Mass() const {
return (*piplus).getlnvariantMass (*pimnus);
}
*pi pl us is the object itself.
B. List 28.-28.7.2009 An Introduction to C++ Page 38
Exercise:

Using the Kshort class m

#incl ude “Vector.h”
#include “Particle.h”
#include “KOSParticle.h”
#incl ude <i ostrean>

usi ng namespace std;

int main() {
Particle allParticles[100];
int n=fillParticles (allParticles[100]);

for (int i =0; i <n; ++) {
for (int | =1i+1; j <n; +4) {
KOSParticle kOs (& allParticles[i]), &allParticles[j]));
cout << “Invariant mass of KOS is * here.
<< kOs. get I nvariant Mass() << endl;

kOs is created

b kosis destroyed here!
) (“it goes out of scope”)

B. List 28.-28.7.2009 An Introduction to C++ Page 39

Storing the Kshort Candidates "

int main() {
Particle allParticles[100];
int n=fillParticles (allParticles);
KOSParticle *al |l Kshorts[10000];

for (int i =0; i < 10000; ++i) allKshorts[i] = 0;
int kOsNunber = 0;
KOSParticle *kOs;
A new KOSParticle is created
for (int i =0; i <n; ++) { here, k0s points to it.
for (int J =141, j <n; +4) {
kOs = new KOSParticle(& allParticles[i]), &allParticles[j]));
if (abs (kOs->getlnvariantMass() - 0.493) < 0.05) {

al I Kshort s[kOsNunber] = kOs; Note: k02- >get | nvari ant Mass
++kOsNumber; \We keep the good Kshort candidates gs just shorthand for
} é*koz) ! get I nvari ant MiSS()
el se {

: delete kOs; . and throw away the bad Kshort candidates! I

}
}

cout << “We have found “ << kOsNunber << “ Kshort candi dates.\n";

}

B. List 28.-28.7.2009 An Introduction to C++ Page 40

A KOSParticle is also a Particle i

A This means that a KOSParticle

#include “Particle.h” is also a Particle.
cl ass KOSParticle: @dublic Particle™} - .
s This is called Inheritance.

KOSParticle (Particle *piplus_, Particle *pimnus_);
get I nvari ant Mass() ;

private:
Particle *piplus;
Particle *pinm nus;

H
Particle

AN

The class “Particle” is called the base class of class “KOSParticle”.

Class “KOSParticle” is a subclass of class “Particle”.

It “inherits” from class Particle, which is the superclass.

KOSParticle

This is the “UML Diagram” for this relationship —

“UML” stands for “Unified Modeling Language”

B. List 28.-28.7.2009 An Introduction to C++ Page 41

Inheritance "

class Particle {
public:
doubl e getPt() { return sqgrt(px*px+py*py); }
doubl e getPhi() { return atan2(py, px); }
doubl e getInvariantMass() { return sqrt (e*e-px*px-py*py-pz*pz); }
prot ect ed:
doubl e e, px, py, pz; «

“protected” means
rivate, but may be accessed from subclasses”.

b
class KOSParticle: public Particle {
public:
KOSParticle (Particle *piplus_, Particle *pimnus_) {
piplus = piplus_; . »
pi M nus = piminus_; Here we set the properties that are specific for a
e = piplus->e + pininus->e; KOSPart i cl e, and those inherited from
px = piplus->px + pimnus->px; Particle.
py = piplus->py + pimnus->py;
} pz = piplus->pz + pimnus->pZ; (cjaes KOSPart | cl e inherits e, px, py, pz
privat e: from class Parti cl e!
Particle *piplus;
Particle *pininus; KOSParti cl e also inherits get Pt (),
1 get Phi (), getlnvariant Mass() from

Particl e!

Inheritance | "

A new keyword.
“vi rtual " means that a subclass may implement

class Particle { this method differently.
upg :
parti cle *getDaughter (int i) {
return O; A more generic Particle:
} | a particle may have daughter
or ot ect ed: particles into which it decays.
doubl e e, px, py, pz; Normally, a particle has no
¥ daughters.

class KOSParticle: public Particle {
public:
virtual Particle *getDaughter (int i) {
if (i ==0) return pipus;

else if (i == 1) return pim nus;
el se return 0;
} .
... A KOSPar ti cl e has 2 daughters, 0 and 1. Therefore
_ it overrides the method get Daught er from the
private:
base class.

Particle *piplus;
Particle *pimnus;

Page 43

A Simple Jet Class i

m
n
class Jet: public Particle { A simple class for jets; jets are composed of
Pugl i <(3) : particles, but may also be treated as a pseudo-
et i |
ndaught ers = 0 particle (e.g. a quark!)
}

virual void addParticle (Particle *newDaughter) {
i f (nDaughters >= 100) {

cerr << “Jet::addParticle: too many daughters!\n”;

}
el se {
al | Daught er s[EDaught ers++] = newDaughter; Typical C/C++: Doing 2 things at the
SX : ﬂgﬁﬂgh: E:ZSX same time: assigning to
py += newDaught er - >py; al | Daught er s[nDaught ers],
pz += newDaught er - >pz; incrementing nDaught er s
: } afterwards.

virtual Particle *getDaughter (int i) {

}

prot ect ed:
i nt nDaughters;

Particle *all Daughters[100]; This is an array of pointers to Particles. Uff!

return (i >= 0 & i < nDaughters) ? allDaughters[i] : O;

B

B. List 28.-28.7.2009 An Introduction to C++

Page 44

Exercise:

* Implement class Jet

Using the Jet Class: A Jet Algorithm (a la JADE)

int findlets (Particle *particles[], int nParticles, double ycut, double s) {
int imn, jmn;
while (nParticles > 1) {
double mrin = sqrt (s);
for (int i =0; i <nParticles; ++) {
for (int j =i+l;,] <nParticles; ++) {
double m = particles[i]->getlnvariantMass (particles[j]);

i (= WMy | Loop over all pairs of particles,

} s = M= nd the pair with the least invariant mass.
} For this pair, store the indices i and j.

i}f (min*nmin < ycut*s) { Combine particles imin and jmin into a new jet;
Jet *jet = new Jet: remove both particles from the list of particles:
jet->addParticle (particles[imn]); replace particle imin by the new jet,
jet->addParticle (particles[jmin]); replace particle jmin by last particle in the list,

particles[jmn] = particles[--nParticles]; decrease the number of particles by 1.

particles[imn] = jet; o)
« This is the trick!
el se break; Because a Jet isalsoaParticle,

} : we may use it wherever a Par ti cl e is needed!
return nParticles;

}

B. List 28.-28.7.2009 An Introduction to C++ Page 45

Exercise:

* Implement this Jet finder
* Implement a new function fillParticles that does not fill an array of Particles
(Particle allParticles[100]),
but an array of pointers to Particles
(Particle *allParticles[100])!
* Hint: creat new Particles like this:
allParticles[0] = new Particle (Vector (0.7, -0.2, 0.3), 0.1396);

Reflection "

 We just saw great things a work:
One object behaving like an object from a different class!

* A Jet IsA special sort of Particle:
class Jet: public Particle {...};

 Therefore, wherever a Parti cl e is needed, | can use a Jet !

« But a Jet also contains more information than an ordinary
Particl e, e.g. the number of Parti cl es that it is composed of.

 What happens to this additional information?

A pointer to a newly created Jet object

Another pointer, pointing to this object

A copy of the Jet object, with all the information

A copy of the Particle info of the Jet, i.e. only e, px, py, pz

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

B. List 28.-28.7.2009 An Introduction to C++ Page 46

The Jet Algorithm at Work i

all Particles allParticles

._——

nParticles = 7 nParticles = 6

B. List 28.-28.7.2009 An Introduction to C++ Page 47

Destructors o

» After the Jet finder:
a complicated tree.

* All the objects use memory

allParticles [e=5.3, px=2.7
9]

* [f we want to run the the jet
finder on many events, we
have to free the memory
again! h

[1}

class Jet: public Particle {
public:

virtual ~Jet();

}; nParticles = 4

Jett::~Jet() {
for (int i =0; i <nDaughters; i+ { I

del ete al | Daughters[i]; ~Jet() is the Destructor of class Jet.
} It is called when a variable of class Jet goes out of scope,
} or when we explicitly delete an objet of class Jet

which a pointer points to.
T o destructor is used to “Clean up’.

B. List 28.-28.7.2009 An Intro

Passing Arguments to Subroutines i

» Normal case in C/C++: “Pass by Value”:
- Only the value of a variable is passed to a subroutine
- For objects: a copy is passed

- If we change the object, only a copy is changed => no effect for calling routine!

- If we pass an object of a subclass (Jet/Particle!), we lose information

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

* To pass “the object itself’, we can pass a pointer to the object:
- the value of the pointer is the the address of the object

- the pointer is copied, i.e. the address, but not the object pointed to!

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

An Introduction to C++ Page 49

References "

* Passing pointers is completely OK, but leads to clumsy notation:
voi d sort (double *d1, double *d2) {
if (*d2 > *d1) {
double d = *d1
*dl = *d2;
*d2 = d;
}
}

int main() {
double a =
double b =

2.3;
5

sort (&a, &b);
cout << “After sorting: “ << a “ <= " b << endl

* A reference is another name for an object:

int main() {
double a = 2. 3;
double b = 5;
double& ¢ = a
a=17.5;

cout << “Value of c¢: “ << ¢ << endl

B. List 28.-28.7.2009 An Introduction to C++ Page 50

References Il "

 With references, our sort function looks much nicer:
voi d sort (double& d1, double& d2) {
if (d2 > d1) {
double d = dil
dl = d2;
d2 = d;
}
}

int main() {
double a =
double b =

2.3;
5

sort (a, h);
cout << “After sorting: “ << a “ <= " b << endl

}

* References don't exist in C, only in C++

* Passing a reference is essentially like passing a pointer, but nicer:

- No copying is involved

- The reference behaves like the object itself

B. List 28.-28.7.2009 An Introduction to C++ Page 51

const .

* A function that takes a reference to an object can in principle
change the object

* Very often, we want to write functions that only “look” at an object,
i.e. get some properties of the object, but do not change the
object.

* |[f we use “const”, we promise not to change the object:
doubl e scal arProduct (const Vectoré& vl, const Vector& v2) {
return vl.get X()*v2. get X()
+ v1.get Y()*v2. get Y()
+ vl.getZ()*v2. getZ();

* But how do we know that getX() does not change the Vector?

class Vector { The “const” tells the compiler that getX() may be used
public: for constant objects. It is a promise that getX() will not
e change the object.
doubl e get X() const;

}s

In the implementation file, the compiler will report an error;
doubl e Vector:: getX() const { i V\;e t:ry io go anything that changes the object, e.g. write
return r*cos(phi)*sin(theta); L
B. ListWZ& 285 duction to C++ age

Things we Have not Covered "

» operator overloading
* templates
» the standard template library

* much much more...

'll try to give you a flavour about these things in the next slides.

These things are very useful, but not trivial to use, because we have
not covered many technical details in this 2 day boot camp.

But let's see...

B. List 28.-28.7.2009 An Introduction to C++ Page 53

A Flavour of Templates "

file maximm h:
This defines a generic “maximum” function for any data

tenpl at e<cl ass T> type T that has a “>” operator.

T maxi num (const T& a, const T& b) { Note that the complete definition is in the header file,
return (a >b) ? a: b; there is no .C file!

}

file trymaximum C

#i ncl ude<i ost r anp
usi ng nanespace std;
#incl ude “nmaxi mum h”

int min() {
doubl e d1, d2;
cout << “Enter two floating point numbers: *; . —
cin > di >> d2: Here we use the new maximum function:
cout << “The maxi numof “ << dl << “ and “ . ,
<< d2 << “ is “ << maximm (dl, d2) << end! : The compiler automatically creates a

int i1, i2 maximum function from the template that

cout << “Enter two integer nunbers: takes two doubles and returns a double.

cin>> il > |2

cout << “The maximmof “ << il << “ and “ The compiler automatically creates a
<<i2<<“is“ << mximm(il, i2) << endl; |[different maximum function that takes two

return O; integers and returns an integer!

}
—

B. List 28.-28.7.2009 An Introduction to C++ Page 54

A Flavour of Operator Overloading "

file Vector.h:

class Vector {
public:

.dloinI e getX() const;

doubl e getY() const;
doubl e getZ() const;

};

Vector operator+ (const Vector& |hs, const Vector& rhs); [Here we declare the “+" operator for
two Vectors.
file Vector.C

doubl e Vector::getX() const { return r*cos(phi)*sin(theta); }

The access functions are simple. I

Vector operator+ (const Vector& | hs, const Vector& rhs) {

ouble y = Ihs. get + rhs.getY(); .
double z = Ihs.getZ() + rhs.getZ(); straightforward

return Vector (x, y, z);

}

Now we can write:
Vector vl (1, 2, 3), v2 (-0.5 2.3, 0);
Vector w= vl + v2;

B. List 28.-28.7.2009 An Introduction to C++ Page 55

A Flavour of the STL o

 STL: Standard Template Library

file numbervector.C

#incl ude <vector>
#include <al gorithnmp
#incl ude <iostreanr
usi ng nanmespace std;

int main() {
int n;
cout << “Enter the number of elements: “; vect or <T> is a template type.
cin > n: It stores elements of type T. Here T is a
vect or <doubl e> al | Numbers(n); double o
for (int i =0 i <n i+ { '

. Here we create a vector with n elements.
cout << “Enter nunber “ << i+l << “: "

cin >> allNnbers[i]; The vector behaves like an array, but it can be

1
sort (all Nunbers. begin(), allNunbers.end());

cout << “Here are all numbers in order: \n(”; copied, resized, sorted etc etc.
for (int i =0; i < allNunbers.size()-1; i++) {
cout << al | Nunbers[i] << “, “; Here we sort the vector.

cout << al | Nunbers[al | Nunbers. size()-1] << “)\n”; The vector knows its own size! Very useful...
return 0;

B. List 28.-28.7.2009 An Introduction to C++ Page 56

Reserve "

RESERVE

B. List 28.-28.7.2009 An Introduction to C++ Page 57

Operators |: Arithmetic operators "

* Arithmetic operators:

Operator |Meaning FORTRAN
- Sign Change -
* Multiplication *
/ Division /
% Modulus MOD
+ Addition +
- Subtraction

note: no exponentiation (** in FORTRAN)! use “pow” function

« Assignment: = evaluates right side, assigns value to left side
doubl e radius = 1.5;
doubl e result = 3.14159276*radi us*radi us;
int i =1;
=1 o+ 1; [l nowi is 2!

B. List 28.-28.7.2009 An Introduction to C++ Page 58

Operators Ill: Relational Operators "

» Relational (comparison) operators: return “false” or “true”

Operator Meaning FORTRAN
== Equal . EQ
I= Not equal NE.
< less than LT.
<= less or equal .LE.
> greater than . GI.
>= greater or equal .GE
« Careful: “=="is a comparison, “=" is an assignment!

* In C/C++, assignment has also a value: the assigned value:
a=(b=7 +1; is legal (b becomes 7, a becomes 8)

 Therefore: i f (a=7)... is also legal, but not what you want!

B. List 28.-28.7.2009 An Introduction to C++ Page 59

Operators 1V: Logical Operators

* Logical operators: used for boolean expressions

Operator [Meaning FORTRAN
! not . NQT.
I= exclusive or . XOR
& fand . AND.
|| or R

* Bitwise operators: Perform bit-by-bit operations on integer types

Operator [Meaning FORTRAN
~ complement | NOT
| AND

bitwise exclusive or | ECR
bitwise or | OR

& bitwise and
A
|

» Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: 0 is false, everything else is true
=>7 && 8istrue, 7 & 8is0is false!

B. List 28.-28.7.2009 An Introduction to C++ Page 60

Numerical Functions

* Available from <cmat h>
Don't forget “usi ng nanespace std;”!

Function Meaning FORTRANRemark
sin(x) [Sine SIN(X)
cos (x) [Cosine C08(X)
tan (x) [Tangent TAN(X)
asin(x) |Arcsine ASINCX)
acos(x) |Arc cosine ACCS(X)
atan(x) |Arc tangent ATANCX) |-if2 < Result < /2
atan2(x,y) |Arctangent (xiy) JATAN2 (X, Y)fm <Result <m
exp(x) |[Exponential EXP(X)
log(x) |Natural logarithm LOQ X)
10g10(x) |Logarithm, base 10 | LOGLO(X)
abs(x) [Absolute value ABS(X)
sqrt(x) [Square root SQRT(X)
pow (X, y) Jxtothe powery XY lonly forx>=0
pow (X, i) |xtotheinteger powerf X *I also for x<0

B. List 28.-28.7.2009

An Introduction to C++

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

